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We employ a quantum theory of the nonlinear optical response from an actual solid-state mate-
rial possessing an intrinsic bulk contribution to the third-order nonlinear susceptibility (Kerr-type
nonlinearity), which can be arbitrarily nanostructured to achieve diffraction-limited electromagnetic
field confinement. By calculating the zero-time delay second-order correlation of the cavity field, we
set the conditions for using semiconductor or insulating materials with near-infrared energy gaps
as efficient means to obtain single-photon nonlinear behavior in prospective solid-state integrated
devices, alternative to ideal sources of quantum radiation such as, e.g., single two-level emitters.

PACS numbers:

Quantum information processing based on photonic
platforms is one of the most promising routes towards
a fully integrated technology exploiting the laws of quan-
tum mechanics.2 In this context, many quantum optical
tasks, such as single-photon switches and two-qubit quan-
tum gates, would require strong photon-photon interac-
tions - ultimately at the single-photon level - to be engi-
neered in solid state devices.3 Besides being of practical
interest for prospective applications in quantum photon-
ics, strongly correlated photonic systems promise fasci-
nating perspectives for a number of theoretical proposals
concerning the manybody behavior of complex nonlinear
and tunnel-coupled devices.4–6

Cavity quantum electrodynamics (CQED) is the most
straightforward way of obtaining single-photon nonlinear
behavior, thanks to the underlying anharmonicity intro-
duced by a single atomic-like emitter into a high-finesse
resonator.7,8 It has been shown experimentally with sin-
gle caesium atoms strongly coupled to a Fabry-Pérot res-
onant mode9 that such a system is able to block the trans-
mission of a single photon when another photon is present
in the cavity: a photon blockade effect.10 The quantum ef-
ficiency of this process is operationally determined by the
degree of antibunching in the second-order correlation
function for the emitted radiation, after resonant excita-
tion of the CQED system.11 Analogous effects have been
measured in solid-state systems with quantum dots cou-
pled to dielectric resonators, both under nonresonant12

and resonant13 excitation conditions.

The photon blockade can be realized when two pho-
tons inside a resonant system produce a nonlinear shift
of its response frequency, Unl, that is larger than the line-
broadening induced by losses and decoherence rate, Γ, as
shown in Fig. 1. Theoretical proposals to achieve single-
photon nonlinearities in solid-state systems usually rely
on enhanced light-matter coupling of some dipole-allowed
transition, where material excitations can provide the re-
quired quantum anharmonicity. Strong Kerr-type non-
linearities are predicted for single atomic-like transitions
coupled to high-quality resonators,14,15 or in strongly
confined polaritonic systems.16,17 For semiconductor mi-
crocavities, strong coupling of single photons mediated
by enhanced second-order nonlinearity [χ(2)] has been

theoretically discussed.18 It has also been predicted that
suitably engineered coupled cavities can considerably re-
lax the requirement on the condition that the effective
nonlinear interaction be larger than the fundamental res-
onance linewidth.19,20 However, owing to the intrinsically
small value of the third-order nonlinear susceptibilities
[χ(3)] in ordinary bulk media,21 it is commonly accepted
that appreciable resonance shifts for nonlinear materi-
als in their transparency optical range would require an
exponentially large number of photons.

In this work, we challenge the latter idea by quanti-
tatively showing that a realistic nanostructuring of an
ordinary nonlinear medium is able to produce very large
effective nonlinear susceptibilities, ultimately sensitive at
the single-photon level. From a canonical quantization of
the classical nonlinear optical response for a single mode
of the electromagnetic field, we solve the quantum mas-
ter equation for the system density matrix, where the
real part of χ(3) is related to the effective photon-photon
interaction energy22 and losses of the resonator mode,
such as coupling to free space modes or two-photon ab-
sorption, are fully taken into account.

Throughout this work, we adopt the classical nonlin-
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Figure 1: (Color online) (a) Scheme of a resonator made of
a Kerr-type nonlinear material, which is resonantly driven by
a coherent field and undergoes single-photon blockade, and
(b) energy level diagram giving rise to the emission of single
photon Fock states from the cavity.
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ear optics notation in SI units.21 The nonlinear optical
response to the applied electric field of a generic dielectric
material is given by

Di(r, t) = ε0εij(r)Ej(r, t) + ε0[χ
(2)
ijk(r)Ej(r, t)Ek(r, t)

+ χ
(3)
ijkl(r)Ej(r, t)Ek(r, t)El(r, t) + ...] , (1)

where we employ the usual sum rule over repeated in-
dices labeling the three spatial coordinates. This relation
defines the relative dielectric permettivity tensor of the

medium, εij(r) = δij + χ
(1)
ij (r). We will now specify the

nonlinear response to the case of a single mode of the
electromagnetic field inside a centrosymmetric medium,

i.e. we assume χ
(2)
ijk(r) = 0,21 and only consider Kerr-

type nonlinear effects due to the χ(3) tensor elements in
Eq. (1). We assume an isotropic medium, i.e. a spatially
dependent but scalar dielectric response, εij(r) → ε(r).
The canonical quantization of a single mode of the elec-
tromagnetic field in a generic spatially dependent non-
linear medium is obtained after expressing the quantized
field operators for a single cavity mode as

Ê(r, t) = i

(
~ω0

2ε0

)1/2
[
â
~α(r)√
ε(r)

e−iω0t − â† ~α
∗(r)√
ε(r)

eiω0t

]
,

(2)

and B̂(r) = (−i/ω0)∇ × Ê(r), where â (â†) defines
the destruction (creation) operator of a single pho-
ton in the mode, and ~α(r) is the normalized three-
dimensional cavity field profile satisfying the condi-
tion

∫
|~α(r)|2dr = 1. From the classical expres-

sion of the time-averaged total energy density in the
mode, Hem = 1

2

∫
[E(r) ·D(r) + H(r) ·B(r)] dr (assum-

ing H = B/µ0 in a non-magnetic medium), a nonlinear
second-quantized hamiltonian can be eventually obtained

Ĥ = ~ω0â
†â+ Ĥnl . (3)

The linear part is the expected hamiltonian of a single
harmonic oscillator (neglecting the zero point energy). In
the nonlinear part we only retain the Kerr-type terms,23

Ĥnl = Unlâ
†â†ââ with the photon-photon interaction

given by

Unl =
D(~ω0)2

8ε0

∫
dr α∗i (r)

Re{χ(3)
ijkl(r)}

ε2(r)
α∗j (r)αk(r)αl(r) ,

(4)
with degeneracy D = 6. Equation (4) is a general ex-
pression for the nonlinear shift induced by the Kerr-
effect at the single photon level, for an arbitrary spa-
tially dependent response, such as photonic crystal or
pillar microcavities with ordinary nonlinear semiconduc-
tor materials.24 Even if the full expression should be ap-
plied to the specific case of interest for given nonlinear
tensor components, we can simplify Eq. (4) to give some
quantitative estimates25

Unl '
3(~ω0)2

4ε0

χ(3)

ε2
r

∫
|~α(r)|4dr =

3(~ω0)2

4ε0Veff

χ(3)

ε2
r

, (5)

where the effective cavity mode volume is defined as
V −1

eff =
∫
|~α(r)|4dr within our formalism. To have or-

der of magnitude results, we assume constant values for
the average real part of the nonlinear susceptibility and
relative dielectric permittivity, χ(3) and εr respectively.
We neglect self-consistent nonlinear effects on the cav-
ity field profile induced by the Kerr-nonlinearity itself
(e.g. field expulsion from the cavity region), which could
renormalize the effective value of Unl.

The experimental configuration for photon blockade
can be modeled by adding a coherent pumping term to
obtain the standard Kerr-type hamiltonian that is usu-
ally employed in quantum optics25

Ĥ = ~ω0â
†â+ Unlâ

†â†ââ+ Fe−iωLtâ† + F ∗eiωLtâ , (6)

where Ω = F/~ is the coherent pumping rate at the laser
frequency ωL. Losses in the system are quantified ei-
ther through the intrinsic cavity decay rate, κ, or nonlin-
ear absorption processes, such as two-photon absorption
(TPA) rate, γTPA. The first is due to coupling of the
resonant mode to free space modes, material absorption,
or scattering from roughness, and defines the cavity qual-
ity (Q-) factor as Q = ω0/κ; the latter is related to the
imaginary part of the nonlinear susceptibility. Such loss
mechanisms are taken into account within a density ma-
trix master equation formalism in Markov approximation

ρ̇ =
i

~
[ρ, Ĥ] + L1(κ, ρ) + L2(γTPA, ρ) , (7)

where L1 = κ[âρâ† − â†âρ/2 − ρâ†â/2] and L2 =
γTPA[â2ρ(â†)2 − (â†)2â2ρ/2− ρ(â†)2â2/2] are the linear
and nonlinear Liouvillian operators, respectively. In clas-
sical nonlinear optics, TPA is quantitatively defined by
an intensity-dependent absorption coefficient, αTPA =
βI, where β is measured in m/W and is well known for
many semiconductor or insulator materials.21 Such quan-
tity is related to a loss rate, γTPA = βcI/2nr, where
n2
r = εr and I is the field intensity in the cavity.26

The figure of merit quantifying the single-photon non-
linear behavior of the cavity mode is the normalized zero-
time delay second-order correlation, defined as g(2)(0) =
〈â†2â2〉/〈â†â〉2. Single photons are released from the cav-
ity at the bare frequency, ω0. In the weak resonant exci-
tation limit (Ω/κ� 1) a closed analytic solution for the
model considered is found after truncating the Hilbert
space to the n = 2 Fock state6

g(2)(0) =
1 + 4(∆E/~κ)2

1 + 4(∆E + Unl)2/~2κ2 (8)

where ∆E = ~(ωL − ω0) = ~∆ω. For g(2)(0) → 0 we
have an almost ideal single-photon source,22 which occurs
when Unl/(~κ) � 1. From Eqs. (5) and (8), FOM=
Q2/V 2

eff is the relevant figure of merit to be optimized.

The steady state value of g(2)(0) can also be calcu-
lated numerically through a quantum average on ρss,
which is the density matrix corresponding to the eigen-
value λss = 0 in the linear eigenvalue problem Lρ = λρ.27
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Figure 2: (Color online) Numerical (symbols) and analytic
(full lines) solutions for the zero-time delay second-order cor-

relation for different χ(3)/ε2
r values: (a) dependence on effec-

tive confinement volume of the cavity field with parameters
~ω0 = 1 eV, ∆ω = 0, and Q = 106, (b) dependence on
the detuning between driving field and cavity resonance, for
Veff = 0.01 µm3 and parameters as before. Numerical results
are calculated with Ω/κ = 0.01.

Convergence is ensured by truncating the Hilbert space
to a large number of photons (up to 50 in this work).
A close agreement between analytic and numerical so-
lutions is reported in Fig. 2, where we show g(2)(0) in
the low pumping regime as a function of the confinement
volume and pump/cavity detuning, respectively. Results

are plotted for different values of the ratio χ(3)/ε2
r, which

is a material dependent quantity. We assume an oper-
ational energy ~ω0 = 1 eV, as representative of typical
near-infrared applications, and a realistic quality factor
Q = 106 (see discussion below). As shown in Fig. 2a,
for Veff � λ3

0 the system exhibits a strong antibunch-
ing, which is the signature of single-photon blockade.
For materials with larger χ(3)/ε2

r ratios, the condition
for achieving nonlinear behavior at the single photon
level is quantitatively relaxed, making it possible to ob-
serve strong antibunching even for Veff ∼ λ3

0. Figure 2a
emerges then as a useful roadmap to quantitatively as-

sess, for a specific nanostructured material, the combined
effect of third-order susceptibility and the confinement
volume on getting a nonlinear response at the single pho-
ton level. A realistic value Veff = 0.01 µm3 can be as-
sumed for diffraction-limited confinement volumes, i.e.
Veff ∼ (λ0/2nr)3, where nr can display values between 2
and 4, depending on the semiconductor or insulator ma-
terial under investigation.21 In Fig. 2b, we show g(2)(0) as
a function of pump/cavity detuning and a fixed value of

the confinement volume. At large χ(3)/ε2
r ratio, the max-

imum antibunching is obtained for ∆ω ∼ 0. At positive
detunings, the bunching is due to the driving laser hitting
the two-photon resonance of the cavity (see scheme in
Fig. 1b).16 Again, in this low pumping regime the quan-
titative behavior of g(2)(0) obtained from the numerical
solution is closely reproduced analytically.

The results shown in Fig. 2 may represent a useful
guide to quantum photonics experiments employing or-
dinary nonlinear materials, whose relevant figure of merit
for single-photon nonlinear behavior can be predicted for
any specific nanostructuring-based confinement. For ex-
ample, diffraction-limited electromagnetic field confine-
ment can be achieved by using photonic crystal nanocav-
ities, in which a number of remarkable figures of merit
have been already demonstrated experimentally [for a re-
cent review, see Ref. 34]. Quite interestingly and related
to the present work, most of such achievements have been
obtained by using highly nonlinear materials, such as Sil-
icon (Si) or Gallium Arsenide (GaAs). The typical order
of magnitude for the χ(3) tensor elements of these mate-
rials is in the range Re{χ(3)} ∼ 10−19 − 10−18 m2/V2.21

However, even larger χ(3) values can be found in certain
glasses doped with nanoparticles, chalcogenide glasses,
or other polimeric materials.21 We refer to Table I for a
few recent experimental references on the nonlinear coef-
ficients of some Kerr-type materials in the near infrared,
which we have collected from published works and con-
verted in SI units. Most of these materials can be nanos-
tructured to fabricate solid state nanocavities. Ultra-
high-Q factors in excess of 106 have been experimentally
shown, corresponding to a photon lifetime within the cav-
ity region on the order of one to few ns, and 108 has
been predicted through design optimization.34 Designs
to achieve sub-diffraction limited mode volumes, on the
order of Veff ∼ (λ/2nr)3, have been also proposed.35 Fur-

Material Re{χ(3)} (m2/V2) β (m/W) nr λ (µm)

Si28–30 0.45× 10−18 10−11 3.4 1.55
Ge30 4× 10−18 10−8 4.0 2.5

GaAs28 0.6× 10−18 10−10 3.4 1.54
SiO2/Ge31 1.4× 10−18 4× 10−10 2 0.8

SiO2/Si-nc32 2.1× 10−18 5× 10−10 1.74 1.55
SiO2/Ag33 7× 10−16 1.5× 10−11 1.8 1.06

Table I: Third-order nonlinear optical coefficients of differ-
ent semiconductor and doped glass materials at specific wave-
lengths in the near infrared.
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ther reduction of the confinement volume, well below the
diffraction limit, has been predicted for suitably engi-
neered nanostructures.36 Thanks to these unprecedented
figures of merit, strong enhancement of the nonlinear op-
tical response due to χ(3) nonlinearity has been already
shown in GaAs- and Si-based photonic crystal cavities
around λ ∼ 1.5 µm, respectively.37

To quantitatively assess the role of TPA on the g(2)(0)
as a function of the pumping strength, we have numer-
ically calculated this figure of merit for realistic val-
ues of the nonlinear coefficients. We assume a sim-
ple normalized mode profile α(r) = N exp(−x2/2σ2

x −
y2/2σ2

y)cos(π/d)z, where the normalization factor N is

N = (2/πσxσyd)1/2. This functional form is a good ap-
proximation for a photonic crystal confinement in the
(x, y) plane (gaussian envelope function) and index con-
finement in the transverse direction, such as the one that
can be obtained with a point-defect in a triangular lattice
on a planar membrane of thickness d.34 From our defini-
tion of effective mode volume we have Veff = 4πσxσyd/3.
As illustrative examples, we show results in Fig. 3 for
two different Kerr-type materials. In Fig. 3a we assume
a high-index (nr ∼ 3.4) and strongly nonlinear medium,
with a typical TPA coefficient in the telecom band.21 In
such a case, we can assume realistic confinement lengths
on the order of σx,y ' λ0/(4nr) and d = λ0/(2nr), which
gives an optimistic Veff ' 0.001 µm3 for wavelengths
on the order of λ0 = 1 µm. In Fig. 3b we assume a
low-index (nr ∼ 2) material with a sizable Kerr nonlin-
earity and negligible TPA coefficient at telecom wave-
lengths (such as silica with metal nanoparticles, see ta-
ble I). In such a case, the confinement lengths can be
σx ' λ0/(2nr), σy ' λ0/(10nr), and d = λ0(/2nr),
where one exploits the slot waveguide confinement at
least along one direction.36 With these numbers at hand,
we can again assume Veff ' 0.01 µm3 for this case. These
results clearly show that efficient single-photon nonlinear
behavior can be achieved with ordinary Kerr-type media,
and that such behavior is robust with respect to nonlin-
ear sources of dissipation such as TPA. In particular, we
notice that in Fig. 3a TPA contributes a nonlinear quality
factor QTPA ' 108 for Ω/κ ' 102, which means that its
effects become relevant only for strong pumping strength
and very large ω0/κ ∼ 108. Realistic Q-factors on the
order of 107 can already give clear signatures of single-
photon nonlinear behavior and sizable antibunching with
such high-index media. On the other hand, the stronger
nonlinearity of doped glasses, together with their neg-
ligible TPA effects at telecom wavelengths, make these
materials extremely interesting for quantum photonics
applications. From Fig. 3b, Q-factors on the order of
106 are already sufficient to give an almost ideal single-
photon source, provided the confinement volume is as low
as the one assumed.

So far, we have assumed continuous wave excitation,
i.e. Ω 6= Ω(t). Common solid state single-photon sources
exploit the reduced lifetime of a quantum emitter in
a cavity, allowing single-photon generation on demand
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Figure 3: (Color online) Single-photon nonlinear behavior as
a function of the driving strength for a nanocavity made of
(a) a high-index Kerr-type medium with Re{χ(3)} = 10−18

m2/V2, εr = 10, β = 10−10 m/W, Veff = 10−3 µm3 , or (b) a

low-index, strongly nonlinear material with Re{χ(3)} = 10−16

m2/V2, εr = 4, β = 10−11 m/W, Veff = 10−2 µm3. In both
cases, ~ω0 = 0.8 eV (λ0 = 1.55 µm). The results shown are:
Q = 107 (full line) and Q = 108 (dashed line) in (a); Q = 106

(full line) and Q = 107 (dashed line) in (b).

at high repetition rates through pulsed excitation.2 A
single-photon source based on the simple scheme of Fig. 1
has the potential advantage of working at arbitrary wave-
lengths (determined by the cavity resonance), with a ra-
diative timescale solely determined by the cavity mode
characteristic parameters, thanks to the basically instan-
taneous nature of χ(3) processes.21 Thus, in a pulsed ex-
citation scheme the requirements on the resonant laser
source are determined by the constraints on the pulse
duration (~/Unl < ∆t < κ−1) and period (∆T ≥ 5κ−1)
preserving photon blockade.10,16 From the results shown
in Fig. 2b, the device would also be tolerant to possible
fluctuations of the laser center frequency around the cav-
ity resonance, which are normally smaller than the cavity
linewidth in standard near-infrared laser sources. With a
Q ' 106, i.e. κ−1 ∼ 1 ns, and Unl of a few µeV, the pulse
duration should be between 0.1 and 1 ns, while the max-
imum repetition rate would be limited to a few hundred
MHz, which is comparable to the fastest single-photon
source on demand recently demonstrated with solid state
quantum emitters.38 The potential repetition rate can be
further increased by relaxing the requirements on the Q-
factor, i.e. by increasing Unl through reduction of the
cavity mode volume, anticipating much more controlla-
bility and flexibility as compared to single quantum emit-
ters.

In summary, we have shown that future quantum pho-
tonics applications can strongly benefit from the capa-
bility of nanostructuring ordinary Kerr-type materials
to achieve sub-diffraction limited electromagnetic field
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confinement. The growing interest in integrated quan-
tum photonics,39 and the possibility of fully exploit-
ing the mature CMOS-based technology to build room-
temperature and intrinsically flexible single-photon de-
vices are likely to produce new research avenues based
on the present proposal in the near future.
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