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We present an extension of the semi-grandcanonical (SGS€9ndnle that we refer to as the variance-
constrained semi-grandcanonical (VC-SGC) ensemble.ldivalfor transmutation Monte Carlo simulations
of multicomponent systems in multiphase regions of the pladgsgram and lends itself to scalable simulations
on massively parallel platforms. By combining transmuatatinoves with molecular dynamics steps structural
relaxations and thermal vibrations in realistic alloys bartaken into account. In this way, we construct a robust
and efficient simulation technique that is ideally suitedl&mge-scale simulations of precipitation in multicom-
ponent systems in the presence of structural disorder. [0striite the algorithm introduced in this work, we
study the precipitation of Cu in nanocrystalline Fe.

PACS numbers: 02.70.Tt 05.10.Ln 81.07.Bc 81.30.Mh

I. INTRODUCTION ate statistical ensemble. Following a discussion of the ad-
vantages and shortcomings of existing ensembles with re-
fspect to the present application, we introduce the variance
.constrained semi-grandcanonical (VC-SGC) ensemble twhic

ticular to all h hemical orderi d init Qan be viewed as a generalization of the extended Gaus-
tpar |.cutr?r 0 alloys Wf eri chemical obr erlcr;g an dp_r|ec+p| 4 sian ensemble technique to multicomponent systetrighis
lonin the presence of surtaces, grain boundaries, method overcomes the limitations of existing ensembled, an

and other structural features lead to complex behavior.eSom - 1o+ a simple serial VC-SGC-MC algorithm. In Sect, Ill

éxamples Icl)f pracucalll|mpotrtar|10etr|]nclude Atl.—Cu ?Ilohys, NI'we address the question how the MC methods introduced in
o superalloys as well as steels, the properties of which Valgect. I can be adapted for simulations of systems contginin

over a wide range depending on compositi(_)n and micr(.)Strucrhillions of particles. To this end, we derive transition mat
ture. Understanding and eventually controlling thesecesfes ces and their efficient decomposition. In Sect. IV, we finally

a prerequisite for designing and improving materials. in-pr discuss the simultaneous and efficient sampling of chemical

ciple, modeling and simulation are ideally suited to comp_le structural and vibrational degrees of freedom, and conside

ment and guide e_xperlmental_eff_orts, especially as dinserssi the precipitation of Cu in nanocrystalline Fe as an illustea
shrink and chemical complexity increases. example

The objective of the present work is to develop an al- The algorithms developed in this work have been imple-
gorithm that enables us to model the equilibrium propertiesnented in the massively parallel molecular dynamics code
of phase segregated multicomponent systems containing mil ammps’ and the source code is available from the authors.
lions of particles while taking into account chemical degre
of freedom, structural relaxations as well as thermal vibra
tions. For such an algorithm to be useful on current comput- 1. MODELING CHEMICAL MIXING AND
ing platforms, it must lend itself to efficient parallelizat. PRECIPITATION
This is difficult to achieve for Monte Carlo (MC) algorithms
that are based on the canonical ensemii@anulations within On the atomic scale, chemical mixing in alloys is most com-
the semi-grandcanonical (SGC) ensemble on the other hangony studied using MC simulations within either the semi-
are easily parallelized but cannot be used to study precipigrandcanonical (SGC) or the canonical ensemble. Therefore
tation and interface formation. The objective of the présenye first discuss in some detail these two ensembles before de-
work is to develop a MC technique that both can handle mu'“'riving the variance-constrained semi-grandcanonicatens
phase systems and be parallelized easily and efficientlie No o (VC-SGC), which merges the advantages of the the canon-
that the parallel algorithm discussed in this paper is bléta 5| anqd semi-grandcanonical ensembles. In the followirgg,
for short-range interatomic potentials as described &g., ge the subscripts C, S, and V to indicate quantities that are
embedded-atom methddhond-order’ or Stillinger-Webet  ¢onnected to the canonical, SGC and VC-SGC ensembles, re-
type potentials. spectively. For the sake of simplicity, we limit our discioss

The paper is organized as follows. In Sect. I, we dis-to binary alloys. The generalization to systems contai@ing
cuss how to model chemical mixing and phase segregatioarbitrary number of species is straightforward.
on the atomic scale. The most common approach is to sam- Consider a system a¥ particles confined in a box of vol-
ple the chemical configuration space using transmutationaimeV’, where each particle carries a spin of value O or 1. A
MC methods, which require as key ingredient an appropriconfiguration of this system can be denoted" , * ), where

The interplay between chemistry and structure is o



23"V is a3N-dimensional vector describing the positions of
every particle, and? is an N-dimensional spin vector. The
number of spin 1 particles is = Zfil oy, and their concen-

trationc = n/N. We denote the energy of a configuration by
U(x3N, o).
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A. The canonical ensemble
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The canonical ensemble describes the thermodynamics of

systems that are chemically isolated, i.e. the number of mem 2 o4 (b)
bers of each species is kept constant. The partition fumctio &
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Broglie wavelength for component and N = {N,V,T}
is the set of independent thermodynamic variablédonte £ 1. (a) Phase diagram for the Ising-type model system de-
Carlo simulations in this ensemble sample the probabil#y d  scribed in the text. The horizontal bar marks the tempegagir
tribution 0.8617 U/kp at which all the simulations described in this paper
have been carried out. The closed circles indicate the Bibyub
e (%N, 0N e, ) ocexp [-U (2*V,0N)] . (2)  limits at this temperature. (b) The chemical driving forde: as
a function of concentration as obtained from a series of kimu
Efficient sampling of the above distribution involves twao#s  tions in the semi-grandcanonical (SGC, solid line) andaree-
of trial moves: {) particle displacements3N s w?N and  constrained semi-grandcanonical (VC-SGC, dashed lirsgrables,
(i) compositional changes" — o}V that keep the concen- 'eSPectively.
tration fixed. In practice, in trial move)(a particle is selected

at random and assigned a random displacement, while for tria . I e
move (i) two particles with unlike spins are selected at ran-reservoir. The equilibrium probability distribution ofatSGC

dom and their spins are exchanged. These trial moves alg?énsemble for the binary system defined above thus becomes

accepted with probability 7@, oV Ap, N) o exp [—B(U(m3N,crN) I AHN&(UN))]
Ac = min {1, exp [-SAU|}, 3) A B .
AU = U( 3N N) U(.’IZBN,CTN). (4) C(G ) = N ;Uu (5)

This acceptance probability is designed to satisfy defaile where Ap is a Lagrange multiplier that constrains the aver-
balance. Approach to equilibrium can be accelerated subage concentration. The partition function can be expressed
stantially if trial moves i) are biased along the force vec- terms of the canonical one via

tor —VU (23", o). This is achieved most easily via a hy- .

brid technique where particle positiors” are sampled via Zo(Au N :/ Zele. N exp [— BAuNE d 6
molecular dynamics (MD) while spin degrees of freedom are s(AuN) 0 cle ) exp[=BAuNC] de. (6)

sampled using the spin exchange (transmutation) MC moves )
described above. The SGC ensemble can be sampled using a Monte Carlo al-

gorithm, where trial moves”” — o}¥ are made byi} select-
ing a particle at randomiif flipping its spin, {ii) computing
the change in energU, and concentratiofhc. Trial moves

B. Th i- d ical bl . L
€ semi-grandcanonical ensemble are accepted with probability

The SGC ensemble describes the thermodynamics of a sys- As = min {1, exp [-B(AU + AuNAc)]}, (7)
tem in contact with an infinite reservoir at constant tempera
ture and chemical potential for each species. This ensemblghich is designed to satisfy detailed balance.
corresponds to a set of configurations with varying compo- The acceptance probability expression above has important
sitions, but with their ensemble average constrained by thphysical significance. It shows that in the SGC ensemble the



force associated with a change in the chemical configuration 100
does not solely originate from the potential energy functio
AU, but also from the ternd\p N Ac. In particular, for any
change in concentration, a constant external chemicahdriv
force AuN is added to the usual interatomic forces in order
to drive the equilibrium concentration to the desired valune
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physical experiment& ., corresponds to the chemical poten- 40 1

tial difference between the two species. In practice itralte — Bk=05

the acceptance probability (7) for trial moves that lead to a 2 - p=5

concentration change. It is important to note that in thig wa oL Br=S0 ‘ ol

only single-phase equilibria can be established. This mean -15 -1.0 -05 0.0 0.5x1073
that e.g., for immiscible systems such as the one shown in Parameter ratio @¢/Nk

Fig. 1(a), concentrations inside the miscibility gap carire

stabilized. This limitation results from the functionalpga-  FIG. 2. Dependence of global concentration on the pararmater
dence between the chemical potential differeAgeand aver-  tio ¢/N« obtained from VC-SGC-MC simulations. All simulations
age concentratiof¥) g not being one-to-one in the multiphase were carried out at a temperatureda617 U/k 5 for the model sys-

regions of the phase diagram_ tem described in Sect. |1 B.
To illustrate this point, let us consider an Ising-type Hami
tonian
1
H = 5 Z EAA (TU) 10 (a)
i€A,JEA
1 1
+3 > enlri) + 3 > ems(rij)  (8) 1t
icA,jEB i€B,j€B

wherer;; denotes the neighbor shell of sitén which site

j is located. We use a body-centered cubic (BCC) lat-
tice with interactions up to the second neighbor shell and
EAA(l) = 633(1) = —10U, EAB(l) = —-9.7U, and
€44(2) = epp(2) = eap(2) = —2U. The phase diagram
for this model system can be calculated analytically and is
shown in Fig. 1(a). We carried out a series of simulations us-
ing the SGC-MC method for a system containing 2000 sites
at a temperature df.8617 U/kp, starting from a solid solu-
tion at 50%. The dependence Afi on (¢)g determined in
this way is depicted by the solid red line in Fig. 1(b). Note
the discontinuity in the\ u—(¢) g plot, which occurs in the re-
gion of the binary phase diagram where the miscibility gap is
located. This demonstrates that the SGC-MC method is not
suitable for studying phase segregation.
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To simulate sy_st§>m§ in multiphase regions of phase dIal':IG. 3. Dependence of (a) standard deviation of conceatratnd
gram, where precipitation occurs, we modify the SGC enseMpy) acceptance probability on the variance constraintpaters.
ble by adding a constraint that fixes the ensemble-averaged

squared concentratio{ﬁ). This limits concentration fluc-

tuations and thus, when inside the miscibility gap, pre-

vents the concentration to fluctuate to the phase boundaries

We refer to this approach as the variance-constrained semi- In contrast to the SGC ensemble that is characterized by
grandcanonical (VC-SGC) ensemble, which can be categan infinite reservoir with constant chemical potent\l, the
rized as an extended Gaussian ensemble. Such ensembles dsservoir of the VC-SGC ensemble is controlled by two inde-
scribe the thermodynamics of systems in contact with finitgpendent parametegsandx. The statistical mechanical origin
reservoir$ We will show below that the VC-SGC ensemble of these parameters is laid out in detail in the appendixr@he
is ideal for studying equilibrium properties of multiphases- it is shown thatp andx are Lagrange multipliers associated
tems and that it is quite straightforward to devise Montd&@ar with constraints on the first and the second moments of the
algorithms that sample this ensemble. concentration, respectively. The most probable distidiout



subject to these constraints is then derived to be (see BJ. A. 100 ; ;
_ — SGC-MC
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We can thus express the partition function of the VC-SGC % ________________
ensemble in terms of the canonical one as g 40 ¢ L e RN
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The VC-SGC ensemble can be considered a generalization Concentration (%)

of both the SGC and the canonical ensembles. The formei__rIG 4. Comparison of the acceptance rate as a function daglo
is obtained trivially by lettings — 0. In order to obtain the . b P

ical bl | h in E 9 r}ca)ncentration for the SGC, VC-SGG (= 5), and canonical MC
canonical ensemble, we comp e_te t € square in £q. ©) a ethods. At low concentrations the canonical MC methoddgiel
rewrite the VC-SGC probability distribution as the highest acceptance rates while inside the miscibitiytipe VC-

SGC-MC achieves the best results.
TV (:BP’N, oV o, H,N) o exp [—ﬁU(m?’N, crN)] (11)

2
X exp [—@i (Né(UN) + i) ] . spin configuration receives contributions from both thegjea

25 in the interatomic potential energy functiahU as well as
the external concentration dependent fakeAc(¢p + 2k N¢).
Hence, for a change in concentration, the usual interatomic
forces are augmented with an additional external chemical
driving force that at variance with the SGC ensemble is not
a constant but varies linearly with concentration ég +
2kN?c. When ensemble-averaged, the equilibrium chemical
driving force that corresponds to the chemical potenti&l di
Hence the VC-SGC ensemble may be obtained by generaliference in physical experiments and thg parameter in the
ing the delta function that fixes the concentration in theocan SGC ensemble now becomes
ical ensemble to a Gaussian with tunable width determined by
the parameter. Now in multiphase regions of phase dia- Ap = ¢+ 2N (¢), - (15)
grams, where the SGC ensemble is not stable, a VC-SGC en-
semble can be devised by judiciously choosing the two paramFhis very important relation is derived in the appendix, see
eters¢ andx that combine both advantages of the SGC andEq. A.11. It connects the VC-SGC and the SGC ensembles
the canonical ensembles. Traditionally the canonicalmnse and will be used extensively in the following to design and
ble has been used to study precipitation inside the migyibil analyze Monte Carlo simulations of systems in which several
gap. Our objective with this paper is to show that the sameghases coexist.
physics can be studied much more efficiently in the VC-SGC We now apply the VC-SGC-MC method to study the model
ensemble, especially when parallel computing is utilized.  system described in Sect. II B. Figure 2 illustrates thetieta
Thanks to its similarity with the SGC ensemble, it is between the global concentration and the parametergatio
straightforward to formulate a MC algorithm for samplingth It clearly demonstrates that using the VC-SGC-MC algorithm
VC-SGC ensemble, where trial move¥ — 0¥ comprise enables us to stabilize the system at arbitrary global aonce
trations in and outside the miscibility gap.
The dependence of the standard deviation of the concen-
(i) flipping its spin, tration on the variance parameterfollows a power law
[Fig. 3(a)], (A¢%),, o 1/y/k. The relation between the ac-
(iii) computing the change in energy/ and concentration ceptance probability ang, on the other hand, is linear with a
Acas well as negative slope [Fig. 3(b)]. Increasimgthus has two effects:
. R . . It leads to a smaller standard deviation while simultanBous
&of')? —&o™)? _ o) + o) (13)  reducing the acceptance probability.
2Ac 2 We can also compare the acceptance probability as obtained
with the VC-SGC-MC method with the results for the SGC
and canonical MC methods. As shown in Fig. 4, in the single-
Ay = min {1,exp [-8 (AU + NAc(¢ + 2:N¢E))]}. (14)  Phase regions of the phase diagram the SGC and VC-SGC-
MC methods coincide and produce comparably low accep-
Once again, this acceptance probability is designed to satance rates, while the canonical MC method provides large
isfy detailed balance. The force associated with a change iacceptance rates. However, inside the miscibility gap¢hvhi

The canonical ensemble is recovered wher> oo and¢ =
—2kNec. This can be seen by rewriting the canonical partition
function as

Zc(e,N) = /1 Ze(d NS (c— ) dc'. (12)
0

(i) selecting a particle at random,

6:

These trial moves are accepted with probability



is the region of interest when it comes to phase segregation, independent
the VC-SGC method yields the best results. domains . .
We now study the functional dependence of the chemi- /X ””” !
cal driving forceAp obtained from Eqg. (15) on the average 7 ___ ) / * ,,,,, i :
concentration using the VC-SGC-MC method. The result is i ' domain
shown in Fig. 1(b) in comparison with the data obtained us- 1A 18 | 2A 2B ‘
ing the SGC-MC method. The VC-SGC-MC method pro- | |~ &+ [+ j
duces a continuous relation betwedan and ¢ throughout S |
the entire concentration range. In the single-phase region % 1C 1D [2C 2D
of the phase diagram the SGC and VC-SGC-MC results co- £ < | node
incide. Inside the miscibility gap, where the SGC-MC falils, 5 3A {SB | 4A 148 3
the VC-SGC-MC method reproduces the van-der-Waals loop = | [ o b
associated with the formation of phase boundatieis is a 3C:3D |4C:4D simulation box
very important result that can be used to extract interfese f ‘ ‘
energies.

. . FIG. 5. Spatial decomposition (solid lines) and subseqdafigion
To summarize, the VC-SGC-MC method imposes a CoNjyq octants (dashed lines) of a system with short-rangedéotions.
straint on the variance of the concentration, and allows fokets of octants with the same letter are independent of ete. o

equilibration at arbitrary global concentrations. Thgteb  One such set is marked in yellow.
merges the advantages of the SGC and the canonical MC al-
gorithms. In the next section, we show that the VC-SGC-MC

algorithm is also very well suited for parallelization ehag divide the simulation box into a regu|ar lattice 8tpy equiv-
simulations of systems with many million particles. alent cells{C;} with linear dimensionZL. = L/N,, where
Ncpy = N, x N, x N.. ( The generalization to non-cubic
cells is straightforward).
Ill.  PARALLELIZATION STRATEGIES FOR LARGE At every Monte Carlo step, a cubic domd is chosen in-
SYSTEMS side each celf; in such a way as to ensure that equivalent do-
mains on different processors aren-interacting This means
There are a multitude of problems involving precipitation, that the total energy changel/ associated with arbitrary spin
especially in the presence of structural defects such &s-dis flips inside the domainD; } can be written as the sum of the
cations, grain boundaries and surfaces, which require-simindependenliocal energy changedU; on each processor, i.
lations of systems with hundreds of thousands or millions ok, A7 = ZNCF'U AU;. Note that all domain®; are equiv-

particles. Efficient parallelization schemes with goodaiis  5lent with |inle:a1r dimensiop, = L. — R., whereR, is the

ity are a necessity in order to address these problems. Hergifective interaction radius in the system. For pair intécns
we focus on short-range interaction potentials as destribethis radius equals the cutoff radius of the potential, widle
e.g., by embedded-atom methbtipnd-order, or Stillinger-  three-body potentials it is usually twice the cutoff radius
Webef type potentials. Itis easy to see that for the above parallelization strategy
Monte Carlo simulations in the canonical ensemble do nope possible the linear dimensidn must be larger thar..
lend themselves to efficient parallelization since trialve® | et ys first discuss the case whépis exactly twiceR,. In
in this scheme involve exchange of two particles that can benis case the independent domains will have the linear dimen
located on any two processors. Although itis possible to consjon ., = R.. They constitute the eight non-overlapping
ceive elaborate distributed algorithms, it is difficult tople-  octants of each celf; as depicted in Fig. 5. In this figure,
menta scheme that ensures unbiased sampling and stilsavoig| domains “A” are non-interacting and so are all domains
spending a considerable fraction of simulation time onrinte “B» etc At each Monte Carlo trial move, one of the eight
processor communication. The SGC ensemble on the othgftants is chosen at random. It is important that all a@jls
hand can be parallelized easily but, as discussed in S&t. Il work on the same octant simultaneously since only in this way
cannot be used to study precipitation. The purpose of thighe trial moves on different processors are with certaity-n
work is to develop a Monte Carlo technique that can both hanmteracting.
dle multiphase systems and can be parallelized easily ind ef  The apove method of subdividing each c@llinto eight
ciently. In the following, we discuss parallelization ségies non-overlapping octants also works whea > 2R, . How-
for the SGC as well as the VC-SGC ensembles and demoRsyer, pear in mind that confining the local trial moves to
strate their excellent scalability and efficiency. non-interacting domains produces weak spatial correlatio
that can slow down the approach to equilibrium, especially
when phase segregation and growth of precipitates is ex-
A. Domain decomposition for sampling trial moves pected. These spatial correlations are minimized if the to-
tal volume of the domain$D;} is maximized. This can be
Consider for simplicity a simulation box in the shape of aachieved by growing each octant to a cube with linear dimen-
cube with linear dimensioh. In systems with short-range in- sionLp = L.—R.. The eight distinct domains thus generated
teractions, the most common parallelization strategy &its  inside each cell; do overlap. This leads to the central region



of C; be covered by all eigh;. To ensure uniform sampling, This implies that there is a coupling between the domaipns
the particles in the outer regions of thg cells must be se- and as a result the simple method outlined in the previous sec
lected with higher probability than those in the center. sThi tion for the SGC ensemble cannot be directly applied to the
can be achieved by assigning differential weights to thé-par parallel sampling of the VC-SGC ensemble. To resolve this
cles in the system depending on their position ingidésee  issue, we first modify the acceptance probability distiiut
the right panel of Fig. 6) prior to making trial moves. Eq. (14) for the serial sampling of the VC-SGC ensemble as
It is now straightforward to devise an efficient parallel follows
Monte Carlo algorithm, where each trial move is composed
of Ncpy local movessN — N 4+ Ao (i) carried out in- Av =min {1, exp [ (AU + NAc(¢ + 26N co))]}
side the domaingD,} synchronously on all processors. To x min {1, exp [_5,€N2Ac(5 — )]} (18)
ensure uniform sampling, a trial move is constructed in two
stages: i select one of the eightindependentdomdifs} at ~ wherec was defined in Eq. (13). Itis easy to verify that the ac-
random and broadcast to all processors; message passing e@ptance probability distribution in Eq. (18) satisfiesailet]
be avoided by synchronizing the seed for the random numbdyalance. The parametey introduced in Eq. (18) can change
generator on all processors, aiid 6n each processorpick  the acceptance probability and thus the approach to equilib
a particle at random inside the chosen domain and flip its spirium but it does not affect the final result. An optimal choice
Different parts of the domain may be sampled with differentis
weights.
It is important to note that the composite trial mov® — co = (E)y - (19)

N Ncpuy N (s i P P P
0" +3 ;-1 Aoy (i) constructed in this way will be rejected In practice, the simulations are performed withchosen to

atavery _high rate. In the following section, we describg hoWbe the best guess for the average concentration. In Se€t. Il

e will explicitly demonstrate the correlation between x,
¢, and discuss acceptance rates for the simple Ising model
introduced earlier.

We can now formulate a parallel Monte Carlo algorithm in

the VC-SGC ensemble with composite trial moves comprising

Ncpy synchronous local moves¥ — oV + ZZN:C{’“ Aol (i):

(i) on each process@émake a local trial move as detailed in
the Sect. lll A, {i) compute the local changes in eneryy/;

In this section, we describe how one can devise parallelnq concentration;, and accept this move with probability
Monte Carlo simulations in the SGC-ensemble with compos-

ite trial moves constructed from trial moves simultanepusl| ,p,loc/ . { }
oVES . = 1, — B(AU; + NA¢; 25N ,
generated on all processors. The algorithm is as follows: (7 (i) = min 1, exp [ - (AU + ¢ (¢ + 26N o))

sonable acceptance probabilities for composite trial move

B. Parallel Monte Carlo algorithms

1. Monte Carlo sampling of SGC ensemble

On each processémake a local trial mové\s}Y (i) accord- =Apg

ing to one of the procedures described in section IlIB), ( (20)
compute the local changes in eneyy/; and concentration

Ac;, and accept this move with probability otherwise set\oY (i) = 0. Following Eq. (18), the global

b . trial moves™ — oV + SV AgN (7) may be accepted with
AZ(i) = min {1, exp [-B(AU; + AuNAc)]},  (16) probability

otherwise sef\¢¥ (i) = 0. The global composite trial move b

is nowoN — o 4 SN AGN (7). Thanks to the inde- AP = min {LGXP [—2@%1\72 Z Aci(éi — Co)] }
pendence of the domairB;, the transition probability for i

this move is proportional tp] "™ 4% (i) and satisfies detailed = min {1, exp [~ BEN*Actot (Actor — 2(é(c™) = c0)) ] }

balance. (22)

whereAciet = Zf\f{’“ Ac; is the total change in concentra-
2. Monte Carlo sampling of VC-SGC ensemble tion due to the composite trial move. This quantity can be
efficiently computed using for example the message passing
The similarity of the SGC and VC-SGC ensembles dis-interfacé®al | gat her command.
cussed in Sect. IIC suggests that parallelization strasegi
might be similar as well. A closer inspection, however, re-
veals that for a composite trial move¥ — o}V, where C. Efficiency of the parallel VC-SGC-MC method
o =N + 3 A (i), we have
In arriving at Eq. (20), we have introduced the parameter
) o  Neeu 5 ¢o and the abbreviatiol\;,p = ¢ + 2cNc¢y. Together with
e(af) —e(oe™) £ e(eV +AcMN(@)".  (17)  kthese parameters determine the average and the variance of
i=1 the concentration. In this section, we will demonstrate the
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FIG. 6. Schematic representation of an optimal spatial mkposition (compare Fig. 5). For a pair potential the dombenge to be separated
by at least one cutoff-distance while for potentials witfetitbody terms the separation has be to at least two cugiéfrdes.
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FIG. 8. Acceptance probability as a function of variancesti@int
parametek for different target concentrationg and optimal values
for Apuo as obtained with the parallel VC-SGC-MC algorithm.
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For small values ofx the average concentration varies
strongly with Apg. As k is increased, the total concentra-
FIG. 7. (a) Average concentration and (b) acceptance pilityah-  tion is confined to small variations abowuf and the average
tained from parallel VC-SGC-MC simulations using differeom- ~ concentration becomes less sensitive to the choica af.
binations of the parametersyy andx for ¢o = 0.25 in Eq. (21). Comparison with Fig. 1(b), where the chemical driving force

is shown as a function of average concentration reveals

that (¢) equalscy exactly whenAp = Apg. This confirms
correlation between these parameters using the simplg IsifEd: (19) and validates the underlying connection between th
model described in Sect. 11 B. SGC and VC-SGC-MC methods.

The derivation of the transition matrix for the parallel VC- While for sufficiently large values of the p_arameteAuo .
SGC-MC method in the previous section revealed a close req.o.es not affect the average concentration, it doe_s hav_e asig
semblance with the parallel SGC-MC method. I partiCu_nlflcant impact on the acceptance probability as illusttate

lar, the acceptance probabilitie (i) andA{'j""c(i) in Equa- Fig. 7(b). For a given value of the acceptance probability
tions (16) and (20) become identical&fg = Ap. This of

becomes maximal if\;x = Apg, which again confirms the
course requires, to be chosen according to the optimality optimality condition Eq. (19). Similar to the case of theiaker
condition Eq. (19). This insight greatly simplifies the atmi

VC-SGC-MC algorithm [compare Fig. 3(b)], we also find that
for a fixed value ofA g, the acceptance probability decreases
of para_lmeters for the parallel VC-SGC-MC methgd. . with increasing< as shown explicitly in Fig. 8. It is however
_ InFig. 7(a), we show the average concentration obtainegemarkable that over a rather wide range the value dbes
in simulations with different values k.o andx;, forafixed ot have a significant negative impact on the acceptance prob
target concentration af, = 0.25 located inside the miscibil- ability.

ity gap. All simulations were carried out using 64 CPUS, &  Now that we have understood the interplay between the pa-

4 x4 x4 decomposition, and a BCC lattice with x 40 x40 rameters\ o, , andey, we can formulate an optimal strategy
conventional unit cells. The number of particles per preces ¢, choosing their values:

is thus equal to the number of particles in the serial VC-SGC-
MC simulations discussed in Sect. Il C. (i) Determine the chemical driving fore®u.s in the vicin-
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< N ® ¥ L o929 processors. The first acceptance/rejection, howeverressu
— o (3] < [Te] © I~ 0O - - . s e
* X & 00X X g o xEx that the combination of the individual moves form a cluster

50

move that is already “optimized” and therefore has a regéitiv
low probability to be rejected in the second part of the VC-
SGC-MC trial move.

—B— weak scaling

IV.  APPLICATION TO REALISTIC ALLOYS

A. Sampling structural relaxation and vibrations

Acceptance probability (%)

In the previous sections, we have discussed in detail the de-
velopment of an efficient parallel MC algorithm for studying
systems with millions of particles at arbitrary global cene
FIG. 9. Acceptance probability as a function of the numbeprof tr_ations. Eor the purpose of demo.nstratior.\, we considered a
cessors both in the weak scaling limit usidg, = 0, x = 10, and simple |att'ce r_nOdel' In many practical _appl'cat'ons_' hwe
co = 0.5. The dashed line represents logarithmic scaling. the configuration space includes continuous particle deord

nates leading to structural relaxations and thermal viilmat
As shown in Sect. Il A, structural and chemical degrees of
ity of the two-phase region using the SGC-MC method.freedom can be separated readily in the partition function.
This requires simulations involving only small system This allows us to sample the corresponding integrals with di
sizes since we are only interested in single-phase equferent techniques. A straightforward approach is to combin
libria [compare Fig. 1(b)]. transmutation and displacement MC trial moves. In pragtice
this algorithm, however, often converges poorly especiall
(i) Choose a value of based on the desired standard devi-when structural relaxations are involved. As indicate@raft
ation of the concentration (compare Fig. 3). Eqg. (3), a much more efficient way to sample displacements
is obtained by combining transmutation Monte Carlo moves
(i) SetAuy = Aus andceo to the desired concentration with molecular dynamics simulations. In practice, oneiearr
inside the miscibility gap. In this way the parameter out a MD simulation that is interrupted evenyth MD step
¢ = Apo — 26Ncy is determined as well. For all sub- to executen MC trial moves. While optimal sampling is ob-
sequent simulations inside the miscibility gapi, can  tained ifn = m = 1 [compare comment after Eq. (3)], for
be held fix and only, is tuned to obtain the desired computational efficiency it is beneficial to choose largdr va
concentration. ues. This does not affect sampling as long as the total number
of MD/MC cycles is sufficiently large, i. ex is much smaller
an the total number of MD steps.
We have applied the hybrid MC/MD approach for model-
g chemical ordering and/or precipitation in several ritieta
alloys in the vicinity of heterogeneities such as dislomadi

) : grain boundaries and surfaces. In the next section, we con-
ITo]nr:/espga;e the plc(arforrlr)anci‘g qfthe parallel;/Q'S?CTMCsider the precipitation of Cu in Fe-rich Fe—Cu nanocrystals
algorithm in the weak scaling limit, & series of Simulations 5 4y jijystration for the type of problems that can be stud-

W'th an increasing numb_er of processors was carried out Ik using our algorithm. Other examples include the study of
which the number of particles per processor was kept ConSta@rain boundary pinning in Cu due to Fe impurifi&sstruc-

(2,000 particlesl 0 x 10 x 10 conventional unit cells) while the tural phase transformations of Cu precipitates in BCC*%on

total system size was increased. along With the number_o_f prcé’hort-range order in Fe—Cr alloy3and the properties of he-
cessors. The results of the scaling analysis are summanzedIium bubbles in Fe and Fe—Cr alldys

Fig. 9. As can be seen by comparison with the dashed line, in can be found in Ref. 13, where we used a preliminary ver-

the weak scaling limit, the acceptance probability scaiteb sion of the present algorithm to study short-range ordeein F

than logarithmically with the number of processors. These r : L
sults provide clear evidence that the VC-SGC-MC algorithmCr alloys as a function of temperature and composition.

is ideally suited for simulations of very large systems.

The good scalability of the algorithm can be rationalized as o
follows: In the first part of a VC-SGC-MC trial step, a com- B. Cu precipitation in Fe nanocrystals
posite move is constructed that in the second part is aatepte
or rejected as a whole. The collective acceptance/rejecfio We will now concern ourselves with VC-SGC-MC/MD
a large number of individual moves could suggest that the acsimulations of Cu-precipitation in dilute nanocrystadlifer-
ceptance probability for the second rejection decreaggdlya  ritic Fe—Cu alloys. The very small solubility of Cu in Fe
with the number of individual moves and thus the number 0f(0.07% at 700 K) gives rise to a very strong driving force for

1 10 100 1000
Number of processors

From Fig. 8 one observes that at an average concentration
50% the parallel VC-SGC-MC algorithm achieves a maximal
acceptance ratio of about 34% which compares favorably Witri}_I
a maximum value of about 47% for the serial VC-SGC-MC
method (see Fig. 3).
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FIG. 10. (Color online) Representative snapshots obtaafieed full equilibration in simulations using the (a,b) LBtpntial and (c,d) the PM
potential. Coloring according to common-neighbor analy&i,d) BCC Fe atoms, Fe and Cu grainboundary atoms are shawhite, pink,
and blue, respectively. (b,c) Fe and Cu grainboundary assmshown in gray and blue, respectively.

precipitation. The different crystal structures of Fe (pod plies that excess copper is located in grain boundarieslé/Nhi
centered cubic, BCC) and Cu (face-centered cubic, FCC) ahe two potentials agree with regard to the latter trendy the
well as the mechanical instability of bulk BCC-Cu, implytha yield very different results when it comes to thistribution
as Cu precipitates grow structural phase transformations o of the Cu in the grain boundaries. Whereas the LF potential
cur. This realization in conjunction with the technolodica- predicts a homogeneous distribution with little spatiairee
portance of Fe—Cu alloys has lead to a considerable amoutdtion between the Cu atoms [see Fig. 10(a,b)], the PM po-
of research in this field (see e.g., Refs. 15 and 16). Here, wiential yields contiguous Cu precipitates that are aggleme
compare the precipitation of Cu in dilute nanocrystallime-F ated along only a few neighboring grain boundaries. While
Cu alloys simulated using two different interatomic poigint this result showcases the kind of insight that can be gaised u
models. ing the VC-SGC-MC/MD hybrid simulation technique, it also
First, a nanocrystalline BCC-Fe sample with dimensiongdemonstrate that further work in the area of potential dgwvel
of 18.8nm in all Cartesian directions was created as followsment and verification is needed before a reliable study of Cu
Eleven randomly oriented BCC seeds (average grain diamggrecipitation at grainboundaries in Fe can be conducted.
ter 4 nm) were distributed evenly in the simulation cell and
nanocrystallites were constructed by filling the Voronol-vo
umes around each seed. The resulting grain boundary struc- V. CONCLUSIONS
ture was relaxed using conjugate gradient minimization and
subsequently equilibrated at a temperature of 700 K for S00p  In the present paper, we have developed a hybrid molecular
using MD simulations. The final sample contained 548,565%dynamics/Monte Carlo (MD/MC) algorithm which is ideally
atoms. suited for simulating multicomponent systems using sample
VC-SGC-MC/MD simulations were performed at 700K with millions of particles in both single and multiphase re-
usingApuy = —0.60eVin Eq. (20)x = 1000in Eq. (21),and  gions of the phase diagram. The most important component is
a target concentratiory = 4%. One MC cycle (equivalentto an efficient and scalable transmutation MC method that sam-
Nq: MC trial moves whereV,, is the number of atoms) was ples the variance-constrained semi-grandcanonical drisem
carried out per 20 MD steps. The equations of motion weréfhe VC-SGC-MC algorithm can be used to stabilize mul-
integrated for 1,200,000 MD steps (including 60,000 MC cy-tiphase equilibria and therefore allows to study precipita
cles) using a time step of 2.5fs. Temperature and pressut®n and phase segregation. Since it features a better-than
were maintained using the Nosé-Hoover thermostat and bardogarithmic scaling of the acceptance probability with the
stat, respectively. number of processors, the method is ideally suited for study
Interatomic interactions were modeled using both the Fe4ing very large systems containing several million particiei-
Cu potential by Ludwiget all” (LF) and the potential by nally, by combining the VC-SGC-MC method with molecu-
Pasianot and Malerb4(PM). The LF potential is based on lar dynamics, one obtains a very powerful hybrid scheme that
the Fe potential by Simonelkit al'® and the Cu potential by takes into account chemical mixing and precipitation, estru
Voter?° while the PM potential employs the Fe potential by tural relaxations as well as thermal vibrations.
Mendelewet al?* and the Cu potential by Mishiet al 2. Both We have applied the algorithm developed in this work to
potentials give solubilities at 700K that are very closehte t study the precipitation of Cu in nanocrystalline Fe using tw
experimental value (LF: 0.15%, PM: 0.07%, experiment: ap-different interatomic potentials. While both potentiatsgict
proximately 0.07%), and thus the target concentration of 4%excess Cu to be located in the grain boundaries, they yield
is far beyond the solubility limits for either potential. very different results for the distribution of impurity ats
Figure 10 summarizes the key results of our analysis. Asn the grain boundaries. Further work in potential develop-
expected, both potentials show a very small number of Cument and verification is required in order to obtain intenaito
atoms in the center of the grains. As the total Cu concentrgpotential models that provide reliable predictions fonedat
tion of about 4% is far larger than the bulk solubility this-im distribution near inhomogeneities such as dislocatiorsing
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boundaries, and surfaces. clesw?. These constraints can be expressed as:
The hybrid MC/MC algorithm described in this paper has p

already been applied to study for example grain boundary pin T— 1 Z ne Ula)

ning in Cu due to Fe impuritié§ structural phase transfor- M — ¢ ’

mations of Cu precipitates in BCC ¥eshort-range order in

Fe—Cr alloyst® and the properties of helium bubbles in Fe and 5= 1 Xp: N ()
Fe—Cr alloy$*. The relation to free energy integration that is M =" ’
implicit to Eq. (A.11) has furthermore been utilized in Ref. ”

to obtain the temperature and orientation dependence ef fre 72 = % Z N &(0)2.

interface energies in Fe—Cr alloys.
The algorithms developed in the present work have been .
implemented in the massively parallel MD codemmps.” Above, we have denoted the potential energy for the state

The source code is available from the authors. by U(a) and its concentration by(«). For any given set
¥ = {na}, there are multiple ways of choosing its elements

from Q2. We use this to define the multiplicityof a set>:

M!
=T
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Appendix: Derivation of the VC-SGC ensemble

In this appendix, we derive the VC-SGC ensemble for the
binary system discussed in section Il. Consider a system of oy
N particles confined in a box of volunig, where each par- —¢ <Z nac(a) — ME)
ticle carries a spin of value 0 or 1. Since the VC-SGC en- a=1
semble only manipulates the chemical degrees of freedom we (L o _2
consider for simplicity a system frozen onto a lattice of an a -k Z nac(e)” — Mo~ | . (A.2)
bitrary configurationz”. The phase spad® of this system a=1

consists of the set of = 2V different spin configurations ~ ~ o .
{oN}. To simplify the notation below, we enumerate fhe APOVe, 1, 5, ¢, andr, are Lagrange multipliers that are in-
configurations irf2: {1,2, - - , p}, and thus any spin configu- troduced as independent variables to facilitate the caimetd

rationo™ can be uniquely identified by its index number. ~ Minimization of the functional) with respect to the occupa-
tion numbers{n,}. At its minimum, the derivative of the
functional @ with respect to the independent variables is set
to zero. Settin@(Q /dn,, to zero determines their equilibrium

Let X be the set of\/ representative configurations i
and denote by, the number of times the-th state ap-
pears in¥. We can uniquely defin& by the set of numbers

: distribution:
{n1,n2,...,n,}+. The sum of the occupation numbers are
constrained according to i = €XD {—M ~ BU(a) — dé(a) — ké(aﬂ _
P Using this result in (A.1) we obtain an explicit expression f
M= Z Na- (A1) the chemical potential
a=1

1< - .
We now introduce three more constraints fortfie average exp(p) = i Z €xXp {—5U(04) — pé(a) — ’10(04)2} :
energyU, (ii) the average concentration of spin zero particles a=1

¢, and (i) the square of the concentration of spin zero parti- (A3)



Now it is possible to define the equilibrium probability ofyan
statea in €2 as

mv(a) = 2y exp -6 (U(a) + Né(a)(é + kNé(a)]

(A.4)
whereZy, = Me#*, and we have introduced the definitions
¢ = NB¢ (A.5)

k= N?Bk,

in order to reproduce the equilibrium probability distrioun

of the VC-SGC ensemble Eq. (9). Let us now define the phase

spacef). of configurations with a fixed concentration The
canonical free energic(c) for this set can be defined as fol-
lows

exp[~pFc(c)] = Y exp[-BE(a)].  (A6)

IS

In this way the patrtition function Eq. (A.3) can be rewrit@En
1
2y = / exp [0 (Fc(c) + Ne(¢p + kNc))de. (A7)
0

SettingdQ/d¢ anddQ /o in (A.2) to zero and using the

definitions (A.5) and (A.6) provides for a system of two equa-

tions to determine the two unknownsandx

c=2z"1 /0 cexp [—8 (Fc(c) + Ne(¢p + kNe))] de
(A.8)

1
72 =271 / c?exp [~ (Fe(c) + Ne(é + kNe)) ] de.
0
(A.9)
In solving the above equations, we assume thiatchosen
such thatitis much smaller th@andl—¢. Thenitis possible

to representic(c) by its Taylor expansion to second order
aroundc:

1 9?F¢ N
2 9c2 7(0_0)2’

and replace the integrals in Egs. (A.7—-A.9) above with inrdefi
nite Gaussian integrals

1:2\71/

Fe(e) = Fe(e) + %’(c -7+

exp [—~A(c —€) — B(c —¢)?] de

cexp [—A(c— ) — B(c—¢)*] de (A.10)

2

v = ®exp [-A(c—7) — B(c—©)*] de
where
Azﬁ[% +N(¢+2I€N@):|
Clz
1 9%F¢ 9
B—B |:§ W E+N K:|

Zy = Zyexp B (Fe(@) + Ne (¢ + kN©))].
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Itis now easy to see that the system of equations (A.10) can
be satisfied when

1
A=0 and B= ————
2(v% — )

Hence within the VC-SGC ensemble, the thermodynamic
forces ¢ andk) that give rise to a given average concentration
¢ and its standard deviation = \/7% — &2, are related to the
derivatives of the Helmholtz free energycads follows

9*°F|  OF c
Ne=22| 20 _ &
¢ oc? |, Ocl|, Pst
s 11 0°F
k=== — = |-
2\ Bs3  0c? |,

The first derivative of the free energy with respect to the
concentration of one species, i.e. the difference in chamic
potential between the two specidg:, can therefore be calcu-
lated from the average concentration according to

10k

A v v

(A.11)

= ¢ + 2k Ne.

We have thus arrived at the important relation Eq.(15), Whic

is used extensively in this paper. In the same way, a similar
relation can also be obtained between the second derivative
and the variance of the concentration which reads

0?Fc

52| = 2N?%k —

(A.12)

-
550
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