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Interaction effects in electric transport through self-assembled molecular monolayers

Martin Leijnse
Center for Quantum Devices, Niels Bohr Institute,

University of Copenhagen, 2100 Copenhagen Ø, Denmark

We theoretically investigate the effect of inter-molecular Coulomb interactions on transport
through self-assembled molecular monolayers (or other devices based on a large number of nanoscale
conductors connected in parallel). Due to the interactions, the current through different molecules
become correlated, resulting in distinct features in the nonlinear current-voltage characteristics, as
we show by deriving and solving a type of modified master equation, suitable for describing trans-
port through an infinite number of interacting conductors. Furthermore, if some of the molecules
fail to bond to both electrodes, charge traps can be induced at high voltages and block transport
through neighboring molecules, resulting in negative differential resistance.

PACS numbers: 85.65.+h, 87.15.hg, 85.35.Gv, 85.35.-p,

I. INTRODUCTION

When N macroscopic resistors, each with a conduc-
tance G, are connected in parallel, the total conductance
is given by GT = NG. However, this is no longer true
if the currents flowing through the individual resistors
are correlated, i.e., if the current through one resistor is
affected by the current through its neighbors, e.g., due
to Coulomb interaction between charge carriers. Such
correlation effects can be expected to be important in
nanoscale systems, where the conductors are very close
to each other and where, because of the quantized nature
of the electron charge, current flow can be associated with
significant fluctuations of the charge on the resistors.

One interesting example is molecular electronic devices
based on a self-assembled molecular monolayer, sand-
wiched between metallic electrodes1–3. Compared with
single-molecule junctions, monolayer devices offer better
reproducibility and stability, and the larger currents are
easier to measure. They have been used to investigate a
number of interesting molecular transport effects, such as
negative differential resistance (NDR)4, switching5, and
spin-selective tunneling6,7. Although the experiments are
usually interpreted within a single-molecule picture, di-
rect experimental comparisons between monolayer and
single-molecule junctions8 have found large differences,
i.e., GT 6= NG. Such differences have been discussed in
terms of static changes to the local molecular environ-
ment in a monolayer device, e.g., due to re-arrangement
of molecular or surface charges, or interactions between
constant molecular dipole moments9–11.

In this work, we investigate the dynamic transport ef-
fect resulting from Coulomb interactions between charges
being transported through neighboring molecules in a
monolayer. The inter-molecular Coulomb interactions
not only lower the conductance (GT < NG), but quali-
tatively change the nonlinear current-voltage character-
istics of the device, as we show by deriving a type of
modified master equation for the nonequilibrium cur-
rent, as well as the voltage-dependent charging of the
monolayer. If the source and drain tunnel couplings dif-

fer, the inter-molecular Coulomb interactions give rise
to a voltage-asymmetric current-voltage characteristic,
I(V ) 6= −I(−V ), the shape of which provides an ex-
perimental fingerprint of the interactions. Furthermore,
if some molecules form bonds only with one electrode,
we show that NDR can occur, since charge traps are
formed within the layer and, through the inter-molecular
Coulomb interaction, block transport through neighbor-
ing molecules. Knowledge of the generic transport sig-
natures of inter-molecular Coulomb interactions should
be very helpful when interpreting data from molecular
monolayer devices and trying to separate the genuinely
single-molecule transport effects. We use terminology
like ”molecule” and ”monolayer”, but the results are of
much more general importance, and apply, for example,
to transport through many quantum dots connected in
parallel, carbon nanotubes bundled together in a rope,
or arrays of nanoparticles, just to give a few examples.
The new type of master equation we develop, which de-
scribes the correlated non-equilibrium charge distribu-
tion among interacting conductors, should form a useful
starting point also for studies of a wider range of inter-
acting mesoscopic systems.
There has been a significant amount of prior work

investigating the transport effects of an inter-molecular
tunnel coupling, see e.g., Refs. 12–15. However, in con-
trast to Coulomb interactions, tunnel couplings decay
exponentially with the molecular separation. Several
works have also studied transport through two parallel-
coupled quantum dots16–18, including the effects of inter-
dot Coulomb interactions and/or interference between
different tunneling paths, and Refs. 19 and 20 investi-
gated the effects of inter-dot Coulomb interactions in fi-
nite arrays of self-assembled quantum dots.

II. BASIC PHYSICAL PICTURE AND MODEL

Figure 1 shows a sketch of a molecular monolayer be-
tween metallic source and drain electrodes. In Fig. 1(b),
we focus on two molecules within the layer and illustrate
the basic transport effect of inter-molecular Coulomb in-
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FIG. 1. (Color online). (a) Sketch of the molecular mono-
layer device. (b) Zoom in on two of the molecules in the up-
per panel, together with an energy-space representation of the
molecular transmission resonances. Due to the intermolecu-
lar Coulomb interaction, the resonance seen by an electron
tunneling into a molecule is shifted by U if one of its neigh-
bors is charged. (c) Level diagram showing tunneling into
the LUMO of a single molecule. The LUMO is shifted by
kU when k neighboring molecules are occupied (higher-lying
dashed lines).

teractions, and indicate the molecular transmission reso-
nances (the vertical direction therefore indicates a direc-
tion both in real space and in energy space). When an
electron tunnels into a molecule, it experiences the elec-
tric field from charges localized on neighboring molecules,
which leads to a shift of the effective transport resonance.
Therefore, when the bias voltage, V , is just barely large
enough to allow resonant transport through a molecular
orbital (the HOMO or LUMO is inside the bias window),
transport can still be suppressed if neighboring molecules
are charged. In the limit of weak tunnel coupling, where
transport is dominated by single-electron tunneling, and
at low temperatures, we therefore expect a single molec-
ular orbital to give rise to multiple transport resonances:
One when the bias is large enough to allow tunneling into
the LUMO or out of the HOMO, and additional ones
when this becomes possible also when k = 1, 2, . . . neigh-
boring molecules are charged, see also Fig. 1(c). This is
in contrast to the result without inter-molecular interac-
tions, where only a single resonance occurs. Below we
calculate the detailed current-voltage curves for different
interaction strengths.

The distance between molecules in a monolayer de-
pends on the molecular species and contact materials, but
is typically d ∼ 1 nm in a dense monolayer. A rough esti-
mate gives the interaction between electrons on neighbor-
ing molecules as U ∼ e2/(4πdǫ0ǫr) ∼ 1 eV/ǫr. The rela-
tive permittivity, ǫr, within the monolayer may be rather
large and the interaction strength further decreased by
screening from conduction electrons in the electrodes21.
However, a U of the same order of magnitude as the ther-
mal energy at room temperature still seems reasonable.

In other mesoscopic systems, U is likely much smaller
(U = 0.15−0.4 meV between strands of nanotubes within
a nanotube rope was found in recent experiments22,23),
but can still dominate the transport physics at low tem-
peratures.
To focus on the interaction effects, we study the sim-

plest possible molecular model, including only a sin-
gle spinless orbital (chosen as the LUMO for definite-
ness). This model describes the relevant physics when
the inter-molecular Coulomb interaction is much smaller
than the local (intra-molecular) Coulomb interaction and
the molecular level spacing, such that these other energy
scales are irrelevant at low bias voltages. The Hamilto-
nian of the monolayer device is H =

∑

i(H
i
ML +Hi

T ) +
Hres, where

Hi
ML = ǫini +

1

2

∑

j

Uijninj , (1)

Hres =
∑

pr

ǫprnpr, (2)

Hi
T =

∑

pr

tric
†
prdi + h.c.. (3)

Here, ǫi is the energy of the LUMO of molecule i, which

has occupation ni = d†idi, and Uij is the Coulomb charg-
ing energy between electrons on dots i and j (in all
calculations we include only nearest neighbor interac-
tions, although the theoretical framework developed be-
low can straightforwardly be extended to include more
long-ranged interactions). The source (r = S) and drain
(r = D) electrodes are described by Hres, where npr =
c†prcpr is the number operator for electrons in state p. The
electrons in the electrodes are as usual for good metals
modelled as being non-interacting. Hi

T describes tunnel-
ing between electrode r = S,D and molecule i, which
takes place with amplitude tri. We assume both the tun-
nel amplitude and the electrode densities of states, ρr,
to be energy-independent. In this case, the tunnel rates,
Γri = 2πρr|tri|

2/~, which set the inverse time-scale for
single-electron tunneling, are also energy-independent.

III. MASTER EQUATION FOR TRANSPORT

THROUGH A HOMOGENEOUS LAYER

We consider first a homogeneous monolayer, i.e., Uij =
U , Γri = Γr, and ǫi = ǫ. We also focus on the regime
where transport is dominated by single-electron tunnel-
ing, which is the case in the weak tunnel coupling regime,
~Γ < kBT , where T is the temperature. However, since
we will focus primarily on resonant (or close to resonant)
transport, corrections from higher order tunnel processes,
such as elastic and inelastic cotunneling, are expected to
only change the results quantitatively even in the regime
~Γ ∼ kBT . We arbitrarily pick one molecule in the mono-
layer and denote it by M1. Our aim is now to calcu-
late the stationary current flowing through the LUMO of
M1. In the single-electron tunneling regime, the current
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is carried by processes in which a single electron tunnels
either from one electrode into M1, or from M1 into one
electrode, with rates proportional to the probability that
M1 is empty, P (0), or full, P (1), respectively. However,
because of U , the rates also depend on the occupation of
the N nearest neighbors of M1, which we denote M2. We
therefore consider probability distributions of the form

P
(m)
k : The probability that M1 is empty (m = 0) or oc-

cupied (m = 1), while k of its neighbors are occupied.
The net current from reservoir r into M1 is then

Ir = −e

N
∑

k=0

(

W+
r (kU)P

(0)
k −W−

r (kU)P
(1)
k

)

, (4)

where W±
r (E) = Γrf

±((E + ǫ − µr)/kBT ), f
+(x) is the

fermi function, f−(x) = 1 − f+(x), and µr = ±eV/2
for r = S/D is the chemical potential of electrode r.
We assume that the bias drop occurs symmetrically at
the two tunnel barriers, such that ǫ is independent of V .
The total current is I = NMID = −NMIS , where NM is
the total number of molecules in the monolayer.
The remaining problem is to find a master equation to

determine P
(m)
k under non-equilibrium conditions, i.e.,

to find the voltage-induced charging of the interacting
monolayer. Just as in a normal master equation, the
time derivative of an occupation probability is given by
the sum of all tunnel processes enhancing that occupa-
tion, minus all tunnel processes decreasing that occu-
pation, each process being weighted by the occupation
probability of the corresponding initial state. We obtain

Ṗ
(1)
k = W+(kU)P

(0)
k −W−(kU)P

(1)
k

− N
N
∑

k′=1

[

W−(k′U)P
(1,1)
k,k′ +W+(k′U)P

(1,0)
k,k′

]

P
(1)
k

+ N
N
∑

k′=1

[

W−(k′U)P
(1)
k+1P

(1,1)
k+1,k′

+ W+(k′U)P
(1)
k−1P

(1,0)
k−1,k′

]

, (5)

Ṗ
(0)
k = −W+(kU)P

(0)
k +W−(kU)P

(1)
k

− N

N−1
∑

k′=0

[

W−(k′U)P
(0,1)
k,k′ +W+(k′U)P

(0,0)
k,k′

]

P
(0)
k

+ N

N−1
∑

k′=0

[

W−(k′U)P
(0)
k+1P

(0,1)
k+1,k′

+ W+(k′U)P
(0)
k−1P

(0,0)
k−1,k′

]

, (6)

where W±(E) =
∑

r W
±
r (E). The first line in Eqs. (5)

and (6) is just like in a standard master equation, de-
scribing the increase (decrease) in occupation of M1 due
to tunneling into (out of) it. The second (third and forth)

lines describe the decrease (increase) in P
(m)
k due to tun-

neling into or out of one of M2 (nearest neighbors of M1),

which changes k. Here, P
(1,1)
k,k′ , for example, denotes the

conditional probability that an M2 is occupied and has
k′ occupied neighbors, given that M1 is occupied with k
occupied nearest neighbors. Note that k′ runs from 1 to

N in the equation for P
(1)
k , but from 0 to N − 1 in the

equation for P
(0)
k . The reason is that if M1 is occupied,

M2 has to have at least one occupied nearest neighbor,
and if M1 is unoccupied, M2 can at the most have N − 1
occupied neighbors.
In the steady-state limit, which is assumed in all results

presented here, we can set all time derivatives to zero.
Equations (5) and (6) have to be supplemented with a
condition expressing probability normalization:

∑

k

(

P
(0)
k + P

(1)
k

)

= 1. (7)

The average charge on M1 is given by 〈q〉 = −e
∑

k P
(1)
k .

Clearly we need an additional master equation to solve

for P
(m,n)
k,k′ , which can be derived as a standard master

equation by considering all ingoing and outgoing pro-
cesses. Since this equation is rather lengthy, it is given

in Appendix A. The master equation for P
(m,n)
k,k′ in turn

involves higher order conditional probabilities, P
(m,n,l)
k,k′,k′′ ,

and so on. To close the system of equations involving
ever higher orders of conditional probabilities we need to
invoke some kind of approximation. Appendix B dis-
cusses an advanced type of mean-field approximation,
which essentially treats interactions between M1 and M2
molecules exactly, while interactions between M2 and M3
molecules are treated in a mean-field manner. This pro-
duces reliable results only for rather small interaction
strengths, U . kBT . We want to investigate also the
regime U > kBT and in all results presented below we
therefore apply a more advanced approximation scheme.
We close the hierarchy of equations by neglecting explicit

three-charge correlations (replacing P
(m,n,l)
k,k′,k′′ → P

(n,l)
k′,k′′ ).

One is then left with solving a nonlinear master equation

for P
(m,n)
k,k′ , which have to be inserted into the equation

for P
(m)
k . This approximation and the explicit form of

the resulting nonlinear master equation is discussed in
detail in Appendix C. Appendix E compares the differ-
ent approximation schemes.

IV. CURRENT–VOLTAGE CHARACTERISTICS

FOR HOMOGENEOUS LAYERS

We now find the current from Eq. (4), with probabil-
ity distributions calculated from Eqs. (5) and (6) and
conditional probabilities found within the approximation
scheme in Appendix C from Eqs. (C1)–(C4). Figure 2
shows the results for increasing interaction strengths,
U = 0, . . . , 4kBT . When U = 0, I(V ) shows a ther-
mally broadened step when the LUMO enters into the
bias window, which acquires some additional broaden-
ing for U . kBT . When U > kBT , several current
steps (multiple sidepeaks in dI/dV ) can be discerned.
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FIG. 2. (Color online). I(V ), (a), and dI(V )/dV , (b),
for a homogeneous monolayer with ǫ = 10kBT and in-
creasing strength of the inter-molecular Coulomb interaction,
U = 0, . . . , 4kBT . We have assumed a square lattice configu-
ration, where each molecule has N = 4 nearest neighbors. I
and dI/dV are given in arbitrary units (au) since I ∝ Γ in
the single-electron tunneling regime. The inset in (b) shows
the linear conductance, GT , as a function of the position of
the LUMO relative to the Fermi energy.

They are separated in voltage by U and correspond to
the condition that charging M1 becomes possible, also
when k = 1, 2, . . . , N of M2 are charged. There are only
N satellite conductance peaks, since the maximum in-
teraction cost of adding one electron is NU , and the
peaks are always equidistant. This could help to ex-
perimentally distinguish sidepeaks originating from inter-
molecular Coulomb interaction from similar features re-
lated to higher lying orbitals or vibronic excitations24–26.
For all values of U , the current saturates at the same
value, corresponding to a fully conducting monolayer.
The inset of Fig. 2(b) shows the linear conductance as
a function of the position of the LUMO relative to the
electrode Fermi energy. Unless the LUMO is close to
resonance, the charging of the monolayer is rather small
and the inter-molecular Coulomb interactions are rela-
tively unimportant.

Figure 3 shows I(V ) and dI(V )/dV for a monolayer
with a larger coupling to the source than the drain,
ΓS > ΓD. For U 6= 0, this introduces an asymmetry
into the current voltage characteristics, I(V ) 6= −I(−V ).
The reason is that there is now a larger charging of the
monolayer for V > 0 compared with V < 0 since, for
positive bias, electrons can easily tunnel into the mono-
layer (from the source), but cannot easily escape again
(to the drain), while the situation is reversed for negative
bias. A larger charging increases the effects of interac-
tions and causes the I(V ) curve to become flatter and
dI/dV to show more pronounced sidepeaks. For U = 0,
asymmetric tunnel couplings do not introduce any asym-
metry into the I(V ) curve. There are several other possi-
ble reasons for an asymmetric I(V ). However, the rather

0

1

2

20 40 60

(b)dI/dV
(au)

e|V| (kBT)

0

1

2

α = 1
α = 2

α = 10

(a)|I| (au)

FIG. 3. (Color online). |I |, (a), and dI/dV , (b), as a function
of V (thick lines) or −V (thin lines), for ǫ = 10kBT , U =
4kBT , and N = 4. We vary the ratio between the source
and drain tunnel couplings, α = ΓS/ΓD, while keeping Γ̄ =
ΓSΓD/(ΓS + ΓD) fixed, which fixes the value of the current
plateau at large V .

special form seen in Fig. 3, with the same plateau height
for positive and negative bias but with clear multiple
peaks only for one bias polarity, nonetheless provides a
fingerprint of the inter-molecular Coulomb interaction.

V. NDR IN INHOMOGENEOUS LAYERS

Finally, we investigate the effects of disorder within the
molecular monolayer. Here, it is no longer possible to use
our master equation approach, which assumes a homo-
geneous monolayer. Instead, we take a finite number of
molecules, which may all have different properties, and
diagonalize the corresponding many-body Hamiltonian
exactly. The many-body eigenstates can then be used in
a standard master equation approach27 to calculate the
current. The details are given in Appendix D. Due to the
rapidly growing size of the Hilbert space, only a rather
small number of molecules can be included. However, as
is shown in Appendix E for the case of a homogeneous
monolayer, using 3 × 3 molecules and periodic bound-
ary conditions gives excellent agreement with the infinite
monolayer master equation.
Figure 4 shows the result of these calculations, where

we have assumed one molecule (out of nine) to be only
weakly coupled to the drain electrode, ΓD = ΓS/100.
The asymmetrically tunnel coupled molecule now acts
as a charge trap, since for V > 2ǫ it can be filled
with an electron tunneling in from the source, which is
then prevented from escaping to the drain. The inter-
molecular Coulomb interaction means that the occupa-
tion of the charge trap prevents transport through neigh-
boring molecules, unless the bias voltage is increased fur-
ther. As the temperature is reduced, this leads to a
weak NDR at the first current plateau. A much stronger
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FIG. 4. (Color online). I(V ) for ǫ = 5U/2, N = 4, and
successively lowered T . One molecule (out of nine) has ΓD =
ΓS/100. In the magenta curve, we have furthermore assumed
the LUMO of the asymmetrically coupled molecule to be δǫ =
U/4 higher in energy compared with the others. The inset
zooms in on the first current step.

NDR effect, which is repeated on every current plateau,
is obtained if the LUMO of the asymmetrically coupled
molecule lies at a slightly higher energy compared with
the other molecules (see magenta curve in Fig. 4). This
is a realistic scenario since the asymmetrically coupled
molecule experiences less screening from conduction elec-
trons in the electrodes and, in general, a different chem-
ical and electrostatic environment. The reason for the
larger NDR is that, due to the misalignment, a large cur-
rent is first allowed to flow through the symmetrically
coupled molecules, before the charge trap becomes filled
at higher voltages. For the configuration in Fig. 4, with a
molecule weakly coupled to the drain, the I(V ) curve will
be asymmetric, with no NDR for negative bias. However,
in a large monolayer, if approximately the same number
of molecules are weakly coupled to the source and to the
drain, the voltage symmetry is approximately restored
with NDR for both bias polarities.

VI. CONCLUSIONS

We have studied electric transport through a large
number of mesoscopic conductors contacted in parallel,
and shown that Coulomb interactions between charge
carriers on neighboring conductors give rise to distinct

features in the nonlinear current-voltage characteristics.
Knowledge of the interaction effects are relevant when
designing nanoscale electric devices, and our calculations
allow the interaction-induced features to be identified and
isolated from the single-device properties, which is essen-
tial when using electric transport as a spectroscopic tool.
Furthermore, interactions can give rise to negative dif-
ferential resistance if some of the conductors are signifi-
cantly coupled to only one electrode, which may be useful
for a range of applications. There has been much re-
cent interest in molecular thermoelectric devices28,29 be-
cause of the sharp nature of the transport resonances30.
The results of our study, showing an effective interaction-
induced broadening of the transport resonances, is likely
to have a large impact on the thermoelectric efficiency.
Finally, the general theoretical framework should form a
useful basis for future studies of transport through inter-
acting mesoscopic conductors. The use of (conditional)
probability distributions, which can be obtained from a
master equation, to describe interacting systems could
be useful also for studies of other correlated systems out
of equilibrium.
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Appendix A: Master equations for conditional

probabilities

The master equation for the conditional probabilities,

P
(m,n)
k,k′ , are

Ṗ
(1,1)
k,k′ = W+(k′U)P

(1,0)
k,k′ −W−(k′U)P

(1,1)
k,k′

− N−

N
∑

k′′=1

[

W−(k′′U)P
(1,1,1)
k,k′,k′′ +W+(k′′U)P

(1,1,0)
k,k′,k′′

]

P
(1,1)
k,k′

+ N−

N
∑

k′′=1

[

W−(k′′U)P
(1,1)
k,k′+1P

(1,1,1)
k,k′+1,k′′ +W+(k′′U)P

(1,1)
k,k′−1P

(1,1,0)
k,k′−1,k′′

]

, (A1)
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Ṗ
(0,0)
k,k′ = −W+(k′U)P

(0,0)
k,k′ +W−(k′U)P

(0,1)
k,k′

− N−

N−1
∑

k′′=0

[

W−(k′′U)P
(0,0,1)
k,k′,k′′ +W+(k′′U)P

(0,0,0)
k,k′,k′′

]

P
(0,0)
k,k′

+ N−

N−1
∑

k′′=0

[

W−(k′′U)P
(0,0)
k,k′+1P

(0,0,1)
k,k′+1,k′′ +W+(k′′U)P

(0,0)
k,k′−1P

(0,0,0)
k,k′−1,k′′

]

, (A2)

Ṗ
(1,0)
k,k′ = −W+(k′U)P

(1,0)
k,k′ +W−(k′U)P

(1,1)
k,k′

− N−

N−1
∑

k′′=0

[

W−(k′′U)P
(1,0,1)
k,k′,k′′ +W+(k′′U)P

(1,0,0)
k,k′,k′′

]

P
(1,0)
k,k′

+ N−

N−1
∑

k′′=0

[

W−(k′′U)P
(1,0)
k,k′+1P

(1,0,1)
k,k′+1,k′′ +W+(k′′U)P

(1,0)
k,k′−1P

(1,0,0)
k,k′−1,k′′

]

, (A3)

Ṗ
(0,1)
k,k′ = W+(k′U)P

(0,0)
k,k′ −W−(k′U)P

(0,1)
k,k′

− N−

N
∑

k′′=1

[

W−(k′′U)P
(0,1,1)
k,k′,k′′ +W+(k′′U)P

(0,1,0)
k,k′,k′′

]

P
(0,1)
k,k′

+ N−

N
∑

k′′=1

[

W−(k′′U)P
(0,1)
k,k′+1P

(0,1,1)
k,k′+1,k′′ +W+(k′′U)P

(0,1)
k,k′−1P

(0,1,0)
k,k′−1,k′′

]

, (A4)

where N− = N − 1. Here, P
(1,1,l)
k,k′,k′′ , for example, denotes

the conditional probability that a next-nearest neighbor
molecule (M3) is occupied (l = 1) or empty (l = 0), with
k′′ occupied nearest neighbors, given that M1 is occupied
with k occupied nearest neighbors and M2 is occupied
with k′ occupied nearest neighbors.

Just as the normal occupation probabilities, the condi-
tional probabilities must be normalized. This gives rise
to the additional equations:

1 =

N−1
∑

k′=0

(

P
(0,0)
k,k′ + P

(0,1)
k,k′

)

, (A5)

1 =

N
∑

k′=1

(

P
(1,0)
k,k′ + P

(1,1)
k,k′

)

. (A6)

In addition, we have

0 = P
(0,j)
k,N = P

(1,j)
k,0 = P

(i,0)
N,k′ = P

(i,1)
0,k′ , (A7)

since, for example, M2 must have at least one occupied
neighbor if M1 is occupied.

There is a further possible simplification due to the
homogeneous nature of the monolayer: Since all M2
molecules are equivalent, if M1 has k occupied neigh-
bors, each M2 should be occupied with probability k/N .

This gives the conditions

k

N
=

N
∑

k′=0

P
(m,1)
k,k′ , (A8)

1−
k

N
=

N
∑

k′=0

P
(m,0)
k,k′ . (A9)

When P
(m,n)
k,k′ fulfill Eqs. (A8) and (A9), they also au-

tomatically fulfill the standard normalization conditions,
Eqs. (A5) and (A6). However, Eqs. (A8) and (A9) give
twice as many conditions as Eqs. (A5) and (A6), and
should be used instead of the first line in Eqs. (A1)–

(A4), corresponding to the terms changing n in P
(m,n)
k,k′ .

Thus, the occupation of M2 should not be determined
by the master equation, but is instead fixed by k. We
therefore use the master equation only to solve for the

k′-dependence of P
(m,n)
k,k′ .

Appendix B: Mixed mean-field approximation

We start with a simple approximation to close the sys-
tem of master equations involving ever higher orders of
conditional probabilities. This approximation is not used
in any of the results in the results presented in Figs. 2–4,
but is included here since it provides a simple and intu-
itive method, which is valid for moderate values of the
interaction strength, U . kBT . We treat the interac-
tions between M1 and M2 exactly, while the interactions
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between M2 and M3 are treated within a mean-field ap-

proximation. In the master equations for P
(m)
k , we should

then replace k′U by N−〈n〉U in Eq. (6) (for m = 0) and
by (1+N−〈n〉)U in Eq. (5) (for m = 1), where 〈n〉 is the
average occupation of the N + 1 molecules M1 and M2,
given by

〈n〉 =
1

N + 1

∑

k′

[

P
(1)
k′ +Nk′

(

P
(1)
k′ + P

(0)
k′

)]

. (B1)

After this approximation, W± in Eqs. (5) and (6) no
longer depend on k′ and we can use Eqs. (A8) and (A9)
to carry out the sums over the conditional probabilities

P
(m,n)
k,k′ . Thus, we do not need to solve Eqs. (A1)–(A4),

but can directly solve Eqs. (5) and (6), which have now
become

Ṗ
(1)
k = W+(kU)P

(0)
k −W−(kU)P

(1)
k

− N

{

k

N
W− [(1 +N−〈n〉)U ] +

(

1−
k

N

)

W+ [(1 +N−〈n〉)U ]

}

P
(1)
k

+ N

{

k + 1

N
W− [(1 +N−〈n〉)U ]P

(1)
k+1 +

(

1−
k − 1

N

)

W+ [(1 +N−〈n〉)U ]P
(1)
k−1

}

, (B2)

Ṗ
(0)
k = W−(kU)P

(1)
k −W+(kU)P

(0)
k

− N

[

k

N
W− (N−〈n〉U) +

(

1−
k

N

)

W+ (N−〈n〉U)

]

P
(0)
k

+ N

[

k + 1

N
W− (〈n〉N−U)P

(0)
k+1 +

(

1−
k − 1

N

)

W+ (N−〈n〉U)P
(0)
k−1

]

. (B3)

Together with probability normalization, Eq. (7), this
makes a closed set of equations, which, however, has to be
solved self-consistently together with Eq. (B1) because of

the dependence on 〈n〉. The resulting occupations, P
(m)
k ,

can then be inserted into Eq. (4) to calculate the current.
Note that in Eqs. (B2) and (B3), and in Eq. (4) for

the current, kU appears explicitly in the terms involving
tunneling into and out of M1 and, in addition, the rele-
vant interaction for tunneling into M2 is (1 + N−〈n〉)U
if M1 is occupied [Eq. (B2)], but N−〈n〉U if M1 is unoc-
cupied [Eq. (B3)]. This reflects the fact that the M1–M2
interactions are treated exactly. Therefore, these master
equations are capable of producing steps in the nonequi-
librium monolayer charging and current, for example as
a function of increasing bias voltage V , and is applicable
for U . kBT , see Fig. 5. This is in contrast to the much
simpler standard mean-field approximation, which would
consist of simply solving only the first line in Eqs. (B2)

and (B3), with kU → P (1)U =
∑

k P
(1)
k U , in which case

the whole equation can be summed over k. The standard
mean-field approach fails completely unless U ≪ kBT
(not shown in Fig. 5).
Note also that since we treat the M1 and M2 molecules

within a different level of approximation, it may happen

that 〈n〉 6= P (1), although we numerically always find
them to be comparable, unless U ≫ kBT . Similarly,
if we instead of using Eq. (4) to calculate the current,
calculated the average current through M1 and M2, we
would obtain a slightly different result.

Appendix C: Truncating the correlations

We now introduce the approximation scheme which is
used for the calculations presented in Figs. 2 and 3, which
does not rely on a mean-field treatment at any level and is
applicable also in the regime U > kBT . This is obtained
by only taking conditional probabilities up to some given
order explicitly into account. Here, we simply neglect
explicit three-charge correlation terms when solving the
set of master equations, which means that we replace

P
(m,n,l)
k,k′,k′′ → P

(n,l)
k′,k′′ (note that since we are dealing with

conditional probabilities, we should not factorize the ex-

pressions, i.e., we should not include a factor P
(m)
k on the

right hand side). Now the equations for the conditional
probabilities, Eqs. (A1)–(A4), become

Ṗ
(1,1)
k,k′ = −N−

N
∑

k′′=1

[

W−(k′′U)P
(1,1)
k′,k′′ +W+(k′′U)P

(1,0)
k′,k′′

]

P
(1,1)
k,k′

+ N−

N
∑

k′′=1

[

W−(k′′U)P
(1,1)
k,k′+1P

(1,1)
k′+1,k′′ +W+(k′′U)P

(1,1)
k,k′−1P

(1,0)
k′−1,k′′

]

, (C1)



8

Ṗ
(0,0)
k,k′ = −N−

N−1
∑

k′′=0

[

W−(k′′U)P
(0,1)
k′,k′′ +W+(k′′U)P

(0,0)
k′,k′′

]

P
(0,0)
k,k′

+ N−

N−1
∑

k′′=0

[

W−(k′′U)P
(0,0)
k,k′+1P

(0,1)
k′+1,k′′ +W+(k′′U)P

(0,0)
k,k′−1P

(0,0)
k′−1,k′′

]

, (C2)

Ṗ
(1,0)
k,k′ = −N−

N−1
∑

k′′=0

[

W−(k′′U)P
(0,1)
k′,k′′ +W+(k′′U)P

(0,0)
k′,k′′

]

P
(1,0)
k,k′

+ N−

N−1
∑

k′′=0

[

W−(k′′U)P
(1,0)
k,k′+1P

(0,1)
k′+1,k′′ +W+(k′′U)P

(1,0)
k,k′−1P

(0,0)
k′−1,k′′

]

, (C3)

Ṗ
(0,1)
k,k′ = −N−

N
∑

k′′=1

[

W−(k′′U)P
(1,1)
k′,k′′ +W+(k′′U)P

(1,0)
k′,k′′

]

P
(0,1)
k,k′

+ N−

N
∑

k′′=1

[

W−(k′′U)P
(0,1)
k,k′+1P

(1,1)
k′+1,k′′ +W+(k′′U)P

(0,1)
k,k′−1P

(1,0)
k′−1,k′′

]

. (C4)

Together with Eqs. (A8) and (A9), these equations can

be solved for P
(m,n)
k,k′ . The conditional probabilities are

then inserted into the master equations for the occupa-
tion probabilities, Eqs. (5) and (6), which can be solved

for P
(m)
k , from which we then calculate the current using

Eq. (4).

One complication is that Eqs. (C1)–(C4) are nonlin-

ear, involving terms like P
(m,n)
k,k′ P

(n,l)
k′,k′′ . Numerically we

can deal with this simply by picking some initial distri-
bution for the conditional probabilities which originate

from the truncated higher order terms (P
(n,l)
k′,k′′), and then

solve the equations iteratively, updating this distribution
each time. Note that what remains are only equations for
each distribution as a function of k′, i.e., we only need to

solve for the k′-dependence of P
(m,n)
k,k′ . Thus, we only ever

have to solve equations of size N ×N , although there are
4 × N such equations (one for each m, n, and k) which
all have to be solved within each iteration. As demon-
strated in Fig. 5, the results are reliable for much larger
values of U/kBT compared with the mixed mean-field
approximation introduced above.

Appendix D: Exact diagonalization of a finite

monolayer

To study an inhomogeneous monolayer, e.g., involv-
ing defect sites, we rely on a standard master equation
solution for a finite monolayer. We take a finite num-
ber of molecules and diagonalize exactly the correspond-
ing monolayer Hamiltonian,

∑

i H
i
ML in Eq. (1). Since

the total charge in the monolayer, NC , commutes with
∑

iH
i
ML, we can label the many-body eigenstates with

NC , and, since we do not consider inter-molecular tun-

neling, each eigenstate can be chosen to correspond to
a given distribution of these charges over the different
molecules. We thus label the eigenstates |aNC〉, where
a labels the charge configuration. The master equation
is now solved for the occupation probabilities, paNC

, of
these eigenstates, which can then be used to calculate the
steady-state current from electrode r into the monolayer

ṗaNC
=

∑

s=±1

∑

a′

(

Ks
aNC,a′(NC+s)pa′(NC+s)

− K−s
a′(NC+s),aNC

paNC

)

, (D1)

1 =
∑

aNC

paNC
, (D2)

Ir = −e
∑

aNC

∑

s=±1

∑

a′

sKr,s

a′(NC+s),aNC
paNC

, (D3)

where the rate matrix is given by

Kr,s

aNC ,a′(NC+s) = ΓaNC ,a′(NC+s)

× f s
[

(Ea′(NC+s) − EaNC
− µr)/kBTr

]

,

(D4)

and Ks
aNC ,a′(NC+s) =

∑

r K
r,s

aNC ,a′(NC+s). Since we do

not assume a homogeneous monolayer, the tunnel rates,
ΓaNC ,a′(NC+s), depend on both the initial and final many-
body eigenstates. In particular, ΓaNC ,a′(NC+s) = 0 when-
ever |aNC〉 and |a′(NC + s)〉 do not simply differ by the
occupation of a single molecule, since this is all that can
be changed by a single SET process.
Equation (D1) simply expresses the fact that the

change in occupation of state |aNC〉 is determined by
the sum of all tunnel processes filling |aNC〉, weighted by
the occupations of the corresponding initial states, minus
all tunnel processes emptying |aNC〉. In the steady state
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limit, the left hand side of Eq. (D1) is set to zero. Proba-
bility normalization is enforced by Eq. (D2). The current
from electrode r, Eq. (D3), is given by the sum of all pro-
cesses involving an electron tunneling into the monolayer
from electrode r, minus the sum of all processes where
an electron tunnels out of the monolayer into electrode r,
weighted by the corresponding occupation probabilities.

Appendix E: Comparison of different

approximations

In Fig. 5, we compare the result of the different meth-
ods discussed above for different strengths of the inter-
molecular Coulomb interaction, U . For U = 0 (not
shown), all methods give identical results. Over the
whole range of interaction strengths, we find excellent
agreement between the results obtained by truncating
the correlation, and those from the exact diagonalization
of a finite monolayer. For U ≫ kBT , the mixed mean-
field solution is clearly inaccurate, predicting the correct
height of the high-voltage current plateau, as well as the
correct position of the current steps, but failing to cap-
ture their height, and even erroneously predicting NDR
for U = 6kBT . Note that this method is not used in any
of the results in Figs. 2–4.
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FIG. 5. Current (upper panel) and differential conductance (lower panel) as a function of applied bias voltage. In each
subfigure, results using the three different methods described above are shown: Mixed mean-field approximation (MMF),
truncation of correlations (CORR) and exact diagonalization of a finite monolayer (ED). We have everywhere used ǫ = 10kBT
and N = 4 (square lattice). In ED, we used a square lattice with 3 × 3 molecules, all with the same properties, and periodic
boundary conditions [using instead open boundary conditions (not shown) does not qualitatively alter the results, but merely
leads to a small increase in the height of the first peak and reduced height of the satellite peaks, reflecting the fact that
interactions are somewhat less important in this case]. The strength of the inter-molecular Coulomb interaction is increased,
with U = kBT in (a), U = 2kBT in (b), U = 4kBT in (c), and U = 6kBT in (d).


