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We present an extension of the semi-grandcanonical (SGC) ensemble that we refer to as the variance-
constrained semi-grandcanonical (VC-SGC) ensemble. It allows for transmutation Monte Carlo simulations
of multicomponent systems in multiphase regions of the phase diagram and lends itself to scalable simulations
on massively parallel platforms. By combining transmutation moves with molecular dynamics steps structural
relaxations and thermal vibrations in realistic alloys canbe taken into account. In this way, we construct a robust
and efficient simulation technique that is ideally suited for large-scale simulations of precipitation in multicom-
ponent systems in the presence of structural disorder. To illustrate the algorithm introduced in this work, we
study the precipitation of Cu in nanocrystalline Fe.

PACS numbers: 02.70.Tt 05.10.Ln 81.07.Bc 81.30.Mh

I. INTRODUCTION

The interplay between chemistry and structure is of
paramount importance in materials science. This applies in
particular to alloys where chemical ordering and precipita-
tion in the presence of surfaces, grain boundaries, dislocations
and other structural features lead to complex behavior. Some
examples of practical importance include Al-Cu alloys, Ni-
Co superalloys as well as steels, the properties of which vary
over a wide range depending on composition and microstruc-
ture. Understanding and eventually controlling these effects is
a prerequisite for designing and improving materials. In prin-
ciple, modeling and simulation are ideally suited to comple-
ment and guide experimental efforts, especially as dimensions
shrink and chemical complexity increases.

The objective of the present work is to develop an al-
gorithm that enables us to model the equilibrium properties
of phase segregated multicomponent systems containing mil-
lions of particles while taking into account chemical degrees
of freedom, structural relaxations as well as thermal vibra-
tions. For such an algorithm to be useful on current comput-
ing platforms, it must lend itself to efficient parallelization.
This is difficult to achieve for Monte Carlo (MC) algorithms
that are based on the canonical ensemble.1 Simulations within
the semi-grandcanonical (SGC) ensemble on the other hand
are easily parallelized but cannot be used to study precipi-
tation and interface formation. The objective of the present
work is to develop a MC technique that both can handle multi-
phase systems and be parallelized easily and efficiently. Note
that the parallel algorithm discussed in this paper is suitable
for short-range interatomic potentials as described e.g.,by
embedded-atom method,2 bond-order,3 or Stillinger-Weber4

type potentials.

The paper is organized as follows. In Sect. II, we dis-
cuss how to model chemical mixing and phase segregation
on the atomic scale. The most common approach is to sam-
ple the chemical configuration space using transmutational
MC methods, which require as key ingredient an appropri-

ate statistical ensemble. Following a discussion of the ad-
vantages and shortcomings of existing ensembles with re-
spect to the present application, we introduce the variance-
constrained semi-grandcanonical (VC-SGC) ensemble, which
can be viewed as a generalization of the extended Gaus-
sian ensemble technique to multicomponent systems.5,6 This
method overcomes the limitations of existing ensembles, and
formulate a simple serial VC-SGC-MC algorithm. In Sect. III,
we address the question how the MC methods introduced in
Sect. II can be adapted for simulations of systems containing
millions of particles. To this end, we derive transition matri-
ces and their efficient decomposition. In Sect. IV, we finally
discuss the simultaneous and efficient sampling of chemical,
structural and vibrational degrees of freedom, and consider
the precipitation of Cu in nanocrystalline Fe as an illustrative
example.

The algorithms developed in this work have been imple-
mented in the massively parallel molecular dynamics code
LAMMPS7 and the source code is available from the authors.

II. MODELING CHEMICAL MIXING AND
PRECIPITATION

On the atomic scale, chemical mixing in alloys is most com-
monly studied using MC simulations within either the semi-
grandcanonical (SGC) or the canonical ensemble. Therefore,
we first discuss in some detail these two ensembles before de-
riving the variance-constrained semi-grandcanonical ensem-
ble (VC-SGC), which merges the advantages of the the canon-
ical and semi-grandcanonical ensembles. In the following,we
use the subscripts C, S, and V to indicate quantities that are
connected to the canonical, SGC and VC-SGC ensembles, re-
spectively. For the sake of simplicity, we limit our discussion
to binary alloys. The generalization to systems containingan
arbitrary number of species is straightforward.

Consider a system ofN particles confined in a box of vol-
umeV , where each particle carries a spin of value 0 or 1. A
configuration of this system can be denoted(x3N , σN ), where
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x
3N is a 3N -dimensional vector describing the positions of

every particle, andσN is anN -dimensional spin vector. The
number of spin 1 particles isn =

∑N
i=1 σi, and their concen-

trationc = n/N . We denote the energy of a configuration by
U(x3N , σN ).

A. The canonical ensemble

The canonical ensemble describes the thermodynamics of
systems that are chemically isolated, i.e. the number of mem-
bers of each species is kept constant. The partition function
for the canonical ensemble at temperatureT for the binary
system defined above is

ZC (c,N ) = Λ
−3(N−n)
1 Λ−3n

2

1

n!(N − n)!∫
exp

[
−βU

(
x
3N , σN

)]
d3Nx, (1)

whereβ = 1/kBT , Λi =
√
h2/2πmikT is the thermal de

Broglie wavelength for componenti, andN = {N, V, T }
is the set of independent thermodynamic variables.1 Monte
Carlo simulations in this ensemble sample the probability dis-
tribution

πC
(
x
3N , σN ; c,N

)
∝ exp

[
−βU

(
x
3N , σN

)]
. (2)

Efficient sampling of the above distribution involves two kinds
of trial moves: (i) particle displacementsx3N → x

3N
t , and

(ii ) compositional changesσN → σN
t that keep the concen-

tration fixed. In practice, in trial move (i) a particle is selected
at random and assigned a random displacement, while for trial
move (ii ) two particles with unlike spins are selected at ran-
dom and their spins are exchanged. These trial moves are
accepted with probability

AC = min {1, exp [−β∆U ]} , (3)

∆U = U(x3N
t , σN

t )− U(x3N , σN ). (4)

This acceptance probability is designed to satisfy detailed
balance. Approach to equilibrium can be accelerated sub-
stantially if trial moves (i) are biased along the force vec-
tor −∇U(x3N , σN ). This is achieved most easily via a hy-
brid technique where particle positionsx3N are sampled via
molecular dynamics (MD) while spin degrees of freedom are
sampled using the spin exchange (transmutation) MC moves
described above.

B. The semi-grandcanonical ensemble

The SGC ensemble describes the thermodynamics of a sys-
tem in contact with an infinite reservoir at constant tempera-
ture and chemical potential for each species. This ensemble
corresponds to a set of configurations with varying compo-
sitions, but with their ensemble average constrained by the
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FIG. 1. (a) Phase diagram for the Ising-type model system de-
scribed in the text. The horizontal bar marks the temperature of
0.8617U/kB at which all the simulations described in this paper
have been carried out. The closed circles indicate the solubility
limits at this temperature. (b) The chemical driving force∆µ as
a function of concentration as obtained from a series of simula-
tions in the semi-grandcanonical (SGC, solid line) and variance-
constrained semi-grandcanonical (VC-SGC, dashed line) ensembles,
respectively.

reservoir. The equilibrium probability distribution of the SGC
ensemble for the binary system defined above thus becomes

πS(x
3N , σN ; ∆µ,N ) ∝ exp

[
−β(U(x3N , σN ) + ∆µNĉ(σN ))

]

ĉ(σN ) =
1

N

N∑

i=1

σi, (5)

where∆µ is a Lagrange multiplier that constrains the aver-
age concentration. The partition function can be expressedin
terms of the canonical one via

ZS(∆µ,N ) =

∫ 1

0

ZC(c,N ) exp [−β∆µNc] dc. (6)

The SGC ensemble can be sampled using a Monte Carlo al-
gorithm, where trial movesσN → σN

t are made by (i) select-
ing a particle at random, (ii ) flipping its spin, (iii ) computing
the change in energy∆U , and concentration∆c. Trial moves
are accepted with probability

AS = min {1, exp [−β(∆U +∆µN∆c)]} , (7)

which is designed to satisfy detailed balance.
The acceptance probability expression above has important

physical significance. It shows that in the SGC ensemble the
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force associated with a change in the chemical configuration
does not solely originate from the potential energy function
∆U , but also from the term∆µN∆c. In particular, for any
change in concentration, a constant external chemical driving
force∆µN is added to the usual interatomic forces in order
to drive the equilibrium concentration to the desired value. In
physical experiments∆µ corresponds to the chemical poten-
tial difference between the two species. In practice it alters
the acceptance probability (7) for trial moves that lead to a
concentration change. It is important to note that in this way
only single-phase equilibria can be established. This means
that e.g., for immiscible systems such as the one shown in
Fig. 1(a), concentrations inside the miscibility gap cannot be
stabilized. This limitation results from the functional depen-
dence between the chemical potential difference∆µ and aver-
age concentration〈ĉ〉S not being one-to-one in the multiphase
regions of the phase diagram.

To illustrate this point, let us consider an Ising-type Hamil-
tonian

H =
1

2

∑

i∈A,j∈A

ǫAA (rij)

+
1

2

∑

i∈A,j∈B

ǫAB(rij) +
1

2

∑

i∈B,j∈B

ǫBB(rij) (8)

whererij denotes the neighbor shell of sitei in which site
j is located. We use a body-centered cubic (BCC) lat-
tice with interactions up to the second neighbor shell and
ǫAA(1) = ǫBB(1) = −10U , ǫAB(1) = −9.7U , and
ǫAA(2) = ǫBB(2) = ǫAB(2) = −2U . The phase diagram
for this model system can be calculated analytically and is
shown in Fig. 1(a). We carried out a series of simulations us-
ing the SGC-MC method for a system containing 2000 sites
at a temperature of0.8617U/kB, starting from a solid solu-
tion at 50%. The dependence of∆µ on 〈ĉ〉S determined in
this way is depicted by the solid red line in Fig. 1(b). Note
the discontinuity in the∆µ–〈ĉ〉S plot, which occurs in the re-
gion of the binary phase diagram where the miscibility gap is
located. This demonstrates that the SGC-MC method is not
suitable for studying phase segregation.

C. The variance-constrained semi-grandcanonical ensemble

To simulate systems in multiphase regions of phase dia-
gram, where precipitation occurs, we modify the SGC ensem-
ble by adding a constraint that fixes the ensemble-averaged
squared concentration

〈
ĉ2
〉
. This limits concentration fluc-

tuations and thus, when inside the miscibility gap, pre-
vents the concentration to fluctuate to the phase boundaries.
We refer to this approach as the variance-constrained semi-
grandcanonical (VC-SGC) ensemble, which can be catego-
rized as an extended Gaussian ensemble. Such ensembles de-
scribe the thermodynamics of systems in contact with finite
reservoirs.6 We will show below that the VC-SGC ensemble
is ideal for studying equilibrium properties of multiphasesys-
tems and that it is quite straightforward to devise Monte Carlo
algorithms that sample this ensemble.
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FIG. 2. Dependence of global concentration on the parameterra-
tio φ/Nκ obtained from VC-SGC-MC simulations. All simulations
were carried out at a temperature of0.8617 U/kB for the model sys-
tem described in Sect. II B.

 0.01

 0.1

 1

 10

10−1 100 101 102 103 104S
td

. d
ev

ia
tio

n 
of

 c
on

ce
nt

ra
tio

n 
(%

)

Variance constraint parameter κ in units of β

(a)

x−1/2

   15

   20

   25

   30

   35

   40

   45

   50

 0  1000  2000  3000  4000  5000

A
cc

ep
ta

nc
e 

pr
ob

ab
ili

ty
 (

%
)

Variance constraint parameter κ in units of β

(b)

FIG. 3. Dependence of (a) standard deviation of concentration and
(b) acceptance probability on the variance constraint parameterκ.

In contrast to the SGC ensemble that is characterized by
an infinite reservoir with constant chemical potential∆µ, the
reservoir of the VC-SGC ensemble is controlled by two inde-
pendent parametersφ andκ. The statistical mechanical origin
of these parameters is laid out in detail in the appendix. There
it is shown thatφ andκ are Lagrange multipliers associated
with constraints on the first and the second moments of the
concentration, respectively. The most probable distribution
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subject to these constraints is then derived to be (see Eq. A.4)

πV
(
x
3N , σN ;φ, κ,N

)
∝ exp

[
−βU(x3N , σN )

]
(9)

× exp
[
−βNĉ(σN )

(
φ+ κNĉ(σN )

)]
.

We can thus express the partition function of the VC-SGC
ensemble in terms of the canonical one as

ZV(φ, κ,N ) =

∫ 1

0

ZC(c,N ) exp [−βNc(φ+ κNc)] dc.

(10)

The VC-SGC ensemble can be considered a generalization
of both the SGC and the canonical ensembles. The former
is obtained trivially by lettingκ → 0. In order to obtain the
canonical ensemble, we complete the square in Eq. (9) and
rewrite the VC-SGC probability distribution as

πV
(
x
3N , σN ;φ, κ,N

)
∝ exp

[
−βU(x3N , σN )

]
(11)

× exp

[
−βκ

(
Nĉ(σN ) +

φ

2κ

)2
]
.

The canonical ensemble is recovered whenκ → ∞ andφ =
−2κNc. This can be seen by rewriting the canonical partition
function as

ZC (c,N ) =

∫ 1

0

ZC(c
′,N )δ (c− c′) dc′. (12)

Hence the VC-SGC ensemble may be obtained by generaliz-
ing the delta function that fixes the concentration in the canon-
ical ensemble to a Gaussian with tunable width determined by
the parameterκ. Now in multiphase regions of phase dia-
grams, where the SGC ensemble is not stable, a VC-SGC en-
semble can be devised by judiciously choosing the two param-
etersφ andκ that combine both advantages of the SGC and
the canonical ensembles. Traditionally the canonical ensem-
ble has been used to study precipitation inside the miscibility
gap. Our objective with this paper is to show that the same
physics can be studied much more efficiently in the VC-SGC
ensemble, especially when parallel computing is utilized.

Thanks to its similarity with the SGC ensemble, it is
straightforward to formulate a MC algorithm for sampling the
VC-SGC ensemble, where trial movesσN → σN

t comprise

(i) selecting a particle at random,

(ii ) flipping its spin,

(iii ) computing the change in energy∆U and concentration
∆c as well as

c̃ =
ĉ(σN

t )2 − ĉ(σN )2

2∆c
=

ĉ(σN
t ) + ĉ(σN )

2
. (13)

These trial moves are accepted with probability

AV = min {1, exp [−β (∆U +N∆c(φ+ 2κNc̃))]} . (14)

Once again, this acceptance probability is designed to sat-
isfy detailed balance. The force associated with a change in
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FIG. 4. Comparison of the acceptance rate as a function of global
concentration for the SGC, VC-SGC (κ = 5), and canonical MC
methods. At low concentrations the canonical MC method yields
the highest acceptance rates while inside the miscibility gap the VC-
SGC-MC achieves the best results.

spin configuration receives contributions from both the change
in the interatomic potential energy function∆U as well as
the external concentration dependent forceN∆c(φ+2κNc̃).
Hence, for a change in concentration, the usual interatomic
forces are augmented with an additional external chemical
driving force that at variance with the SGC ensemble is not
a constant but varies linearly with concentration asNφ +
2κN2c. When ensemble-averaged, the equilibrium chemical
driving force that corresponds to the chemical potential dif-
ference in physical experiments and the∆µ parameter in the
SGC ensemble now becomes

∆µ = φ+ 2κN 〈ĉ〉V . (15)

This very important relation is derived in the appendix, see
Eq. A.11. It connects the VC-SGC and the SGC ensembles
and will be used extensively in the following to design and
analyze Monte Carlo simulations of systems in which several
phases coexist.

We now apply the VC-SGC-MC method to study the model
system described in Sect. II B. Figure 2 illustrates the relation
between the global concentration and the parameter ratioφ/κ.
It clearly demonstrates that using the VC-SGC-MC algorithm
enables us to stabilize the system at arbitrary global concen-
trations in and outside the miscibility gap.

The dependence of the standard deviation of the concen-
tration on the variance parameterκ follows a power law
[Fig. 3(a)],

〈
∆ĉ2

〉
V
∝ 1/

√
κ. The relation between the ac-

ceptance probability andκ, on the other hand, is linear with a
negative slope [Fig. 3(b)]. Increasingκ thus has two effects:
It leads to a smaller standard deviation while simultaneously
reducing the acceptance probability.

We can also compare the acceptance probability as obtained
with the VC-SGC-MC method with the results for the SGC
and canonical MC methods. As shown in Fig. 4, in the single-
phase regions of the phase diagram the SGC and VC-SGC-
MC methods coincide and produce comparably low accep-
tance rates, while the canonical MC method provides large
acceptance rates. However, inside the miscibility gap, which
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is the region of interest when it comes to phase segregation,
the VC-SGC method yields the best results.

We now study the functional dependence of the chemi-
cal driving force∆µ obtained from Eq. (15) on the average
concentration using the VC-SGC-MC method. The result is
shown in Fig. 1(b) in comparison with the data obtained us-
ing the SGC-MC method. The VC-SGC-MC method pro-
duces a continuous relation between∆µ and c throughout
the entire concentration range. In the single-phase regions
of the phase diagram the SGC and VC-SGC-MC results co-
incide. Inside the miscibility gap, where the SGC-MC fails,
the VC-SGC-MC method reproduces the van-der-Waals loop
associated with the formation of phase boundaries.8 This is a
very important result that can be used to extract interface free
energies.9

To summarize, the VC-SGC-MC method imposes a con-
straint on the variance of the concentration, and allows for
equilibration at arbitrary global concentrations. Thereby, it
merges the advantages of the SGC and the canonical MC al-
gorithms. In the next section, we show that the VC-SGC-MC
algorithm is also very well suited for parallelization enabling
simulations of systems with many million particles.

III. PARALLELIZATION STRATEGIES FOR LARGE
SYSTEMS

There are a multitude of problems involving precipitation,
especially in the presence of structural defects such as dislo-
cations, grain boundaries and surfaces, which require simu-
lations of systems with hundreds of thousands or millions of
particles. Efficient parallelization schemes with good scalabil-
ity are a necessity in order to address these problems. Here,
we focus on short-range interaction potentials as described
e.g., by embedded-atom method,2 bond-order,3 or Stillinger-
Weber4 type potentials.

Monte Carlo simulations in the canonical ensemble do not
lend themselves to efficient parallelization since trial moves
in this scheme involve exchange of two particles that can be
located on any two processors. Although it is possible to con-
ceive elaborate distributed algorithms, it is difficult to imple-
ment a scheme that ensures unbiased sampling and still avoids
spending a considerable fraction of simulation time on inter-
processor communication. The SGC ensemble on the other
hand can be parallelized easily but, as discussed in Sect. IIB,
cannot be used to study precipitation. The purpose of this
work is to develop a Monte Carlo technique that can both han-
dle multiphase systems and can be parallelized easily and effi-
ciently. In the following, we discuss parallelization strategies
for the SGC as well as the VC-SGC ensembles and demon-
strate their excellent scalability and efficiency.

A. Domain decomposition for sampling trial moves

Consider for simplicity a simulation box in the shape of a
cube with linear dimensionL. In systems with short-range in-
teractions, the most common parallelization strategy is tosub-
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FIG. 5. Spatial decomposition (solid lines) and subsequentdivision
into octants (dashed lines) of a system with short-ranged interactions.
Sets of octants with the same letter are independent of each other.
One such set is marked in yellow.

divide the simulation box into a regular lattice ofNCPU equiv-
alent cells{Ci} with linear dimensionLc = L/Nc, where
NCPU = Nc × Nc × Nc. ( The generalization to non-cubic
cells is straightforward).

At every Monte Carlo step, a cubic domainDi is chosen in-
side each cellCi in such a way as to ensure that equivalent do-
mains on different processors arenon-interacting. This means
that the total energy change∆U associated with arbitrary spin
flips inside the domains{Di} can be written as the sum of the
independentlocal energy changes∆Ui on each processor, i.
e. ∆U =

∑NCPU

i=1 ∆Ui. Note that all domainsDi are equiv-
alent with linear dimensionLD = Lc − Rc, whereRc is the
effective interaction radius in the system. For pair interactions
this radius equals the cutoff radius of the potential, whilefor
three-body potentials it is usually twice the cutoff radius.

It is easy to see that for the above parallelization strategyto
be possible the linear dimensionLc must be larger thanRc.
Let us first discuss the case whenLc is exactly twiceRc. In
this case the independent domains will have the linear dimen-
sion LD = Rc. They constitute the eight non-overlapping
octants of each cellCi as depicted in Fig. 5. In this figure,
all domains “A” are non-interacting and so are all domains
“B” etc. At each Monte Carlo trial move, one of the eight
octants is chosen at random. It is important that all cellsCi
work on the same octant simultaneously since only in this way
the trial moves on different processors are with certainty non-
interacting.

The above method of subdividing each cellCi into eight
non-overlapping octants also works whenLC > 2Rc . How-
ever, bear in mind that confining the local trial moves to
non-interacting domains produces weak spatial correlations
that can slow down the approach to equilibrium, especially
when phase segregation and growth of precipitates is ex-
pected. These spatial correlations are minimized if the to-
tal volume of the domains{Di} is maximized. This can be
achieved by growing each octant to a cube with linear dimen-
sionLD = Lc−Rc. The eight distinct domains thus generated
inside each cellCi do overlap. This leads to the central region
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of Ci be covered by all eightDi. To ensure uniform sampling,
the particles in the outer regions of theCi cells must be se-
lected with higher probability than those in the center. This
can be achieved by assigning differential weights to the parti-
cles in the system depending on their position insideCi (see
the right panel of Fig. 6) prior to making trial moves.

It is now straightforward to devise an efficient parallel
Monte Carlo algorithm, where each trial move is composed
of NCPU local movesσN

t → σN
t + ∆σN

t (i) carried out in-
side the domains{Di} synchronously on all processors. To
ensure uniform sampling, a trial move is constructed in two
stages: (i) select one of the eight independent domains{Di} at
random and broadcast to all processors; message passing can
be avoided by synchronizing the seed for the random number
generator on all processors, and (ii ) on each processori, pick
a particle at random inside the chosen domain and flip its spin.
Different parts of the domain may be sampled with different
weights.

It is important to note that the composite trial moveσN →
σN +

∑NCPU

i=1 ∆σN
t (i) constructed in this way will be rejected

at a very high rate. In the following section, we describe how
one can improve the above procedure in order to obtain rea-
sonable acceptance probabilities for composite trial moves.

B. Parallel Monte Carlo algorithms

1. Monte Carlo sampling of SGC ensemble

In this section, we describe how one can devise parallel
Monte Carlo simulations in the SGC-ensemble with compos-
ite trial moves constructed from trial moves simultaneously
generated on all processors. The algorithm is as follows: (i)
On each processori make a local trial move∆σN

t (i) accord-
ing to one of the procedures described in section III A, (ii )
compute the local changes in energy∆Ui and concentration
∆ci, and accept this move with probability

Ap
S(i) = min {1, exp [−β(∆Ui +∆µN∆ci)]} , (16)

otherwise set∆σN
t (i) = 0. The global composite trial move

is now σN → σN +
∑NCPU

i=1 ∆σN
t (i). Thanks to the inde-

pendence of the domainsDi, the transition probability for
this move is proportional to

∏NCPU

i=1 Ap
S(i) and satisfies detailed

balance.

2. Monte Carlo sampling of VC-SGC ensemble

The similarity of the SGC and VC-SGC ensembles dis-
cussed in Sect. II C suggests that parallelization strategies
might be similar as well. A closer inspection, however, re-
veals that for a composite trial moveσN → σN

t , where
σN
t = σN +

∑NCPU

i=1 ∆σN
t (i), we have

ĉ
(
σN
t

)2 − ĉ
(
σN
)2 6=

NCPU∑

i=1

ĉ
(
σN +∆σN

t (i)
)2

. (17)

This implies that there is a coupling between the domainsDi,
and as a result the simple method outlined in the previous sec-
tion for the SGC ensemble cannot be directly applied to the
parallel sampling of the VC-SGC ensemble. To resolve this
issue, we first modify the acceptance probability distribution
Eq. (14) for the serial sampling of the VC-SGC ensemble as
follows

AV =min {1, exp [−β (∆U +N∆c(φ+ 2κNc0))]}
×min

{
1, exp

[
−βκN2∆c(c̃− c0)

]}
(18)

wherec̃ was defined in Eq. (13). It is easy to verify that the ac-
ceptance probability distribution in Eq. (18) satisfies detailed
balance. The parameterc0 introduced in Eq. (18) can change
the acceptance probability and thus the approach to equilib-
rium but it does not affect the final result. An optimal choice
is

c0 = 〈ĉ〉V . (19)

In practice, the simulations are performed withc0 chosen to
be the best guess for the average concentration. In Sect. IIIC,
we will explicitly demonstrate the correlation betweenc0, κ,
φ, and discuss acceptance rates for the simple Ising model
introduced earlier.

We can now formulate a parallel Monte Carlo algorithm in
the VC-SGC ensemble with composite trial moves comprising
NCPU synchronous local movesσN → σN +

∑NCPU

i=1 ∆σN
t (i):

(i) on each processori make a local trial move as detailed in
the Sect. III A, (ii ) compute the local changes in energy∆Ui

and concentration∆ci, and accept this move with probability

Ap,loc
V (i) = min

{
1, exp

[
− β(∆Ui +N∆ci (φ+ 2κNc0)︸ ︷︷ ︸

= ∆µ0

)
]}

,

(20)

otherwise set∆σN
t (i) = 0. Following Eq. (18), the global

trial moveσN → σN +
∑NCPU

i=1 ∆σN
t (i) may be accepted with

probability

Ap,glob
V = min

{
1, exp

[
−2βκN2

∑

i

∆ci(c̃i − c0)

]}

= min
{
1, exp

[
−βκN2∆ctot

(
∆ctot − 2(ĉ(σN )− c0)

)]}
,

(21)

where∆ctot =
∑NCPU

i=1 ∆ci is the total change in concentra-
tion due to the composite trial move. This quantity can be
efficiently computed using for example the message passing
interface10 allgather command.

C. Efficiency of the parallel VC-SGC-MC method

In arriving at Eq. (20), we have introduced the parameter
c0 and the abbreviation∆µ0 = φ + 2κNc0. Together with
κ these parameters determine the average and the variance of
the concentration. In this section, we will demonstrate the
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FIG. 7. (a) Average concentration and (b) acceptance probability ob-
tained from parallel VC-SGC-MC simulations using different com-
binations of the parameters∆µ0 andκ for c0 = 0.25 in Eq. (21).

correlation between these parameters using the simple Ising
model described in Sect. II B.

The derivation of the transition matrix for the parallel VC-
SGC-MC method in the previous section revealed a close re-
semblance with the parallel SGC-MC method. In particu-
lar, the acceptance probabilitiesAp

S(i) andAp,loc
V (i) in Equa-

tions (16) and (20) become identical if∆µ0 = ∆µ. This of
course requiresc0 to be chosen according to the optimality
condition Eq. (19). This insight greatly simplifies the choice
of parameters for the parallel VC-SGC-MC method.

In Fig. 7(a), we show the average concentration obtained
in simulations with different values of∆µ0 andκ, for a fixed
target concentration ofc0 = 0.25 located inside the miscibil-
ity gap. All simulations were carried out using 64 CPUs, a
4× 4× 4 decomposition, and a BCC lattice with40× 40× 40
conventional unit cells. The number of particles per processor
is thus equal to the number of particles in the serial VC-SGC-
MC simulations discussed in Sect. II C.
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FIG. 8. Acceptance probability as a function of variance constraint
parameterκ for different target concentrationsc0 and optimal values
for ∆µ0 as obtained with the parallel VC-SGC-MC algorithm.

For small values ofκ the average concentration varies
strongly with∆µ0. As κ is increased, the total concentra-
tion is confined to small variations aboutc0 and the average
concentration becomes less sensitive to the choice of∆µ0.
Comparison with Fig. 1(b), where the chemical driving force
is shown as a function of average concentration〈ĉ〉, reveals
that 〈ĉ〉 equalsc0 exactly when∆µ = ∆µ0. This confirms
Eq. (19) and validates the underlying connection between the
SGC and VC-SGC-MC methods.

While for sufficiently large values ofκ the parameter∆µ0

does not affect the average concentration, it does have a sig-
nificant impact on the acceptance probability as illustrated in
Fig. 7(b). For a given value ofκ the acceptance probability
becomes maximal if∆µ = ∆µ0, which again confirms the
optimality condition Eq. (19). Similar to the case of the serial
VC-SGC-MC algorithm [compare Fig. 3(b)], we also find that
for a fixed value of∆µ0, the acceptance probability decreases
with increasingκ as shown explicitly in Fig. 8. It is however
remarkable that over a rather wide range the value ofκ does
not have a significant negative impact on the acceptance prob-
ability.

Now that we have understood the interplay between the pa-
rameters∆µ0, κ, andc0, we can formulate an optimal strategy
for choosing their values:

(i) Determine the chemical driving force∆µS in the vicin-
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FIG. 9. Acceptance probability as a function of the number ofpro-
cessors both in the weak scaling limit using∆µ0 = 0, κ = 10, and
c0 = 0.5. The dashed line represents logarithmic scaling.

ity of the two-phase region using the SGC-MC method.
This requires simulations involving only small system
sizes since we are only interested in single-phase equi-
libria [compare Fig. 1(b)].

(ii ) Choose a value ofκ based on the desired standard devi-
ation of the concentration (compare Fig. 3).

(iii ) Set∆µ0 = ∆µS and c0 to the desired concentration
inside the miscibility gap. In this way the parameter
φ = ∆µ0 − 2κNc0 is determined as well. For all sub-
sequent simulations inside the miscibility gap∆µ0 can
be held fix and onlyc0 is tuned to obtain the desired
concentration.

From Fig. 8 one observes that at an average concentration of
50% the parallel VC-SGC-MC algorithm achieves a maximal
acceptance ratio of about 34% which compares favorably with
a maximum value of about 47% for the serial VC-SGC-MC
method (see Fig. 3).

To investigate the performance of the parallel VC-SGC-MC
algorithm in the weak scaling limit, a series of simulations
with an increasing number of processors was carried out in
which the number of particles per processor was kept constant
(2,000 particles,10×10×10 conventional unit cells) while the
total system size was increased along with the number of pro-
cessors. The results of the scaling analysis are summarizedin
Fig. 9. As can be seen by comparison with the dashed line, in
the weak scaling limit, the acceptance probability scales better
than logarithmically with the number of processors. These re-
sults provide clear evidence that the VC-SGC-MC algorithm
is ideally suited for simulations of very large systems.

The good scalability of the algorithm can be rationalized as
follows: In the first part of a VC-SGC-MC trial step, a com-
posite move is constructed that in the second part is accepted
or rejected as a whole. The collective acceptance/rejection of
a large number of individual moves could suggest that the ac-
ceptance probability for the second rejection decreases rapidly
with the number of individual moves and thus the number of

processors. The first acceptance/rejection, however, ensures
that the combination of the individual moves form a cluster
move that is already “optimized” and therefore has a relatively
low probability to be rejected in the second part of the VC-
SGC-MC trial move.

IV. APPLICATION TO REALISTIC ALLOYS

A. Sampling structural relaxation and vibrations

In the previous sections, we have discussed in detail the de-
velopment of an efficient parallel MC algorithm for studying
systems with millions of particles at arbitrary global concen-
trations. For the purpose of demonstration, we considered a
simple lattice model. In many practical applications, however,
the configuration space includes continuous particle coordi-
nates leading to structural relaxations and thermal vibrations.

As shown in Sect. II A, structural and chemical degrees of
freedom can be separated readily in the partition function.
This allows us to sample the corresponding integrals with dif-
ferent techniques. A straightforward approach is to combine
transmutation and displacement MC trial moves. In practice,
this algorithm, however, often converges poorly especially
when structural relaxations are involved. As indicated after
Eq. (3), a much more efficient way to sample displacements
is obtained by combining transmutation Monte Carlo moves
with molecular dynamics simulations. In practice, one carries
out a MD simulation that is interrupted everyn-th MD step
to executem MC trial moves. While optimal sampling is ob-
tained ifn = m = 1 [compare comment after Eq. (3)], for
computational efficiency it is beneficial to choose larger val-
ues. This does not affect sampling as long as the total number
of MD/MC cycles is sufficiently large, i. e.n is much smaller
than the total number of MD steps.

We have applied the hybrid MC/MD approach for model-
ing chemical ordering and/or precipitation in several metallic
alloys in the vicinity of heterogeneities such as dislocations,
grain boundaries and surfaces. In the next section, we con-
sider the precipitation of Cu in Fe-rich Fe–Cu nanocrystals
as an illustration for the type of problems that can be stud-
ied using our algorithm. Other examples include the study of
grain boundary pinning in Cu due to Fe impurities11, struc-
tural phase transformations of Cu precipitates in BCC iron12,
short-range order in Fe–Cr alloys,13 and the properties of he-
lium bubbles in Fe and Fe–Cr alloys14.

can be found in Ref. 13, where we used a preliminary ver-
sion of the present algorithm to study short-range order in Fe–
Cr alloys as a function of temperature and composition.

B. Cu precipitation in Fe nanocrystals

We will now concern ourselves with VC-SGC-MC/MD
simulations of Cu-precipitation in dilute nanocrystalline fer-
ritic Fe–Cu alloys. The very small solubility of Cu in Fe
(0.07% at 700 K) gives rise to a very strong driving force for
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(a) (b) (c) (d)

FIG. 10. (Color online) Representative snapshots obtainedafter full equilibration in simulations using the (a,b) LF potential and (c,d) the PM
potential. Coloring according to common-neighbor analysis. (a,d) BCC Fe atoms, Fe and Cu grainboundary atoms are shownin white, pink,
and blue, respectively. (b,c) Fe and Cu grainboundary atomsare shown in gray and blue, respectively.

precipitation. The different crystal structures of Fe (body-
centered cubic, BCC) and Cu (face-centered cubic, FCC) as
well as the mechanical instability of bulk BCC-Cu, imply that
as Cu precipitates grow structural phase transformations oc-
cur. This realization in conjunction with the technological im-
portance of Fe–Cu alloys has lead to a considerable amount
of research in this field (see e.g., Refs. 15 and 16). Here, we
compare the precipitation of Cu in dilute nanocrystalline Fe–
Cu alloys simulated using two different interatomic potential
models.

First, a nanocrystalline BCC-Fe sample with dimensions
of 18.8 nm in all Cartesian directions was created as follows.
Eleven randomly oriented BCC seeds (average grain diame-
ter 4 nm) were distributed evenly in the simulation cell and
nanocrystallites were constructed by filling the Voronoi vol-
umes around each seed. The resulting grain boundary struc-
ture was relaxed using conjugate gradient minimization and
subsequently equilibrated at a temperature of 700 K for 500 ps
using MD simulations. The final sample contained 548,565
atoms.

VC-SGC-MC/MD simulations were performed at 700 K
using∆µ0 = −0.60 eV in Eq. (20),κ = 1000 in Eq. (21), and
a target concentrationc0 = 4%. One MC cycle (equivalent to
Nat MC trial moves whereNat is the number of atoms) was
carried out per 20 MD steps. The equations of motion were
integrated for 1,200,000 MD steps (including 60,000 MC cy-
cles) using a time step of 2.5 fs. Temperature and pressure
were maintained using the Nosé-Hoover thermostat and baro-
stat, respectively.

Interatomic interactions were modeled using both the Fe–
Cu potential by Ludwiget al.17 (LF) and the potential by
Pasianot and Malerba18 (PM). The LF potential is based on
the Fe potential by Simonelliet al.19 and the Cu potential by
Voter,20 while the PM potential employs the Fe potential by
Mendelevet al.21 and the Cu potential by Mishinet al.22. Both
potentials give solubilities at 700 K that are very close to the
experimental value (LF: 0.15%, PM: 0.07%, experiment: ap-
proximately 0.07%), and thus the target concentration of 4%
is far beyond the solubility limits for either potential.

Figure 10 summarizes the key results of our analysis. As
expected, both potentials show a very small number of Cu
atoms in the center of the grains. As the total Cu concentra-
tion of about 4% is far larger than the bulk solubility this im-

plies that excess copper is located in grain boundaries. While
the two potentials agree with regard to the latter trend, they
yield very different results when it comes to thedistribution
of the Cu in the grain boundaries. Whereas the LF potential
predicts a homogeneous distribution with little spatial corre-
lation between the Cu atoms [see Fig. 10(a,b)], the PM po-
tential yields contiguous Cu precipitates that are agglomer-
ated along only a few neighboring grain boundaries. While
this result showcases the kind of insight that can be gained us-
ing the VC-SGC-MC/MD hybrid simulation technique, it also
demonstrate that further work in the area of potential develop-
ment and verification is needed before a reliable study of Cu
precipitation at grainboundaries in Fe can be conducted.

V. CONCLUSIONS

In the present paper, we have developed a hybrid molecular
dynamics/Monte Carlo (MD/MC) algorithm which is ideally
suited for simulating multicomponent systems using samples
with millions of particles in both single and multiphase re-
gions of the phase diagram. The most important component is
an efficient and scalable transmutation MC method that sam-
ples the variance-constrained semi-grandcanonical ensemble.
The VC-SGC-MC algorithm can be used to stabilize mul-
tiphase equilibria and therefore allows to study precipita-
tion and phase segregation. Since it features a better-than-
logarithmic scaling of the acceptance probability with the
number of processors, the method is ideally suited for study-
ing very large systems containing several million particles. Fi-
nally, by combining the VC-SGC-MC method with molecu-
lar dynamics, one obtains a very powerful hybrid scheme that
takes into account chemical mixing and precipitation, struc-
tural relaxations as well as thermal vibrations.

We have applied the algorithm developed in this work to
study the precipitation of Cu in nanocrystalline Fe using two
different interatomic potentials. While both potentials predict
excess Cu to be located in the grain boundaries, they yield
very different results for the distribution of impurity atoms
in the grain boundaries. Further work in potential develop-
ment and verification is required in order to obtain interatomic
potential models that provide reliable predictions for element
distribution near inhomogeneities such as dislocations, grain



10

boundaries, and surfaces.

The hybrid MC/MC algorithm described in this paper has
already been applied to study for example grain boundary pin-
ning in Cu due to Fe impurities11, structural phase transfor-
mations of Cu precipitates in BCC Fe12, short-range order in
Fe–Cr alloys,13 and the properties of helium bubbles in Fe and
Fe–Cr alloys14. The relation to free energy integration that is
implicit to Eq. (A.11) has furthermore been utilized in Ref.9

to obtain the temperature and orientation dependence of free
interface energies in Fe–Cr alloys.

The algorithms developed in the present work have been
implemented in the massively parallel MD codeLAMMPS.7

The source code is available from the authors.
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Appendix: Derivation of the VC-SGC ensemble

In this appendix, we derive the VC-SGC ensemble for the
binary system discussed in section II. Consider a system of
N particles confined in a box of volumeV , where each par-
ticle carries a spin of value 0 or 1. Since the VC-SGC en-
semble only manipulates the chemical degrees of freedom we
consider for simplicity a system frozen onto a lattice of an ar-
bitrary configurationx3N . The phase spaceΩ of this system
consists of the set ofρ = 2N different spin configurations
{σN}. To simplify the notation below, we enumerate theρ
configurations inΩ: {1, 2, · · · , ρ}, and thus any spin configu-
rationσN can be uniquely identified by its index number.

Let Σ be the set ofM representative configurations inΩ
and denote bynα the number of times theα-th state ap-
pears inΣ. We can uniquely defineΣ by the set of numbers
{n1, n2, ..., nρ}. The sum of the occupation numbersnα are
constrained according to

M =

ρ∑

α=1

nα. (A.1)

We now introduce three more constraints for (i) the average
energyU , (ii ) the average concentration of spin zero particles
c, and (iii ) the square of the concentration of spin zero parti-

clesv2. These constraints can be expressed as:

U =
1

M

ρ∑

α=1

nα U(α),

c =
1

M

ρ∑

α=1

nα ĉ(α),

v2 =
1

M

ρ∑

α=1

nα ĉ(α)2.

Above, we have denoted the potential energy for the stateα
by U(α) and its concentration bŷc(α). For any given set
Σ = {nα}, there are multiple ways of choosing its elements
fromΩ. We use this to define the multiplicityη of a setΣ:

η =
M !∏ρ

α=1 nα!
.

The relative probability of two sets with the same average
energyU is now determined by the ratio of their multiplici-
ties. In the thermodynamic limit, i.e. largeN and largeM ,
the most probableΣ, i.e. the set with the largest multiplic-
ity, will correspond to the equilibrium probability distribution
in Ω. Under the above constraints, the most probable distri-
bution of {nα} is determined by minimizing the functional

Q
(
{nα};µ, β, φ̃, κ̃

)
:

Q = − ln η − µ

(
ρ∑

α=1

nα −M

)

− β

(
ρ∑

α=1

nαE(α)−MU

)

− φ̃

(
ρ∑

α=1

nαĉ(α)−Mc

)

− κ̃

(
ρ∑

α=1

nαĉ(α)
2 −Mv2

)
. (A.2)

Above,µ, β, φ̃, andκ̃, are Lagrange multipliers that are in-
troduced as independent variables to facilitate the constrained
minimization of the functionalQ with respect to the occupa-
tion numbers{nα}. At its minimum, the derivative of the
functionalQ with respect to the independent variables is set
to zero. Setting∂Q/∂nα to zero determines their equilibrium
distribution:

nα = exp
[
−µ− βU(α)− φ̃ĉ(α)− κ̃ĉ(α)2

]
.

Using this result in (A.1) we obtain an explicit expression for
the chemical potentialµ

exp(µ) =
1

M

ρ∑

α=1

exp
[
−βU(α)− φ̃ĉ(α) − κ̃ĉ(α)2

]
.

(A.3)
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Now it is possible to define the equilibrium probability of any
stateα in Ω as

πV(α) = Z−1
V exp [−β (U(α) +Nĉ(α)(φ + κNĉ(α)))] ,

(A.4)

whereZV = Meµ, and we have introduced the definitions

φ̃ = Nβφ (A.5)

κ̃ = N2βκ,

in order to reproduce the equilibrium probability distribution
of the VC-SGC ensemble Eq. (9). Let us now define the phase
spaceΩc of configurations with a fixed concentrationc. The
canonical free energyFC(c) for this set can be defined as fol-
lows

exp [−βFC(c)] =
∑

α∈Ωc

exp [−βE(α)] . (A.6)

In this way the partition function Eq. (A.3) can be rewrittenas

ZV =

∫ 1

0

exp [−β (FC(c) +Nc(φ+ κNc))] dc. (A.7)

Setting∂Q/∂φ̃ and∂Q/∂κ̃ in (A.2) to zero and using the
definitions (A.5) and (A.6) provides for a system of two equa-
tions to determine the two unknownsφ andκ

c = Z−1

∫ 1

0

c exp [−β (FC(c) +Nc(φ+ κNc))] dc

(A.8)

v2 = Z−1

∫ 1

0

c2 exp [−β (FC(c) +Nc(φ+ κNc)) .] dc.

(A.9)

In solving the above equations, we assume thatv is chosen
such that it is much smaller thanc and1−c. Then it is possible
to representFC(c) by its Taylor expansion to second order
aroundc:

FC(c) = FC(c) +
∂FC

∂c

∣∣∣∣
c

(c− c) +
1

2

∂2FC

∂c2

∣∣∣∣
c

(c− c)2,

and replace the integrals in Eqs. (A.7–A.9) above with indefi-
nite Gaussian integrals

1 = Z̃−1
V

∫ ∞

−∞

exp
[
−A(c− c)−B(c− c)2

]
dc

c = Z̃−1
V

∫ ∞

−∞

c exp
[
−A(c− c)−B(c− c)2

]
dc (A.10)

v2 = Z̃−1
V

∫ ∞

−∞

c2 exp
[
−A(c− c)−B(c− c)2

]
dc

where

A = β

[
∂FC

∂c

∣∣∣∣
c

+N (φ+ 2κNc)

]

B = β

[
1

2

∂2FC

∂c2

∣∣∣∣
c

+N2κ

]

Z̃V = ZV exp [β (FC(c) +Nc (φ+ κNc))] .

It is now easy to see that the system of equations (A.10) can
be satisfied when

A = 0 and B =
1

2(v2 − c2)

Hence within the VC-SGC ensemble, the thermodynamic
forces (φ andκ) that give rise to a given average concentration
c and its standard deviations0 =

√
v2 − c2, are related to the

derivatives of the Helmholtz free energy atc as follows

Nφ =
∂2F

∂c2

∣∣∣∣
c

− ∂F

∂c

∣∣∣∣
c

− c

βs20

N2κ =
1

2

(
1

βs20
− ∂2F

∂c2

∣∣∣∣
c

)
.

The first derivative of the free energy with respect to the
concentration of one species, i.e. the difference in chemical
potential between the two species∆µ, can therefore be calcu-
lated from the average concentration according to

∆µ ≡ − 1

N

∂FC

∂c

∣∣∣∣
c

= φ+ 2κNc. (A.11)

We have thus arrived at the important relation Eq.(15), which
is used extensively in this paper. In the same way, a similar
relation can also be obtained between the second derivative
and the variance of the concentration which reads

− ∂2FC

∂c2

∣∣∣∣
c

= 2N2κ− 1

βs20
. (A.12)
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