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Spin selective transport through helical molecular systems
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Highly spin selective transport of electrons through a helically shaped electrostatic potential is
demonstrated in the frame of a minimal model approach. The effect is significant even for weak
spin-orbit coupling. Two main factors determine the selectivity, an unconventional Rashba-like spin-
orbit interaction, reflecting the helical symmetry of the system, and a weakly dispersive electronic
band of the helical system. The weak electronic coupling, associated with the small dispersion,
leads to a low mobility of the charges in the system and allows even weak spin-orbit interactions
to be effective. The results are expected to be generic for chiral molecular systems displaying low
spin-orbit coupling and low conductivity.

PACS numbers: 73.22.-f 73.63.-b 72.25.-b 87.14.gk 87.15.Pc

Introduction−The concept of spintronic devices oper-
ating without a magnetic field has been proposed some
time ago for solid state devices in which the spin-orbit
coupling (SOC) is large [1, 2]. Recently, a new type of
magnet-less spin selective transmission effect has been
reported [3–6]. It was found that electron transmission
through chiral molecules is highly spin selective at room
temperature. These findings are surprising since carbon-
based molecules have typically a small SOC that can-
not support significant splitting between the spin states,
splitting which is thought to be essential for any spin de-
pendent property. Although it has been found both in
theory [7–9] and experiments [10] that there is a cooper-
ative contribution to the value of the SOC, so that this
quantity may be larger in molecules or nanotubes than
in a single carbon atom, the values calculated or exper-
imentally found are still relatively small [7–11], e.g. few
meV for carbon nanotubes [10]. Hence, even including
this cooperative contribution, the values obtained for the
spin polarization (SP) in electron transmission through
chiral molecules [6] seem to be too high and cannot be
rationalized by such SOC values.

Recently, a theoretical model based on the first Born
approximation in scattering theory has been proposed for
explaining the spin selectivity of chiral molecules [13]. Al-
though the results are in qualitative agreement with the
experimental observations, they could not explain them
using reasonable SOC values.

In what follows, a model is presented to describe elec-
tron transmission through a helical electrostatic poten-
tial (see Fig. 1). Although the model does not claim to
fully catch the complexity of the experimentally studied
DNA-based systems [6, 14], it highlights the role of some
crucial parameters, which can determine the experimen-
tally observed high SP. The key factors in the model that
allow for the high spin selectivity are: i) Lack of parity
symmetry due to the chiral symmetry of the scattering

potential; ii) Narrow electronic band widths in the helical
system, i.e. the interaction between the units composing
the helical structure through which the electron propa-
gates is relatively weak. Moreover, a physically meaning-
ful estimation of the SOC can be obtained by taking into
account that first, like in the solid state, in the present
study the electric field acting on the electron needs to in-
clude the effective influence of all the electrons belonging
to a molecular unit [14, 15], and second, due to proximity
effects, the Coulomb interaction between the transmitted
electron and the atoms in the molecular unit can scale as
1/R for short distances R.
Model and Methodology−We consider the Schrödinger

equation for a particle moving in a helical electro-
static field. Analytical results for such fields have
been derived in Ref. 12. For the sake of simplicity,
approximate expressions valid near the z-axis will be
used (only x and y components will be considered,

FIG. 1. A charge q in spin state σ is moving along through he-
lical electric field. The parameters a, b and ∆z are the radius
and the pitch of the helix and the spacing of the z-component
of the position vector of the charges distributed along it, re-
spectively. The helical field Ehelix induces a magnetic field B

in the rest frame of the charge and hence influences its spin
state.
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the z component only contributes when considering the
full three-dimensional problem, see below ): Ehelix =
−E0

∑

i,j gi,j(z)(cos(Qj∆z), sin(Qj∆z)). Here, gi,j(z) =

(1+ [(z − ib− j∆z)/a]2)−3/2 and Q = 2π/b with b being
the helix pitch and a the helix radius, see Fig. 1. The
index m = 0, · · · ,M0− 1 runs along one helical turn and
labels the z-coordinate of the M0 molecular units placed
along the helix. The index n = −L0/2, · · · , L0/2 (L0

being the number of helical turns) connects sites which
differ in their z-coordinate by b [16]. We note that the
considered helical potential is assumed to be related to
the charge distribution along the stack of molecular units
building the helical structure; hence the factor E0 is pro-
portional to the local charge density.
For a charge moving with momentum p through the

helix, the field Ehelix induces a magnetic field in the
charge’s rest frame, from which a SOC arises: HSO =
λσσσ(p×Ehelix). The SOC strength is λ = eh̄/4m2c2 and
σσσ is a vector whose components are the Pauli matrices
σx, σy, σz . The general problem is three-dimensional;
however, in order to get first insights into the behavior
of the SP, we will assume px = py = 0, pz 6= 0, so that
the Schrödinger equation takes the form [17]:

[

− h̄2

2m
∂2
z + U(z) + α

(

0 Ψ(z)
−Ψ∗(z) 0

)

∂z

− α

(

0 f(z)
f∗(z) 0

)

]

χ(z) = Eχ(z). (1)

Here, χ(z) = (χ↑(z), χ↓(z))T is a spinor, Ψ(z) = Ex −
iEy =

∑

i,j e
−iQj∆zgi,j(z), f(z) = ∂zΨ(z), and U(z) the

helical electrostatic potential. The terms ∼ f(z), f∗(z)
are introduced to make the Hamiltonian hermitian in
the continuum representation. The SOC parameter α =
h̄λE0 (with dimensions of energy×length) depends on
the effective charge density through E0. The problem
posed by Eq. 1 can be written as an effective two-channel
nearest-neighbor tight-binding model [17]:

H =
∑

σ=↑,↓

N
∑

n=1

Unc
†
n,σcn,σ + V

∑

σ=↑,↓

N−1
∑

n=1

(c†n,σcn+1,σ + h.c.)

+

N
∑

n,m=1

(c+n,↑Wn,mcm,↓ + c+m,↓W
×
m,ncn,↑) +Hleads. (2)

The operators {cn,σ, c+n,σ}n=1,...,N,σ=↑,↓ create or destroy,
respectively, an excitation at the tight-binding site n with
spin index σ. The only non-zero elements of the inter-
channel coupling matrix W are given by [17]: Wn,n =
−αf(n∆z), Wn,n+1 = αΨ(n∆z)/2∆z, and Wn+1,n =
−αΨ((n + 1)∆z)/2∆z. Further, the matrix W×

n,m satis-
fies W×

n,m = −(Wn,m)∗ for n 6= m, and W×
n,n = (Wn,n)

∗.
The hopping V should in general be estimated on the
basis of a first-principle calculation of the electronic cou-
pling for a given system. However, we will consider it
as a free parameter, whose order of magnitude for helical

organic systems is expected to lie in the range of few tens
of meV (e.g. for DNA, electronic structure calculations
yield values of the order of 20 − 40 meV [18]). Finally,
the operator Hleads includes the semi-infinite chains to
the left (L) and right (R) of the SO active region [17].
A schematic representation of this two-channel model is
shown on the top panel of Fig. 2.
Transport properties−We focus on the spin-dependent

transmission probability, T (E), of the model Hamilto-
nian given by Eq. 2, as a function of the electron’s in-
jection energy E. The problem can be considered as a
scattering problem where a finite-size region (with non-
vanishing SOC) is coupled to two independent L (left)-
and two independent R(right)-electrodes, each electrode
standing for a spin channel and being represented by a
semi-infinite chain, see Fig. 2. T (E) encodes the influ-
ence of multiple scattering events in the SOC region; us-
ing Landauer’s theory [20] we obtain [17]:

T (E) = ΓR
↑ (Γ

L
↑ |G1↑,N↑|2 + ΓL

↓ |G1↓,N↑|2)
+ ΓR

↓ (Γ
L
↑ |G1↑,N↓|2 + ΓL

↓ |G1↓,N↓|2)
= tup(E) + tdown(E) . (3)

In Eq. 3, Gnσ,mν(E) with σ, ν =↑, ↓ are matrix elements
of the retarded Green’s function of the SOC region in-
cluding the influence of the L- and R-electrodes. The
individual contributions in Eq. 3 can be related to dif-
ferent transport processes without (e.g. ΓL

↑ Γ
R
↑ |G1↑,N↑|2)

or with (e.g. ΓL
↑ Γ

R
↓ |G1↑,N↓|2) spin-flip scattering, see

Fig. 2. Notice that tup(E) and tdown(E) −the trans-
missions for the up and down channels respectively, as
defined by Eq. 3−, contain contributions arising both
from direct transmission without spin-flip as well as
spin-flip. An energy-resolved SP for different initial
spinor states can be defined as: P (E) = (tup(E) −
tdown(E))/T (E). The energy-average SP 〈P (E)〉E =
P (〈tup(E)〉, 〈tdown(E)〉, 〈T (E)〉) will also be used. We
focus only on electron-like contributions (E < 0) and
on energies |E| ≥ kBT ≈ 23 meV, so that 〈. . . 〉E =
∫ −kBT

−2V
dE(. . . ).

Results−A crucial parameter in the model is the SOC
coupling α. Realistic values are obviously very diffi-
cult to obtain [21, 22], since α is not simply the atomic
SOC, but contains the influence of the charge distri-
bution in the system via the field factor E0. For the
sake of reference, a rough value of E0 for DNA may
be estimated along the following lines. A single DNA
base is considered as composed of discrete point-like
charge centers A, representing the atoms. We associate
with each center A at position RA a Gaussian-shaped
charge distribution of width w ∼ 0.3− 0.4 nm and with
strength given by an estimated atomic charge density
ρ0 for C, N, and O atoms (considered as spheres with
a radius of the order of the corresponding covalent ra-
dius). The local field of this charge distribution, E0 =
−(1/4πǫ0)(∂/∂r)

∫

d3r′ρ(r′ −RA)|r− r′|−1, can be com-
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FIG. 2. Top panel : Schematic representation of the tight-
binding model, see Eq. 2. The two channels interact via the
SOC (framed region). To the left and right of the spin scatter-
ing region, both channels are independent and are modeled
by semi-infinite chains. Bottom panel : Energy dependence
of the SP P (E) for L0=3 helical turns, and for injected elec-
trons polarized with their spin pointing up (P10), down (P01),
or unpolarized (P11). A spin-filter effect takes place only for
energies near the band edges, where all SPs have the same
sign. Notice also that near the band edges the SP has oppo-
site signs for electrons (E < 0) and holes (E > 0), though
P (E) is not exactly antisymmetric. Parameters: α = 5 meV
nm, V = 30 meV, U0 = 3 meV.

puted analytically [17] and it scales for R = |r−RA| ≪ w
like E0 ≈ (N0ρ0/4πǫ0)(w/2

√
π)2R−1 (E0 has been mul-

tiplied by a factor N0 ∼ 10, the number of atoms in a
base, to approximately account for other charge centers.
For R/w ∼ 0.3 − 0.4, values of α = h̄λE0 ≈ 1.87 − 2.35
meV nm can be obtained. In the calculations, α ∼ 2− 6
meV nm have been used. Though the previous discussion
provides a very rough estimate, it highlights the need of
considering the influence of many charges through ρ0 and
N0 as well as proximity effects (short-distance scaling of
E0) in the estimation of α.

Fig. 2 presents the energy dependent SP for different
incoming spin states when the spin is pointing up (10),
down (01) or the electrons are unpolarized (11). The
coupling α was assumed to be 5 meV nm. Although
this value is larger than the previously estimated one, it
serves to illustrate the behavior of the model in a clear
way. In the case of (10) and (01) states, the interesting
energy windows are those where both SPs have the same
sign, which indicates that the outgoing state will always
have the same SP independently of the initial condition.
This behavior occurs mainly for energies near the band
edges. A similar situation is found for the (11) state, see
Fig. 2. Near the band center, P10(E) and P01(E) have

-60 -40 -20 0 20 40 600
0.2
0.4
0.6
0.8

1

T
ra

ns
m

is
si

on

T=t
up

+t
down

-60 -40 -20 0 20 40 60
Energy[meV]

0.0
0.5
1.0
1.5
2.0

t
up

-60 -40 -20 0 20 40 60
t
down

State (10) State (01)

State (11)

FIG. 3. Different components of the transmission
tup(E),tdown(E) and T (E) as defined in Eq. 3, and for the
same parameters of Fig. 2. Focusing on electron-like contri-
butions, it is only near the lower band edge (E ≤ −22 meV)
where a positive SP for all incoming states (10), (01), and
(11) is obtained, see also Fig. 2.

opposite signs and hence the SP depends on the incoming
spin state. The average SPs, as defined above, amount
to approximately 〈P10〉E = 〈P01〉E = 〈P11〉E ≈62%.

Figure 3 shows the corresponding spin-resolved trans-
missions. Notice first, that the states (10) and (01) corre-
spond to cases where one of the incoming spin channels is
decoupled from the system by setting the corresponding
ΓL = 0 [17], and hence, the total transmission cannot
exceed one. For (11) both channels are open and the
maximum transmission is 2.

In the top panel of Fig. 3, for (10) and (01), we find
some degree of spin-dependent back-scattering, which
is reflected in the different total transmissions T (E)
for each polarization. In what follows, for the sake
of reference, only the behavior in the energy window
[−2V,−kBT ], kBT ∼ 23 meV is discussed. For the (10)
state, transmission without spin flip is dominant in this
energy region, and this leads to the positive SP. How-
ever, for (01), spin-flip processes become dominant in the
same energy region, and hence the outgoing up-channel
acquires a larger weight. As a result the SP for (01)
is also positive. This behavior is closely related to the
chiral symmetry, which basically manifests in the spe-
cial structure of the W,W× matrices. For the (11) state,
bottom panel of Fig. 3, the outgoing up-channel clearly
dominates the transmission in the considered energy win-
dow , thus indicating that for unpolarized electrons back-
scattering and spin-flip of the down-component will ul-
timately lead to a positive SP. A similar analysis can
be performed for the hole-like energy region E > 0. In
general terms, SP may occur either by spin-flip (with no
net change of the total transmission) or by spin selec-
tive back-scattering. The results of Fig. 3 suggest that
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FIG. 4. 2D plot of the energy average SP 〈P (E)〉E as a func-
tion of both the hopping parameter V and the SOC α. Only
for small V a relative large SP is found. With increasing elec-
tronic coupling, larger SOC strengths are required to get a
sizeable SP.

both processes are playing a role; their relative contribu-
tion to the SP turns out however to sensitively depend
on the specific energy window considered. The selectiv-
ity found in this model relates to two special features of
the chiral system: (i) the symmetry of the field which
translates into an unconventional SOC, and (ii) the nar-
row electronic band width in chiral organic systems. The
term band width serves only as a keyword for the aver-
aged value of the coupling matrix elements, V , between
neighboring molecular states mediating charge motion.
As shown in Fig. 4, the size of the hopping parameter
strongly affects the energy average SP, ultimately lead-
ing to 〈P (E)〉E → 0 for large V . For small hopping,
however, the SP can achieve very large values by only
a moderate increase of the SOC α. The interplay be-
tween α and V seems related to the relatively long time
(roughly proportional to h̄V −1) the electron will spend
in the conducting channel in a real system, allowing for
the SOC to become more effective.
Conclusions−The present study based on a generic

model sheds new light on a chirality-induced spin selec-
tivity (CISS) effect. It suggests that beyond the symme-
try itself, CISS depends on the organic molecules being
poor conductors. Weak electronic coupling along the he-
lical structure is expected to lead to low mobility of the
electrons through the system and allows enough time for
the SOC, although being weak, to influence spin trans-
port. The effect depends on the electron momentum
and once the electrons have kinetic energy above kBT ,
the SP increases and becomes weakly energy dependent.
One open issue for further inquiry is the influence of the
electrode-molecule interface. If the electrodes are mag-
netic, spin-dependent tunnel barriers emerge, which may

influence the SP. The present study indicates that CISS
may be a very general phenomenon, existing in chiral sys-
tems having low SOC and low conductivity, and hence
may play a role in charge transport through biosystems.
The effect could also be of great interest to control the
spin injection efficiency in the context of semiconductor-
based spintronics by interfacing chiral molecules with
semiconductor materials.
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