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Quantum unitary evolution typically leads to thermalization of generic interacting many-body
systems. There are very few known general methods for reversing this process, and we focus on the
magic echo, a radio-frequency pulse sequence known to approximately “rewind” the time evolution
of dipolar coupled homonuclear spin systems in a large magnetic field. By combining analytic,
numerical, and experimental results we systematically investigate factors leading to the degradation
of magic echoes, as observed in reduced revival of mean transverse magnetization. Going beyond the
conventional analysis based on mean magnetization we use a phase encoding technique to measure
the growth of spin correlations in the density matrix at different points in time following magic
echoes of varied durations and compare the results to those obtained during a free induction decay
(FID). While considerable differences are documented at short times, the long-time behavior of
the density matrix appears to be remarkably universal among the types of initial states considered
– simple low order multispin correlations are observed to decay exponentially at the same rate,
seeding the onset of increasingly complex high order correlations. This manifestly athermal process
is constrained by conservation of the second moment of the spectrum of the density matrix and
proceeds indefinitely, assuming unitary dynamics.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

Nuclei in solids often enjoy relatively weak coupling to the environmental, non-magnetic degrees of freedom, marked
by exceedingly long thermalization times, e.g. T1 that can reach several weeks.1 Under these conditions coherent quan-
tum many-body dynamics whose intrinsic time scales are typically some microseconds can be studied and manipulated
with relative ease. Much of the progress in elucidating local physics and chemistry of diverse substances over the
past six decades has been achieved by matching detailed solutions of few-body dynamics with controlled experimental
studies whereby through a combination of DC and RF fields desired many-body evolution can be realized to a high
degree of precision. The generation of so called “echoes”2 is a particularly central tool in the NMR arsenal. All
echo schemes strive to pattern the finite time quantum evolution operator in such a way as to render it equal to
the identity operator, thereby returning the many-body system to its initial state. Most famously, the Hahn echo2

recovers the transverse magnetization dephased by local field inhomogeneities (and chemical shifts) with a simple
reflection about an axis in the plane of spin precession. Remarkably, such single-spin corrective time-reversal action
can be generalized with considerable success even to cases where the effective chemical shifts are time dependent (but
mutually uncorrelated).3 Not surprisingly, time-reversing correlated multispin dynamics is more subtle as the effective
Hilbert space is no longer bounded. A method for achieving many-body time reversal, a Loschmidt echo,4,5 is known
for dipolar coupled nuclear spins and is termed the “magic echo.”6 Since its discovery the magic echo has since served
as the foundation for NMR studies of correlated spin motion, including measurements of imaging,7,8 spectroscopy,9

spin-diffusion,10,11 to investigate nonlinear dynamics in highly magnetized liquids,12 and, as in this work, for phase
encoding and observing multispin correlations in non-commuting bases.13

Our work pursues two different lines of inquiry which lead to a complementary characterization of the magic echo
protocol. First, the experimentally observed efficacy of the magic echo, i.e. the relative amplitudes of the net refocused
magnetization acquired using different magic echo conditions, are compared with average Hamiltonian theory extended
to second order, and also to results of numerical simulations. Here, we specifically focus on the relative importance
of the finite width of the RF pulses vs. the total RF power applied14 Second, the time dependence of the full density
matrix is characterized by measuring the onset and spreading of multispin correlations (also known as “spin-counting”
spectroscopy) both during the usual free induction decay (FID, i.e. after a π/2 pulse from equilibrium) and following
magic echoes with a few different, relatively long refocusing times. Interestingly, while these initial states are distinct
and therefore evolve differently at short times their late time evolutions are apparently very similar, in the sense that
certain rates of growth and decay are quantitatively indistinguishable.
In the balance of the Introduction we summarize the basic physics of the magic echo and spin counting technique.

In the following two sections a detailed discussion of notation and the theoretical framework (Section II), as well as
experimental and numerical methodology (Section III), are given. Next, results are presented and compared with
theoretical expectations (Section IV). Finally, conclusions and a discussion of future directions of research are provided
(Section V).
The magic echo involves two key ingredients. First, the application of a strong DC field, B0, along the ẑ direction

simplifies the interaction between two nuclei to

HD = µ0γ
2h̵

8πr3
jk

(1 − 3 cos2 θ) (2I0j I0k − 1

2
(I+j I−k + I−j I+k ))

≡Djk[2I0j I0k − 1

2
(I+j I−k + I−j I+k )], (1)

where µ0 is the permeability of free space, θ is the angle between the internuclear vector rjk and the applied magnetic
field,15 γ is the gyromagnetic ratio of a nucleus, and I0, I± are canonical spin operators. The Hamiltonian of Eq. 1
and all following Hamiltonians therefore have units of rads/s.16 To set the notation for the remainder of the discussion
the single spin (Larmor) precession frequency corresponding to the DC field is ωL = γB0, while the internal dipolar
fields can be associated with “dipolar frequency” ωD = µ0γ

2h̵/(4πa3) (a refers to the smallest internuclear distance).
Typically ωD ∼ 105 rads/s, while ωL ∼ 109 rads/s so the rapidly oscillating terms omitted from Eq. 1 are effectively
suppressed by a factor ωD/ωL ≪ 1. Also, in what follows we will always work in the frame rotating at ωL (with respect
to the lab frame). Second, continuous application of a strong resonant field (i.e. at ωL), B1, in the x−y plane “locks”
the magnetization as the spins execute approximate Rabi oscillations at a frequency ω1 = γB1. In this Rabi frame of
reference, co-rotating with the RF field, the dipolar interaction can be further reduced, approximately (i.e. assuming
ωD/ω1 → 0), to

−Djk

2
[2Ĩ0j Ĩ0k − 1

2
(Ĩ+j Ĩ−k + Ĩ−j Ĩ+k )], (2)

where Ĩ0, Ĩ± refer to the quantization axis in the second rotating frame,17 i.e. if B1 is along x̂ then Ĩ0 = Ix. Most
importantly, the relative minus sign of the (0,0) and (±,∓) terms between Eqs. 1 and 2 translates into an overall
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FIG. 1. The magic echo sequence used in this manuscript. After an initial π/2x pulse, the spins evolve for a time τ , followed
by a sandwich consisting of two RF bursts along x and x̄, each of duration 2τ between two π/2 pulses along y and ȳ. Because
of the timing of this sequence, the echo appears at a time τ after the final π/2 pulse. For the average Hamiltonian calculations
the initial π/2x pulse is not considered. The toggling frame Hamiltonians during time periods A-F are provided in Table I.

sign reversal of spin interactions in the presence of the resonant field. After a few relatively minor additional steps
the entire propagator during the application of the RF field (often referred to as an “RF burst”) becomes

URF = e+iHDt/2, (3)

thus allowing the effective time-reversal (also referred to as “refocusing”) of the entire many-body trajectory, which
will typically consist of evolution under UD ≡ e−iHDt as well as URF.

The idealized discussion above relies on a number of assumptions, of which the most tenuous is the availability of
a very strong and precisely applied RF field. Quite generally, the efficacy of magic echoes is expected to degrade
when longer trajectories are reversed either due to corrections beyond the zeroth order approximation in ωD/ω1 (in
the so-called average Hamiltonian theory)18–20 or pulse artifacts (e.g. ring-down effects). One generally expects the
former (latter) limitation to dominate at small (large) RF field strength, albeit for very different reasons (e.g. pulse
artifacts are of purely experimental origin). Surprisingly, very little is known about the degradation of magic echoes
in the limit of long evolution time , e.g. ≳ 1 ms, and/or intermediate RF fields. Although it is known how to achieve
time reversals with even longer evolution times using short multiple (hundreds or even thousands of) magic echoes
in sequence,6,19 some applications, e.g. the study of spin diffusion,10,11 can benefit from the availability of a long
duration single magic echo. Understanding and eventually negating the factors leading to the degradation of long
magic echoes, especially under realistic conditions of fixed total RF power applied to the sample, is a long term goal.

While revival of the readily observable (uniform) magnetization is customarily taken as a proxy for the quality of
the echo, we expect, at least in principle, the entire density matrix to be returned to near its initial (a π/2-rotated
thermal) value ρ(t = 0) ∼ 1 − h̵ωL

kBT ∑j I
x
j . In the remainder of this work, we omit the identity term from ρ(t = 0),

as is customary in NMR near infinite temperature. What can be said about the structure of the density matrix?
The density matrix of nuclear spins in a rigid lattice during a conventional FID is described by the evolution of
single-spin, single-quantum coherence (i.e. ∑ Ixj term) into single-quantum, multiple spin correlations (i.e. terms
involving Ixj I

z
k ...I

z
l ) . As these multispin correlations are not readily observable, the density matrix may appear to

have thermalized but this is forbidden, strictly speaking, by the exact conservation of its spectrum under unitary
evolution. As we will explain below, the experiment used to measure multispin correlations accesses the second
moment of the spectrum of the density matrix. The technique also allows an investigation of the process of pseudo-
thermalization, by which athermal correlations propagate (or spread) away from simple and readily observable parts
of the density matrix to complex higher order correlations.

The early onset of these multispin correlations in a crystal has been measured in recent experiments13 using a
previously developed phase encoding technique. The basic trick essentially amounts to introducing steps to rotate the
spin axis by a controlled amount thereby converting single-quantum operators into a linear superposition of operators
of different coherence order, which can be distinguished. We extend this sort of study of the “anatomy” of the density
matrix both to the late time regime for the usual FID but also, more interestingly, to post magic echo evolution. Direct
comparison of short time dynamics reveals quantitative differences between two types of the density matrices even
at short times. Interestingly, and perhaps surprisingly, long time dynamics appear to be more universal. In addition
to the “sum rule” mentioned above that guarantees that the growth of higher order correlations must come at the
expense of lower order correlations, we observe a high degree of similarity in dynamics. For a sufficiently short-ranged
Hamiltonian (which appears to include dipolar interations21) both of these processes (decay and spread) appear to be
simple exponential in time, and we document the existence of two corresponding rates in the same experiment and

across different initial states.22
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II. THEORY OF THE MAGIC ECHO AND SPIN-COUNTING SPECTROSCOPY

In this Section we review and extend the average Hamiltonian theory of the magic echo, isolating finite pulse
width effects from other (“burst”) corrections contributing to an echo’s demise. We also connect the phase encoding
experiment with density matrix elements and its purity in this section and discuss it further in Section IVC. All
of this is available elsewhere, except, to the best of our knowledge, the first and second order average Hamiltonian
calculations for the magic echo and the extension of the spin counting experiment to probe multiple spin correlations
following a magic echo.

A. The Magic Echo

In a large, static magnetic field the spin dynamics in solid state NMR of spin-1/2 nuclei are dominated by the
secular dipolar Hamiltonian HD. To describe the effect of time dependent fields, average Hamiltonian theory may be
used.18 In this formalism, the evolution of the density matrix is

̺(τc) = UDURFUD̺(0)(UDURFUD)−1
≡ U(τc)̺(0)U−1(τc). (4)

The propagators URF and UD refer to evolution with and without the RF field, respectively, and τc is the time for a
complete magic echo cycle. The propagator URF may be written by the Dyson series

URF(t) = T exp (−i∫ t

0
HRF(t1)dt1). (5)

In the above expression T is the time ordering operator and HRF is the RF Hamiltonian in the rotating reference
frame (which is explicitly time-dependent). The object of average Hamiltonian theory is to impart a well-defined
time dependence on the internal interaction, which is otherwise time independent, via a sequence of experimentally
controlled RF pulses. Over a cycle of RF pulses of duration τc, the propagator U may be written in terms of the
Magnus expansion23

U(τc) = e−i(H̄0+H̄1+...)τc . (6)

The zeroth, first, and second order terms in the Magnus expansion are

H̄0 = 1

τc
∫

τc

0
H̃(t1)dt1, (7)

H̄1 = − i

2τc
∫

τc

0
dt2 ∫

t2

0
[H̃(t2), H̃(t1)]dt1, (8)

H̄2 = − 1

6τc
∫

τc

0
dt3 ∫

t3

0
dt2 ∫

t2

0
([H̃(t3), [H̃(t2), H̃(t1)]] + [H̃(t1), [H̃(t2), H̃(t3)]])dt1, (9)

where τc = 6τ + 2tπ/2 for the magic echo (see Fig. 1). Further analysis is facilitated by defining the so-called “toggling
frame Hamiltonian.” In the absence of an RF field, the toggling frame is rotating at the Larmor frequency ωL about
ẑ and is otherwise rotating about the RF field at ω1. Here the duration of the echo, τ , is given by τ ≫ tπ/2 ≡ π

2ω1

with tπ/2 the duration of the π/2 pulse. More explicitly, a toggling frame Hamiltonian is related to H in the Larmor

frame by H̃ = U †
RF
HURF. We list the toggling frame Hamiltonians H̃ for the magic echo sequence shown in Fig. 1 in

Table I.
In our analysis of the average Hamiltonian we only show interactions between pairs of spins. Because of the

commutators in Eqs. 8 and 9, operators involving three or more spins generally appear in the higher-order terms–we
neglect these terms for simplicity. The first three terms in the Magnus expansion for the secular dipolar Hamiltonian
in the magic sandwich shown in Fig. 1 are given by24:

H̄0
D
= D12tπ/2

τc
[I1 ⋅ I2 − 3Iy1 Iy2 + 6

π
(Iz1 Ix2 + Ix1 Iz2 )] + 3D12

2τcω1

[sin(4ω1τ)(Ix1 Ix2 − Iy1 Iy2 ) + sin2(2ω1τ)
2

(Ix1 Iy2 + Iy1 Ix2 )](10)
H̄1

D = −9D
2
12 sin

2 (2τω1) sin (4τω1)(Iz1 + Iz2 )
16ω2

1τc
(11)
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TABLE I. The toggling frame Hamiltonians for the magic echo pulse sequence depicted in Fig. 1. Here θ1 = 2τω1 is the flip
angle of the first x RF burst as seen in Fig. 1 (time period C).

Time period Duration Toggling frame Hamiltonian
A τ D12(3I

z

1 I
z

2 − I1 ⋅ I2)
B tπ/2 ≡ π/(2ω1) 3D12[I

z

1 I
z

2 cos2 (ω1t) + (I
z

1 I
x

2 + I
x

1 I
z

2 ) cos (ω1t) sin (ω1t)+ Ix1 I
x

2 sin2 (ω1t)] −D12I1 ⋅ I2

C 2τ 3D12[I
x

1 I
x

2 cos2 (ω1t) − (I
x

1 I
y

2 + I
y

1 I
x

2 ) cos (ω1t) sin (ω1t)+ I
y

1 I
y

2 sin2 (ω1t)] −D12I1 ⋅ I2

D 2τ 3D12[I
x

1 I
x

2 cos2 (−ω1t + θ1) + (I
x

1 I
y

2 + I
y

1 I
x

2 ) sin (−ω1t + θ1) cos (−ω1t + θ1)+ I
y

1 I
y

2 sin2 (−ω1t + θ1)]
−D12I1 ⋅ I2

E tπ/2 ≡ π/(2ω1) 3D12[I
z

1 I
z

2 sin2 (ω1t) + (I
z

1 I
x

2 + I
x

1 I
z

2 ) sin (ω1t) cos (ω1t)+ Ix1 I
x

2 cos2 (ω1t)] −D12I1 ⋅ I2

F τ D12(3I
z

1 I
z

2 − I1 ⋅ I2)

H̄2
D = −

9D12tπ/2

16πτc
[D2

12

ω2
1

(3τω1 +
sin(4τω1)

2
)(4Iz1Iz2 − 2Ix1 Ix2 − 2Iy1 Iy2 )

+

D2
12

ω2
1

(− 1

16
+ τ2ω2

1 +
cos(4τω1)

8
−

cos(8τω1)
16

+ τω1 sin(4τω1))(4Ix1 Iz2 + 4Iz1 Ix2 )
+

D2
12

ω2
1

(−3π
16
− 3τω1 +

π cos(4τω1)
4

−

π cos(8τω1)
16

−

τω1 sin(4τω1)
2

)(2Ix1 Ix2 − 2Iy1 Iy2 )]. (12)

In the limit of infinite ω1 the above expressions vanish, as expected. With H̄n
D=0 (n = 0,1,2 . . .), one refocuses

the many-body spin dynamics resulting in the production of a magic echo. The zeroth order term term contains
imperfections from both pulse width effects and finite RF amplitude during the burst. The first order term, H̄1

D,
results from the commutator between the toggling frame Hamiltonians during times C and D in Fig. 1 and is,
therefore, free of pulse width effects. This term vanishes if the durations of the RF bursts are such that 2ω1τ is a
multiple of π and/or if D12/ω1 → 0. Even if H̄1

D ≠ 0, it cannot degrade the magnitude of transverse magnetization –
it involves only Iiz operators and only produces a rotation about the z-axis. The second order term in the Magnus
expansion, H̄2

D, arises only from commutators including time periods B and/or E (the π/2 pulses of the magic
sandwich) – this term vanishes for infinitely narrow π/2 pulses in the magic sandwich. Importantly, for finite tπ/2
it includes terms which increase with echo time τ . Thus, to second order finite RF pulses will induce imperfections
in the refocusing offered by the magic sandwich with increasing τ which may be evident in both the multiple spin
correlations and in the single-quantum signal from a magic echo.

B. Multiple Spin Correlations

When NMR signals are detected by inductive coupling to a coil the measured signal at time t is given by

S(t) ∼ Tr[̺(t)I+]. (13)

Only single spin, single quantum terms survive the trace. The growth of multiple spin single quantum coherence can
be observed in the short time expansion of the density matrix evolving under HD

̺(t) = ̺(0) + it [̺(0),HD] − t2

2
[[̺(0),HD] ,HD] + . . . , (14)

where

̺(0)∝ −∑
j

Ixj (15)

after a π/2y pulse (i.e. φ = 0 in Fig. 2). Using Eq. 1 for the Hamiltonian the evolution leads to

̺F (t) = − 1

2
∑
j

(I+j + I−j ) + 3it∑
jk

Djk (−I0j I+k + I0j I−k )
− 3t2∑

jkl

DjkDkl[I0l I0j I+k + I0l I0j I−k + I0l I+j I0k/2 + I0l I−j I0k/2 + I+l I−k I+j /4 − I+l I+k I−j /4
− I−l I

−
k I
+
j /4 + I−l I+k I−j /4] + . . . , (16)
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FIG. 2. Pulse sequence used to observe multiple spin correlations following a magic echo. For the observation of multiple
spin correlations following the FID, the first magic sandwich is removed as are the delays τ before and after it. The time
suspension sequence is used to suppress artifacts and suspend evolution under the dipolar interaction.25 The delays T ′ and δ

are adjusted so that the refocusing of the dipolar interaction peaks after instrumental ringdown following the end of the final
magic sandwich. The flip angle θ1′ = ω1T

′.

with t within the time interval labelled T in Fig. 2. The insight into how to begin resolving the different terms in the
density matrix comes from simply rewriting it in another, non-commuting basis, e.g. polarized along x̂

˜̺F (t) = −∑
j

Ĩ0j −
3

2
it∑

jk

Djk(Ĩ+j Ĩ+k − Ĩ−j Ĩ−k ) + 3

2
t2∑

jkl

DjkDkl(3
2
Ĩ+j Ĩ

+
l Ĩ

0
k −

1

2
Ĩ+j Ĩ

−
l Ĩ

0
k

−

1

2
Ĩ−j Ĩ

+
l Ĩ

0
k +

3

2
Ĩ−j Ĩ

−
l Ĩ

0
k − Ĩ

−
l Ĩ
+
k Ĩ

0
j − Ĩ

+
l Ĩ
−
k Ĩ

0
j ) + . . . . (17)

It is clear that upon basis rotation single quantum and zero quantum operators are rotated into each other, producing
operators changing polarization along x by arbitrary amounts. The growth of such observable x̂-multiquantum
operators can be taken as a proxy for the onset of multispin correlations (in fact, the two are uniquely related). All
that is left is to “count” coherence orders in the non-commuting basis which is done by introducing phase-modulated
rotations as shown in Fig. 2. In the experiment the transformation of basis is performed using the first, fourth, and
fifth π/2 pulses. To encode odd orders, the first pulse is phase shifted by π/2 from what is shown in the figure. In the
present work, with the magnetization in the x basis, the phase φ is varied from 0 to 4π with 120 total values of φ to
encode up to the ±30th order of spin correlations. The zeroth order spin correlations have coherence order 0 in the
x-basis, corresponding to the first term plus four of the six terms in the quadratic-time-dependent portion of Eq. 17
as well as those of coherence order zero from higher orders in time. The higher-order terms are converted back into
single-spin terms by a magic echo, i.e. the final magic echo of Fig. 2. For signal processing, one implements a Fourier
transform of the resulting signal (with respect to φ) to generate a spectrogram of the coherence orders. Because of
the mixing of coherence order N among spin correlations with N or more spins, the signals do not correspond directly
with N -spin single-quantum coherence terms from Eq. 16 but instead represent the correlations among at least N
spins. Defining a shorthand for the total moment I⃗ = ∑j I⃗j we can write the (inverse) propagator of the pulse sequence
in Fig. 2 explicitly

[Uφ]−1 = e−iφIz

ei
π
2
I
y

eiφI
z

eiHDτe−2iHDτeiHDτeiHDT e−iφI
z

ei
π
2
I
y

eiφI
z

e−i
π
2
I
y

eiδHDe−iHDT
′

eiHDt
′′

(18)

where t′′ is the time after the last pulse. This propagator explicitly assumes that the second magic sandwich perfectly
refocuses the dynamics (this assumption is valid as this magic echo is relatively short). The first magic echo will be
absent if one is studying multispin correlations in the FID. With t′ = T ′ − t′′ − δ the peak of the echo is located at
t′ = T while the propagator simplifies to:

[Uφ]−1 = e−iφIz

ei
π
2
Iy

eiHDT eiφI
x

e−iHDt′ (19)

and the observed signal is

Sφ = ⟨U−1φ IzUφI
x⟩

= ⟨eiHDt′e−iφI
x

e−iHDT IxeiHDT eiφI
x

e−iHDt′Ix⟩
= ⟨m∣e−iφIx/2Ix(T )eiφIx/2∣n⟩ ⟨n∣eiφIx/2Ix(t′)e−iφIx/2∣m⟩
= ∑

n,m

ei(n−m)φ[Ix(T )]mn[Ix(t′)]nm ≡∑
n

S̃ne
inφ. (20)

Note that in addition to assuming a perfect magic echo this protocol also assumes perfect conservation of Iz , which
is valid in the high field limit. Clearly, ∑n S̃n = Tr[ρ2] for t′ = T .
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FIG. 3. (Color online) Experimental FID and magic echoes measured in adamantane. To overlay the data, we have time-shifted
and normalized each echo decay. Even though the initial decays vary significantly, they all approach the same long-time decays.
In this figure the points represented are: the FID (◾/black) and magic echoes at different τ ,τ= 100 µs (★/red), τ=150 µs
(▴/blue), and τ= 200 µs (▾/green).

III. METHODOLOGY

A. Experimental procedures and sample characterization

Experiments were performed in adamantane and calcium fluoride at room temperature. Adamantane is a plastic
crystal in which molecular tumbling averages out intramolecular interactions,26 leaving every proton to interact with
each of the 16 protons in all of the 12 nearest neighbor molecules in addition to those further away. Because of
tumbling these molecules act as if all the protons in a molecule are at the center of that molecule. The effective
dipolar coupling Deff in adamantane is ≈ 4.7× 104 rads/s,26 and is determined using a measurement of the linewidth.
The calcium fluoride sample used in this study was a single crystal oriented such that the duration between the first
two zero crossings in the FID (note that in Figs. 3 and 4 only the magnitude of the signal is plotted) is approximately
40 µs, which lies between the values for the [110] and [111] axes along the Zeeman field. 1H and 19F NMR experiments
were performed at 179.445 and 168.824 MHz using a Tecmag Apollo spectrometer.

In Figs. 3 and 4 we show a series of magic echoes and FIDs in adamantane and calcium fluoride respectively. The
data are normalized and time-shifted to emphasize the overlap in the long-time portion of the decays.27 In the case
of the magic echoes, the initial portions of the signals vary with echo time but eventually decay and oscillate at the
same rate. We show the results g and Ω of a fit of the long-time portion of the decays to

F (t) = F0 exp (−gt) sin (Ωt +Φ) (21)

in Table II for adamantane and calcium fluoride. This form for the long-time portion of the FID has a long history28

and has recently been predicted using the notion of microscopic chaos.22,29 The sinusoidally modulated exponential
characteristic has also been observed for the FID when measured out to six orders of magnitude.30 We note that our
measurements for calcium fluoride do not correspond to those in Ref. 30, because our crystal is not exactly in the
[110] orientation.

Figure 5 highlights a representative experimental spectrogram for spin correlations measured in adamantane with
a magic echo time τ = 100 µs and an evolution time T = 240 µs. In all experiments performed, we used 4 signal
averages with a recycle delay of 5 (30) seconds in adamantane (CaF2). In our experiments, δ was set to 10 µs and
T ′ = T + 90(70) µs in adamantane (CaF2) to avoid probe ring down artifacts. Our experimental pulse sequence also
implemented a simple phase cycle to remove baseline artifacts and imbalance in the receiver channels.31 The time of
the echo peak for the φ = 0 phase encoding step was used when computing the spectrogram.
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FIG. 4. (Color online) Experimental FID and magic echoes measured in calcium fluoride. To overlay the data, we have time-
shifted and normalized each echo decay. Even though the initial decays vary significantly, they all approach the same long-time
decays. In this figure the points represented are: the FID (◾/black) and magic echoes at different τ , τ=50 µs (★/red), τ=
100 µs (▴/blue), and τ=130 µs (▾/green).

TABLE II. Values of the parameters Ω and g determined for the fit of the FID and magic echo signals to the equation
F0 exp (−gt) sin (Ωt +Φ) in adamantane and calcium fluoride. The parameters shown in the tables (and associated error bars)
were determined from six separate measurements on the same samples.

adamantane Ω (rads/ms) g (ms−1) CaF2 Ω (rads/ms) g (ms−1)
FID 30 ± 1 32 ± 4 FID 71 ± 1 34 ± 3

100 µs magic echo 31 ± 1 31 ± 3 50 µs magic echo 73 ± 2 37 ± 2
150 µs magic echo 36 ± 1 33 ± 2 100 µs magic echo 74 ± 2 33 ± 3
200 µs magic echo 33 ± 1 34 ± 3 130 µs magic echo 75 ± 3 33 ± 3
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FIG. 5. Representative even order experimental multiple spin correlations, obtained in adamanatane for magic echo time
τ = 100 µs and evolution time T = 240 µs (see Fig. 2 for definitions of τ and T ). We performed 4 signal averages and
incremented φ from 0 to 4π by π/30 (120 phases φ were used). The spectrogram shown in the figure is obtained by a Fourier
transform of the echo peak amplitude variation with phase. The growth and subsequent decay of coherence peak amplitudes
for adamantane and calcium fluoride are plotted in Figs. 8 and 9

.
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B. Notes on simulations

Numerical simulations were performed by integrating equations of motion for the expectation values of spins in the
classical limit, with quantum spin operators replaced by “classical spins,” i.e. three component unit vectors obeying
the appropriate Poisson bracket. These deterministic Bloch equations were integrated using a 4th order Runge-Kutta
method with a fixed time step, ∆t = 0.001 ∼ 0.07 in units of inverse of largest dipolar frequency. Optimally, this time
step is chosen to be short enough to sample single spin precession at least ∼ 10 times per typical precession period
but not too short to overburden the computation. Going over and performing the entire simulation in the rotating
frame (which is justified in the large DC field limit) the value of ∆t is set by the strongest, nearest neighbor, dipolar
coupling, unless the RF field is on, at which point ∆t is reduced accordingly, as the precession about the RF field
is considerably faster than in dipolar fields. To facilitate simulations we have truncated the dipolar Hamiltonian to
retain only the nearest neighbor couplings and use cubes with 163 spins. Of the various possible finite-size, -range,
and -time effects we have found empirically that finite time effects controlled by ∆t are by far the most serious and
focused on minimizing them. We spot-checked that quoted results are robust against increasing both the interaction
range and lattice size. Lastly, to overcome the low signal-to-noise ratio in such small lattices we artificially reduce
the temperature so that the average spin polarization is 10% (and we average over 100 initial conditions). Since this
value of magnetization is five orders of magnitude higher than that of CaF2 at room temperature in high fields, we
explicitly checked that the spin dynamics is still effectively governed by infinite temperature correlations by working
at higher temperature (and thus at lower mean magnetization) and only observing enhancement of statistical noise.

IV. RESULTS AND DISCUSSION

A. Degradation of the magic echo

In Figs. 6 and 7 we show intensities of the magic echoes in experiments using adamantane and in simulations,
respectively, versus ω1/Deff (Deff ≈ 7D12 in a cubic crystal). In the experiments, whose results are shown in Fig. 6,
the amplitude of the initial π/2 and all RF bursts was fixed to 8.1Deff. The experiments clearly show a decrease in
the echo amplitude with both echo time τ and with decreasing ω1 of the π/2 magic sandwich pulses. In Fig. 7 magic
echo amplitudes for varying RF amplitude and τ are shown for simulations of classical spins. The effective dipolar
coupling strength used in the simulations is Deff = 0.71 rads/time as determined by the linewidth. In these simulations
the amplitudes of the RF bursts (during periods C and D) are kept constant at 6.5Deff rads/time. The data reveal
a decrease in the echo amplitude with increasing τ but the dependence on ω1 is weaker than that observed in the
experiments. These classical simulations became unstable for longer relative echo durations so the quantity τDeff was
larger in the experiments than in simulations for the largest echo times we used. When τDeff = 5.7 the variation in the
magic echo amplitude decreases by ∼ 21% when ω1/Deff is reduced from 6.5 to 3.3. This compares to the experimental
case where τDeff = 4.7 and the echo amplitude decreases by ∼ 4% when ω1/Deff is reduced from 6.6 to 2.7. Coupled
with the weaker relative RF in the simulations’ spin locking periods the classical simulations at least qualitatively
capture the features observed in the experiments on adamantane emphasizing the contribution of finite pulse widths
in the degradation of the magic echo cycle. Most importantly, the relative influence of finite width π/2 pulses becomes
diminished at any τ with only moderate decrease of tπ/2. In summary, we experimentally observed a degradation in
the magic echo efficacy with decreasing RF amplitude of the magic sandwich π/2 pulses which becomes pronounced
for large echo times. There is also a flattening-out of the magic echo refocusing for large RF amplitude as increasing
the RF amplitude does not provide better refocusing. While this observation may be due to instrumental artifacts
such as phase transients (which are known to increase with increasing RF amplitude), the fact that it is also borne
out in numerical simulations suggests that this flattening is an intrinsic effect, in principle captured by the average
Hamiltonian treatment.

B. Growth, decay, and spread of multispin correlations

In Figs. 8 and 9 we show the various multiple spin correlations plotted as a function of the echo spacing τ as well as
the evolution time T observed in the experiments. Each echo’s multiple spin correlations in Figs. 8 and 9 have been
renormalized separately (one renormalization per echo time τ , for all orders of spin correlations). The adamantane
FID data are in good agreement with a previously published study.32 The agreement between the CaF2 data and
previously published data13 is relatively close for short times, although should be noted that the authors of Ref. 13
normalize the coherence orders so that at every point in time the sum of all orders is one (the correspondence is
apparent if one plots the data this way). However, there are some differences, which become especially apparent in
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FIG. 6. (Color online) Intensity of the magic echo observed in adamantane for different values of τ and ω1 corresponding to
the RF field applied during the π/2 pulses of the magic sandwich. As described in the text, the RF amplitude during the
spin-locking pulses (periods C and D in Fig. 1) was kept constant for all experiments. The values of τ are 100 µs (◾/black),
200 µs (★/red), 250 µs (▴/blue), and 350 µs (▾/green) corresponding to τDeff = 4.7,9.4,12, and 17 respectively. The variation
in the echo amplitude with ω1 and τ is due largely to the second and higher order terms of the Magnus expansion.
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FIG. 7. (Color online) Magic echo amplitudes for lattices of classical spins as a function of ω1 during the π/2 pulses of the
magic sandwich. As in Fig. 6 the RF amplitude during the spin-locking pulses (periods C and D in Fig. 1) was kept constant.
The values of τ are 0.2 (◾/black), 0.5 (★/red), 1 (▴/blue), 2 (▾/green), 4 (◂/orange), and 8 (▸/purple) corresponding to
τDeff = 0.14,0.36,0.71, 1.4, 2.8, and 5.7, respectively. The effective dipolar coupling strength is Deff = 0.71, as determined by
the linewidth. Note that the values of τDeff are smaller here than nearly all the values in Fig. 6 and that, correspondingly, the
variation in echo amplitude is smaller.

the higher order correlations at longer times. The orientation of our crystal appears to be different when the FIDs
are compared; prior data were acquired with the crystal’s [110] axis along the magnetic field.13 The initial growth
of the multiple spin correlations details a significant difference between the FIDs and the various echoes, revealing
imperfections in the time reversal of the magic echo.
We now turn to a comparison of the FID and magic echo data. Quite generally, higher order correlations appear

large in magic echo traces as compared to those of the FID, which is not surprising. It is also apparent that the higher
order correlations peak earlier for the echoes than for the FID, an additional indication of imperfect refocusing and
leftover multispin correlations at the peaks of the magic echoes which are not present in the FID.
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FIG. 8. (Color online) Measured even-order multiple spin correlations in adamantane as a function of time T in Fig. 2.
The shapes represent the FID (◾) and echoes at various τ : τ=100 µs (★), τ=150 µs (▴), and τ= 200 µs (▾). The colors
are: zeroth order correlations (black), second order correlations (red), fourth order correlations (blue), sixth order correlations
(green), eighth order correlations (orange), tenth order correlations (purple), and twelfth order correlations (gray). The signal
intensities have been renormalized to emphasize the common long-time decays after ∼ 200 µs. The lines shown are intended to
be a guide and do not represent a fit to the experimental data.

TABLE III. The fit parameters Γ0 and Γ2 for the fit of the zeroth and second order quantum coherence decays with time in
the long-time regime in adamantane and calcium fluoride. The error shown in the table for each value is determined from the
standard error of the fit.

Adamantane Γ0 (ms−1) Γ2 (ms−1) Calcium Fluoride Γ0 (ms−1) Γ2 (ms−1)
FID 13.2 ± 0.3 13.6 ± 0.3 FID 35.0 ± 1.3 33.7 ± 1.2

100 µs magic echo 13.2 ± 0.3 13.2 ± 0.5 50 µs magic echo 36.0 ± 1.7 35.1 ± 1.0
150 µs magic echo 13.0 ± 0.4 13.0 ± 0.4 100 µs magic echo 34.1 ± 1.7 34.4 ± 1.7
200 µs magic echo 13.6 ± 0.4 14.2 ± 0.3 130 µs magic echo 34.2 ± 2.1 32.9 ± 1.2

The free induction decay following a single pulse or a magic echo in a dipolar coupled spin-1/2 solid can be
characterized not only by the decay of the single spin terms of the density matrix, but also by the subsequent growth
of multiple spin correlations. These multiple spin correlations also decay as they seed the onset of higher order
corrrelations. Looking beyond the initial growth stage, Figures 8 and 9 reveal that the multiple spin correlation
amplitudes for the zeroth and second order correlations decay at the same rates after ∼ 200 µs for adamantane and
∼ 100 µs for calcium fluoride, despite variations in the initial density matrix. At these times (∼ 100,200µs, respectively)
high order correlations are not only limited by noise but have not reached their respective maximum amplitudes.
It has been proposed27,29 that in the asymptotic long-time universal regime for single-spin decays (see Figs. 3,4), all

elements of the density matrix share the same eigenvalues and eigenmodes of decay. Our results show that the decay
rates appear to be the same and, equivalently, that the relative amplitudes remain constant. We show the results of
the fits of the long-time portions of coherence order n to an exponential decay

S̃n(t) = An exp (−Γnt) (22)

in Table III for adamantane and calcium fluoride. In what follows we give insight into this long time behavior.

C. Distribution of multispin correlations and its dynamics

The coherence order of the time evolved density matrix along the z-axis is conserved. The density matrix only
connects states whose total moment’s projection onto the z-axis differs by h̵ (this is a property of high field, secular
dipolar evolution which conserves the total moment along the applied field). The experimentally obtained data
resolves build-up and decay of coherence orders transverse to the z-axis, which reflect multi-spin correlations in the
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FIG. 9. (Color online) Measured even-order multiple spin correlations in calcium fluoride as a function of time T in Fig.
2. The shapes represent the FID (◾) and echoes at various τ : τ= 50 µs (★), τ=100 µs (▴), and τ=130 µs (▾). The colors
are: zeroth order correlations (black), second order correlations (red), fourth order correlations (blue), sixth order correlations
(green), eighth order correlations (orange), tenth order correlations (purple), and twelfth order correlations (gray). The signal
intensities have been renormalized to emphasize the common long-time decays after ∼ 100 µs. The lines shown are intended to
be a guide and do not represent a fit to the experimental data.

density matrix. With m and n denoting basis states with different amounts of transverse magnetization, the quantity
of interest is

Sφ = ∑
m,n

ei(n−m)φ∣ρmn(t)∣2 ≡ ∞

∑
n=−∞

einφS̃n(t). (23)

Since unitary time evolution preserves the spectrum of the density matrix generally and its purity, Tr[ρ2(t)], in
particular, there is a convenient sum rule ∑n S̃n(t) =M2, where M is the initial magnetization of the sample.33 Also,

quite generally, we expect S̃n(t) to be peaked near n = 0 with its width expanding in time (phenomenologically, it
may be approximated as a discrete Gaussian profile, e.g. see Fig. 5). Quite trivially, then, the long-time temporal

decay of individual S̃n(t) is dictated by the growth of the width of the entire profile and the sum rule. Slightly more
formally, we can use the second moment

N2(t) =∑
n

n2S̃n(t) (24)

as a proxy for the distribution’s width, and the center of the distribution is expected to decay as ∼ 1/√N2(t).
The basic qualitative aspect of the dynamics is the redistribution of correlations (in the z-basis) from few spins

to the entire crystal. This can be gleaned from a set of coupled linear differential equations governing (Liouvillian)
evolution of multi-spin correlation functions, known for quite some time.34 Crucially, these equations are completely
specified by the moments of the NMR lineshape.35 Unfortunately, these moments are not particularly well known
beyond a few low orders,36 so there is no closed form solution of this problem in the dipolar case of interest here.
However, some progress has been made recently, by Zobov and Lundin,21,37 which we now summarize. First,37 for

an infinite range dipolar kernel a wealth of closed form solutions was obtained. For instance,

S̃n(t) = In(t2)(1 +M2n
2/t2)e−M2t

2

, (25)

where M2 is the second spectral moment of the NMR lineshape. The long-time behavior of this model shows conver-
gence, albeit non-exponential, of different coherence orders, S̃n ∼ 1/t for all n as t → ∞ (with N2 ∼ t2). While this
particular feature is reminiscent of our findings, the infinite range model and many of its properties are not physical
although with some modifications it may be used, perhaps, to describe intermediate time behavior.38

More recently (and realistically), the same group studied the dipolar case21 and established simple exponential
growth of N2(t) ∼ exp(2Ct). Our data for adamantane and calcium fluoride supports this prediction qualitatively,
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though this measurement is difficult, at least partially because of the encoding of finite numbers of spins in our
experiments. However, our fits for the long-time portions for calcium fluoride gives a rate constant C on the order of
0.02 µs−1 in calcium fluoride and 0.008 µs−1 in adamantane. Combining this result with an assumption of a simple
Gaussian profile (empirically justified for our data but likely more complicated in reality), we may expect a simple

exponential decay of S̃n(t) ∼ exp(−Γnt), with approximately constant Γn, which is also consistent with the data in
Figs. 3, 4 and in Table III.
In connection with predictions based on microscopic chaos,29 we note that the decay rates Γ0 and Γ2 of the zeroth

and second order correlations matches the FID decay rate g in CaF2
39. The same is not true in adamantane, which

could be a result of residual motional averaging in adamantane that makes it a less than ideal test case for rigid lattice
NMR. In particular, the agreement of the decay rates of various coherence orders is consistent with Ref. 29, which
predicts that the entire density matrix shares common decay properties in the long-time limit.

V. SUMMARY AND OUTLOOK

This work aimed to apply novel multiparticle techniques for measuring the quality of time reversal in a magic
echo. In the process, we have provided a new quantitative understanding of realistic magic echoes, but also caught a
glimpse of the fundamental and universal process by which closed many-body systems reach apparent thermalization
or pseudo-thermalization. Simple athermal correlations (easy to produce and to measure) evolve unitarily into ever
more delicate and difficult to observe multiparticle objects. While the decay of the former is commonly observed and
equated with thermalization, one of the accomplished goals of the present study was to document the latter process.
It would be of great interest to compare and contrast this physics under different conditions and, especially, with

increased signal-to-noise ratio, e.g. using cryprobes.40 Of particular fundamental interest is the influence of the
environmental degrees of freedom – the general expectation is that external sources of decoherence in the spin dynamics
will cut off the growth process. In this case the decay of low order correlations will be due to extrinsic noise.
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