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Electron spin diffusion and transport in graphene
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We investigate the spin diffusion and transport in a graphene monolayer on SiO2 substrate by
means of the microscopic kinetic spin Bloch equation approach. The substrate causes a strong
Rashba spin-orbit coupling field ∼ 0.15 meV, which might be accounted for by the impurities
initially present in the substrate or even the substrate-induced structure distortion. By surface
chemical doping with Au atoms, this Rashba spin-orbit coupling is further strengthened as the
adatoms can distort the graphene lattice from sp2 to sp3 bonding structure. By fitting the Au doping
dependence of spin relaxation from Pi et al. [Phys. Rev. Lett. 104, 187201 (2010)], the Rashba
spin-orbit coupling coefficient is found to increase approximately linearly from 0.15 to 0.23 meV
with the increase of Au density. With this strong spin-orbit coupling, the spin diffusion or transport
length is comparable with the experimental values. In the strong scattering limit (dominated by
the electron-impurity scattering in our study), the spin diffusion is uniquely determined by the
Rashba spin-orbit coupling strength and insensitive to the temperature, electron density as well as
scattering. With the presence of an electric field along the spin injection direction, the spin transport
length can be modulated by either the electric field or the electron density. It is shown that the spin
diffusion and transport show an anisotropy with respect to the polarization direction of injected
spins. The spin diffusion or transport lengths with the injected spins polarized in the plane defined
by the spin-injection direction and the direction perpendicular to the graphene are identical, but
longer than that with the injected spins polarized vertical to this plane. This anisotropy differs from
the one given by the two-component drift-diffusion model, which indicates equal spin diffusion or
transport lengths when the injected spins are polarized in the graphene plane and relatively shorter
lengths when the injected spins are polarized perpendicular to the graphene plane.

PACS numbers: 72.25.Rb, 75.40.Gb, 72.80.Vp, 71.70.Ej

I. INTRODUCTION

Graphene is considered to be a promising candidate
for the spintronic applications recently,1–22 partly due
to the perfect two dimensionality, gate-voltage-tunable
charge carrier type and density,3,4 high mobility5–7,23,24

as well as the potentially long spin relaxation time
limited by the small intrinsic spin-orbit and hyperfine
couplings.8–12,25,26 From the high mobility and long spin
relaxation time, a long spin relaxation length, favor-
able to the spin information transport and manipula-
tion, is anticipated. However, both the spin relaxation
time and transport length were experimentally found to
be much smaller than expected.2,25,27–32 This suggests
that the spin relaxation in the experiments is most likely
to be contributed by extrinsic factors such as the possi-
ble impurity-enhanced spin relaxation28,30 via the Elliot-
Yafet33 mechanism or the enhanced Rashba spin-orbit
coupling field9,11 from the impurities.26,34,35 The former
case may exist in a highly dirty graphene sample and
causes the spin relaxation time τs to be proportional
to the momentum relaxation time τp.

28,30 However, for
the latter case, the Dyakonov-Perel (DP) spin relaxation
mechanism36 dominates and the relation τs ∝ τp is ab-
sent. In fact, recently Pi et al. reported that τs increases
with decreasing τp in the surface chemical doping exper-
iment with Au atoms on graphene,31 indicating that the
DP spin relaxation mechanism is important there. How-

ever, the relation τs ∝ 1/τp, valid when the DP spin
relaxation mechanism is dominant and the scattering is
strong enough, is not obeyed in their experiment.31 Nev-
ertheless, we will show that this deviation can be un-
derstood by taking account of the strengthening of the
Rashba spin-orbit coupling with the increasing coverage
of Au adatoms. The Rashba spin-orbit coupling, referred
to as an extrinsic one, is due to the broken of the inversion
symmetry which can be caused by either a perpendicu-
lar electric field, the interaction with substrate, or the
atoms adsorbed on the surface.9,11,26,34,35 The contribu-
tion of the electric field to the Rashba spin-orbit coupling
is small (∼ µeV under a perpendicular electric field as
large as 1 V/nm),26,32 while the adatoms can effectively
enhance the Rashba spin-orbit coupling to be of order of
10 meV by distorting the graphene lattice from sp2 to
sp3 bonding structure.26,34,35

In this work, we investigate the spin diffusion and
transport limited by the DP mechanism in a graphene
monolayer on SiO2 substrate as presented by Pi et al..31

To account for the short spin relaxation time (∼70 ps)
before Au doping in the experiment,31 we assume that
the impurities inevitably present in the substrate, as well
as the other effects such as the substrate-induced struc-
ture distortion, cause a strong Rashba spin-orbit cou-
pling. When the surface chemical doping by Au atoms31

is performed, the Rashba spin-orbit coupling coefficient
αR is further strengthened. By fitting the chemical dop-
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ing dependence of spin relaxation time from the exper-
imental data,31 we obtain the chemical doping depen-
dence of αR. It is found that αR increases approximately
linearly with the density of adatoms when the latter is
not too high. With this essential information obtained,
we then study the spin diffusion and transport in the
graphene layer. The method utilized in our study is the
kinetic spin Bloch equation (KSBE) approach which has
been successfully applied to the study of spin dynamics
in semiconductors.37 In the framework of this approach,
the spatial spin precession frequency during the steady-
state scattering-free spin diffusion (assumed to be along
the x-axis) is37–41

ωk = (2Ωk + gµBB)/∂kxεk. (1)

Here Ωk is the DP term, B is the external magnetic field
and εk is the electron energy spectrum. The momentum
dependence of ωk leads to the inhomogeneous broadening
in spin precession, with which any scattering (including
the Coulomb scattering) can cause an irreversible spin
relaxation along with spin diffusion and transport.37–41

It is noted that different DP terms as well as different
energy spectra lead to distinct momentum dependences
of ωk. For graphene, εk = ~vFk with vF = 106 m/s being
the Fermi velocity and

Ωk = αR(− sin θk, cos θk, 0) (2)

with θk being the polar angle of momentum k. Therefore
in the absence of any external magnetic field

ωk = 2αR(− tan θk, 1, 0)/(~vF), (3)

which depends on the angle θk rather than the magni-
tude of k. This indicates that the inhomogeneous broad-
ening is insensitive to temperature and electron density
as long as αR is fixed. Therefore the spin diffusion is only
possible to be modulated effectively by the scattering.42

However, in this work it is revealed that when the scat-
tering is strong enough (just as in the graphene layer
under study), the spin diffusion becomes insensitive to
the scattering. As a result, the spin diffusion is uniquely
determined by αR. Moreover, the mean spin precession
frequency 〈ωk〉 = 2αR

~vF
(0, 1, 0) shows a strong anisotropy

which can also lead to the anisotropy of spin diffusion
with respect to the spin polarization direction. This
anisotropy is found to be quite different from the widely
believed one predicted from the two-component drift-
diffusion model.43–47 The discrepancy reveals the inade-
quacy of the two-component drift-diffusion model, espe-
cially for the cases with spin precession in spatial domain.
This paper is organized as follows. In Sec. II, we

present the model and introduce the KSBEs. In Sec. III,
we first investigate the spin relaxation by fitting the ex-
perimental data from Pi et al.

31 to obtain essential pa-
rameters and then study the spin diffusion and transport
in graphene. Both the analytical and numerical investi-
gations are performed. By comparing the results from
the analytical and numerical studies, we find that the

analytical model depicts the zero-electric-field spin dif-
fusion perfectly and the nonzero-electric-field spin trans-
port with a small discrepancy which increases with the
strength of the electric field. At last we summarize in
Sec. IV.

II. MODEL AND KSBES

The n-doped graphene monolayer under investigation
is on a SiO2 substrate perpendicular to the z-axis. The
depth of the SiO2 substrate is assumed to be a = 300 nm
and the electric field along the z-axis is Ez = Vg/a with
Vg being the gate voltage. The spins are injected at x = 0
and diffuse or transport along the x-axis. The external
electric field, if applied, is along the x-axis, i.e., E =
Ex̂. Under the basis laid out in Refs. 25 and 32, the
Hamiltonian of electrons can be written as25

H =
∑

µkss′

[

(εk − λI + eEx)δss′ +Ωk · σss′
]

cµks
†cµks′

+Hint. (4)

Here µ labels the valley located at K or K ′ point, σ

denote the Pauli matrices and cµks (cµks
†) is the an-

nihilation (creation) operator of electron in µ valley
with momentum k (relative to the valley center) and
spin s (s = ± 1

2 ). λI is the intrinsic spin-orbit cou-
pling constant and −e is the electron charge (e > 0).
The coefficient in the Rashba term Ωk [Eq. (2)] reads
αR = ζEz + η, with the first term contributed by the
electric field along the z-axis and the second term by the
substrate (including the impurities initially present in-
side) as well as the adatoms from surface chemical dop-
ing. The coefficient ζ is 5 × 10−3 meV·nm/V (Refs. 26
and 32). The Hamiltonian Hint consists of the electron-
impurity, electron-phonon as well as electron-electron
Coulomb interactions.25 We adopt the minimal model
proposed by Adam and Das Sarma48 to depict the
electron-impurity scattering. Within this model, only
the intravalley electron-impurity scattering is important
while the intervalley electron-impurity scattering is neg-
ligible due to the large momentum transfer from one
valley to the other and the finite distance between the
impurity layer and the graphene plane. The intraval-
ley electron-impurity scattering matrix element reads
|Uk−k′|2 = Ni|Vk−k′ |2e−2d|k−k′|,48 where Ni is the effec-
tive impurity density, d is the effective distance of impuri-
ties from the graphene layer48 and Vk−k′ is the Coulomb
potential under the random phase approximation.49

The electron-phonon scattering includes the intraval-
ley electron-acoustic phonon scattering,50 the intervalley
and intravalley electron-optical phonon scattering,51 as
well as the intravalley electron-optical surface phonon
scattering.52 The electron-electron Coulomb scattering
includes both the intervalley and intravalley scattering,
with the screening under random phase approximation
given in Ref. 49.
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By using the nonequilibrium Green function method,53

the KSBEs are constructed as37

∂ρµk(x, t)

∂t
=

∂ρµk(x, t)

∂t

∣

∣

∣

∣

dri

+
∂ρµk(x, t)

∂t

∣

∣

∣

∣

dif

+
∂ρµk(x, t)

∂t

∣

∣

∣

∣

coh

+
∂ρµk(x, t)

∂t

∣

∣

∣

∣

scat

. (5)

Here ρµk(x, t) represent the density matrices of electrons
with relative momentum k in valley µ at position x and

time t.
∂ρµk(x,t)

∂t

∣

∣

∣

dri
= eE

~

∂ρµk(x,t)
∂kx

are the driving terms

from the external electric field (the fluctuation of electron
density is neglected and thus the total electric field is
taken to be the external one). The diffusion terms due
to the spatial gradient are

∂ρµk(x, t)

∂t

∣

∣

∣

∣

dif

= − ∂εk
~∂kx

∂ρµk(x, t)

∂x

= −vF cos θk
∂ρµk(x, t)

∂x
. (6)

∂ρµk(x,t)
∂t

∣

∣

∣

coh
and

∂ρµk(x,t)
∂t

∣

∣

∣

scat
are the coherent and scat-

tering terms, respectively. Their expressions can be
found in Ref. 25. In the steady-state scattering-free spin
diffusion, the spatial spin precession frequency, given
by Eq. (3), is immediately obtained according to the
KSBEs.39–41

III. SPIN RELAXATION AND SPIN

DIFFUSION AND TRANSPORT

In the following, we first study the spin relaxation
in graphene by fitting the experimental data from Pi
et al.

31 to obtain information on impurities (including
the effective density as well as the distance from the
graphene layer) and the chemical doping dependence of
the Rashba spin-orbit coupling coefficient. We then use
the information to study the spin diffusion and transport
in graphene, first analytically for the case with strong
electron-impurity scattering only, and then numerically
with all the scattering explicitly included.

A. Spin relaxation time

We fit the chemical doping dependence of spin re-
laxation time and diffusion coefficient from Pi et al.

[Fig. 3(c) in Ref. 31] to establish: (i) the density and
typical distance from the graphene layer of charged im-
purities initially present in the substrate and those of
the chemical doping adatoms; and (ii) the dependence
of αR on chemical doping. The electron density Ne is
2.9 × 1012 cm−2 and the temperature T is 18 K.31 The
electrons are initially polarized in the x-y plane31 with
the polarization P0 assumed to be 0.05. To perform the

fitting, the KSBEs are solved in the time domain un-
der spatial uniform case, as carried out recently by Zhou
and Wu in the ultraclean graphene monolayer.25 (An an-
alytical study of spin relaxation time in graphene is also
given in Appendix A.) The diffusion coefficient D given
by Pi et al. is actually for spin instead of charge, al-
though it is treated as the charge diffusion coefficient
in the experiment.31 In fact, these two coefficients are
usually close to each other and Józsa et al. found this
most likely to be the case in graphene when the elec-
tron density is high (∼ 3× 1012 cm−2)30 due to the weak
electron-electron Coulomb scattering.25 Therefore we fit
the experimental data with the charge diffusion coeffi-

cient D =
√
πNe

2e ~vFµe, where µe is the electron mobility

obtained under a small in-plane electric field.25
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FIG. 1: (Color online) (a) Chain curve with triangles: deposi-
tion time dependence of calculated diffusion coefficient, with
the Au density growing linearly with the deposition time with
a fixed rate of 5×1011 atom/(cm2·s).31 Dashed curve with
closed squares: deposition time dependence of calculated dif-
fusion coefficient, with the deposition time dependence of Au
density given by the solid curve (the scale is on the right-
hand side of the frame). Crosses: experimental data from
Pi et al..31 (b) Dashed curve with closed squares: deposition
time dependence of calculated spin relaxation time, with the
deposition time dependence of αR shown by the solid curve
with open squares (the scale is on the right-hand side of the
frame). Crosses: experimental data from Pi et al..31 Inset of
(b): dependence of αR on Au density.
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We first make use of the value of D ≈ 0.059 m2/s for
the case without surface chemical doping given in Ref. 31
to explore the information of impurities initially present
in the substrate. This single value of D is not sufficient
for us to fix both the effective density and distance from
the graphene layer of these impurities. However, these
details are not essential and we just choose two proper
parameters, e.g., Ns = 2.1× 1012 cm−2 and ds = 0.7 nm,
to ensure D ≈ 0.059 m2/s. The surface chemical doping
deposits Au atoms on the graphene surface with a growth
rate of 5×1011 atom/(cm2·s).31 By fitting the deposition
time (adatom density) dependence of D,31 the distance
of adatoms from the graphene layer dAu is obtained to be
about 0.2 nm. Nevertheless, the fitting does not confirm
with the experimental data well when the deposition time
exceeds 4 s [compare the fitting data (chain curve with
triangles) to the experimental data (crosses) in Fig. 1(a)].
This indicates that the effective density of adatoms does
not increase linearly with time any more when the dop-
ing has been performed for several seconds. Therefore,
when the doping time is longer than 4 s, we choose the
proper density of adatoms to reproduce the experimen-
tal diffusion coefficient. In Fig. 1(a), the deposition time
dependence of Au density is plotted by the solid curve
with open squares (the scale is on the right-hand side of
the frame) and that of the calculated diffusion coefficient
is shown by the dashed curve with closed squares.

With the parameters for two kinds of impurities ob-
tained, we then fit the spin relaxation time τs to obtain
αR under different deposition times. In Fig. 1(b), the
deposition time dependence of fitted αR is shown by the
solid curve with open squares (the scale is on the right-
hand side of the frame) and that of the calculated spin
relaxation time is shown by the dashed curve with closed
squares. The crosses represent the experimental spin re-
laxation times under different deposition times. In the
inset of Fig. 1(b), we also plot the dependence of αR on
Au density NAu. It is shown that αR increases approxi-
mately linearly with Au density when the latter is not so
high. The fitted value of αR is comparable to the value
estimated by Ertler et al. when taking account of the
adatoms, i.e., 0.3 meV.32 It is noted that αRτp/~ has the

largest value 0.027≪1 with τp =
√
Neπ

~

evF
µe = 0.12 ps

(Ref. 54) when NAu = 0. Therefore, the electron system
is in the strong scattering limit (the electron-impurity
scattering is dominant), let alone when the tempera-
ture is increased or the chemical doping is performed.
It is necessary to point out that in the experiment the
gate voltage Vg is adjusted to keep Ne constant during
chemical doping as adatoms also donate electrons to the
graphene layer.31 However, Vg does not exceed 200 V and
the term ζEz = ζVg/a is at least two orders of magnitude
smaller than αR. Therefore αR ≈ η and is solely deter-
mined by the impurities. When NAu = 0, η = 0.153 meV
and is contributed by the impurities in the substrate.

B. Spin diffusion and transport: analytical study

1. Spin diffusion

In this section we study the spin diffusion in graphene
analytically for the case with only the electron-impurity
scattering. No external electric field is present. We first
perform the Fourier transformation of the steady-state
KSBEs with respect to the polar angle θk and then re-
tain the equations involving the lowest three orders.41

The neglect of the higher orders will not lose much infor-
mation in the strong scattering limit where the electron
distribution approaches isotropy in the momentum space.
As a result the following second-order differential equa-

tion about ρ0µk(x) [ρ
l
µk(x) =

1
2π

∫ 2π

0
dθkρµk(x)e

−ilθk and

ρµk(x) ≡ ρµk(x,+∞)] is obtained:

∂2
xρ

0
µk(x) + i

2αR

~vF
[σy, ∂xρ

0
µk(x)] −

α2
R

~2v2F
[σx, [σx, ρ

0
µk(x)]]

− α2
R

~2v2F
[σy, [σy, ρ

0
µk(x)]] = 0. (7)

It is noted that with only the lowest three orders of ρlµk(x)
considered from the beginning, the electron-impurity
scattering time is actually absent from the above equa-
tion (refer to Appendix B for detail). This indicates
that in the strong scattering limit the spin diffusion be-
comes insensitive to scattering in graphene. We define
the “spin vector” as S0

µk(x) = Tr[ρ0k(x)σ] and S0
µk(x) can

be solved from Eq. (7) with boundary conditions (refer
to Appendix B for detail). Then one can calculate the
total spin signal contributed by all the different electron
states in two valleys as

S(x) =
1

4π2

∑

µ

∫ +∞

0

dk

∫ 2π

0

dθkkTr[ρk(x)σ]

=
1

π

∫ +∞

0

dkkS0
µk(x). (8)

In the following we present the solutions of S(x) under
three typical boundary conditions.
For boundary condition (I) S0

µk(0) = (S0
µk(0), 0, 0) and

S0
µk(+∞) = 0, which corresponds to the case with the

injected spins polarized along the x-axis,

S(x) = S(0)e−x/lx





√
1 + ∆2 sin(ωx+ φ)

0
c1 sin(ωx)



 . (9)

For boundary condition (II) S0
µk(0) = (0, S0

µk(0), 0) and

S0
µk(+∞) = 0,

S(x) = S(0)e−x/ly





0
1
0



 . (10)
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For boundary condition (III) S0
µk(0) = (0, 0, S0

µk(0)) and

S0
µk(+∞) = 0,

S(x) = S(0)e−x/lz





c2 sin(ωx)
0

−
√
1 + ∆2 sin(ωx− φ)



 . (11)

In the above equations

S(0) =
1

π

∫ +∞

0

dkkS0
µk(0) (12)

and

lx = lz =

√
7

(2
√
2− 1)

√

1 + 2
√
2

~vF
αR

, (13)

ly =
~vF
2αR

, (14)

ω =

√

1 + 2
√
2
αR

~vF
. (15)

c1 = − 4

(1+
√
2)
√

1+2
√
2
, c2 = (20

√
2−24)

√
1+2

√
2

7 , ∆ =

8
√
2−11√
7

and φ = arctan 1
∆ . It is noted that the spin

precession frequency given by the simplified model is
ω ≈ 1.96 αR

~vF
, a little smaller than |〈ωk〉| = 2αR

~vF
due to

the approximations made here.
From Eqs. (9)-(11) one notices that in the strong scat-

tering limit, the spin diffusion is not only insensitive to
the scattering, but also unrelated to temperature T and
electron density Ne. Nevertheless, the coefficient αR may
depend on T and/or Ne, with the relation unclear so
far. For simplicity we assume αR to be independent of
T and Ne in this work. As a result, the spin diffusion in
the strong scattering limit is uniquely determined by αR,
which is only modulated by chemical doping. Eqs. (9)-
(11) indicate a strong anisotropy of spin diffusion with
respect to the spin-polarization direction. For the cases
with the injected spins polarized along the x- and z-axis,
both the spin signals show an exponential decay in the
magnitude accompanying with the precession in the x-
z plane. The spin precessions have the same frequency
ω except for a phase difference. However, when the in-
jected spins are polarized along the y-axis, the spin sig-
nal decays exponentially without any precession, i.e., it
is bound along the y-axis. The above phenomena are
understood by noticing that the mean effective magnetic
field felt by the diffusing electrons is along the y-axis as
〈ωk〉 = 2αR

~vF
(0, 1, 0). In the non-local spin valve experi-

ments, the spin diffusion length is usually measured from
the exponential decay of spin signal with the increasing
spacing between the central spin-injector and -detector
ferromagnetic electrodes.27,28 In these experiments, the
ferromagnetic electrodes happen to be magnetized along
the y-axis and therefore the injected and detected spin
polarizations are both along the y-axis. With such con-
figuration, the exponential decay of spin signal with in-
creasing spacing between the electrodes can be well ob-
served. However, if the injected spins are polarized in

the x-z plane, the spatial spin precession is expected to
be detected.
Besides the anisotropy of spin precession, the spin dif-

fusion length also shows an anisotropy as

lx = lz ≈ 1.48ly (16)

with ly = ~vF/(2αR). In fact, when the injected spins
are polarized along any other direction in the x-z plane,
the spin diffusion length is all the same as lx (lz) [for this
case the solution of S(x) is the combination of Eqs. (9)
and (11)]. However, based on the widely utilized two-
component drift-diffusion model43–47 which gives ls =√
Dτs [Eq. (D11) in Appendix D], one may expect that

the spin diffusion lengths satisfy

lx = ly =
√
2lz = ~vF/(2αR) (17)

as the spin relaxation times in time domain follow (refer
to Appendix A)

τx = τy = 2τz = ~
2/(2α2

Rτp) (18)

and D = v2Fτp/2. It is noted that only when the in-
jected spins are polarized along the y-axis, for which no
spin precession exists, the two-component drift-diffusion
model gives the result in consistence with that from the
KSBEs, i.e.,

ly = ~vF/(2αR). (19)

The discrepancy in the anisotropies given by the KSBEs
and the two-component drift-diffusion model strongly
indicates the inadequacy of the two-component drift-
diffusion model. Due to the loss of the off-diagonal spin
components, i.e., the spin coherence, the two-component
drift-diffusion model not only fails to predict the spin
precession in spatial domain in the absence of an ex-
ternal magnetic field, but also incorrectly inherits the
anisotropy from the spin relaxation in time domain. We
emphasize that the reason for the different anisotropic
properties of spin diffusion in spatial domain and spin
relaxation in time domain is that the inhomogeneous
broadening is quite different in these two cases. In spa-
tial domain the inhomogeneous broadening governing the
spin diffusion arises from the k dependence of ωk, while
in time domain from that of Ωk. Popinciuc et al. re-
ported the relationship between the in-plane and out-of-
plane spin relaxation times directly from the anisotropy
of spin diffusion via the two-component drift-diffusion
model.28 However, based on the above discussion, one
may realize that studying the anisotropy of spin relax-
ation time in such a way can be incorrect. Finally,
from another point of view, if the two-component drift-
diffusion model is still used, then in order to reflect the
correct anisotropy of spin diffusion, the spin diffusion co-
efficient has to differ from the charge diffusion coefficient
and shows an anisotropy as Dx = 0.5Dz ≈ 2.2Dy with
Dy = v2Fτp/2.
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It should be pointed out that all the above analy-
sis and conclusion also apply to the electron system
where the energy spectrum is parabolic in momentum
and the linear Rashba spin-orbit coupling term Ωk ∝
k(− sin θk, cos θk, 0) is dominant, such as that in the
asymmetric InAs quantum wells.42 That is because the
steady-state scattering-free spatial spin precession fre-
quency ωk in this system has the similar momentum de-
pendence as shown in Eq. (3).42 However, for electron
system in the absence of the DP term but under a mag-
netic field perpendicular to both the spin polarization
and spin transport directions such as in bulk silicon55 and
symmetric silicon quantum wells,41 or with the Dressel-
haus term56 containing the cubic dependence on momen-
tum such as in GaAs quantum wells,39,40 the situation is
quite different as ωk depends on the magnitude of mo-
mentum. In fact, it has been revealed in the symmetric
silicon quantum wells under an in-plane magnetic field
that the scattering can suppress spin diffusion effectively
in the strong scattering limit.41

2. Spin transport

We further take account of the electric field along the
x-axis to study the spin transport. Still only the strong
electron-impurity scattering is included. The second-
order differential equation about ρ0µk(x), corresponding

to Eq. (7) but including the driving term, reads (refer to
Appendix C)

∂2
xρ

0
µk(x) + i

2αR

~vF
[σy , ∂xρ

0
µk(x)] −

α2
R

~2v2F
[σx, [σx, ρ

0
µk(x)]]

− α2
R

~2v2F
[σy, [σy , ρ

0
µk(x)]]− eE∂x∂εkρ

0
µk(x)

− i
αReE

~vF
[σy , ∂εkρ

0
µk(x)] = 0. (20)

It should be pointed out that when the electric field is
so large that the electron density matrices ρµk(x,+∞)
become strongly anisotropic due to the driving of the
electric field, retaining only the lowest three orders of
ρlµk(x) to obtain the above equation of ρ0µk(x) may not be
sufficient. The second-order differential equation about
S0
µk(x) is obtained from the above equation and that

about S(x) can be obtained by further summing over k
and µ (refer to Appendix C). With the same three differ-
ent typical boundary conditions presented in the previous
section, S(x) is solved to have the same form as Eqs. (9)-
(11) except that the parameters are now electric-field de-

pendent. Explicitly,

l′x = l′z =
1

E /2 + F (E )

~vF
αR

, (21)

l′y =
1

E /2 +
√

4 + E 2/4

~vF
αR

, (22)

ω′ = G(E )
αR

~vF
, (23)

c′1 = − 1
2

√
E 4+48E 2+512√

E 2+7F (E )+5G(E )
, c′2 = 1

2

√
E 4+48E 2+512√

E 2+7F (E )+3G(E )
,

∆′ = 5F (E )−
√

E 2+7G(E )√
E 2+7F (E )+5G(E )

and φ′ = arctan 1
∆′ . In the above

equations,

E =
eE

S(0)παRβ~vF
ln

1 + eβµ↑

1 + eβµ↓
, (24)

F (E ) =

√
E 4 + 48E 2 + 512 + E

2 − 8

16
√
2
√

E 2 + 7

×
√

√

E 4 + 48E 2 + 512− E 2 + 8, (25)

G(E ) =

√

1− E 2/8 +
√

E 4 + 48E 2 + 512/8. (26)

Here β = 1/(kBT ) and µ↑ (µ↓) is the chemical potential
of electrons with spin parallel (antiparallel) to the spin-
polarization direction. It is noted that when the electric
field is absent, i.e., E = 0, all the above solutions recover
those presented in the previous section.
In most conditions (such as in the present work) elec-

trons in graphene are highly degenerate. In the de-
generate limit with small spin polarization, E ≈ eE

αRkF

,

where kF =
√
πNe is the magnitude of the Fermi mo-

mentum of unpolarized electrons with density being Ne

(Appendix C). Differing from the spin diffusion without
electric field, the spin transport becomes sensitive to elec-
tron density as E depends on the electron density. In the
nondegenerate limit, E ≈ eEβ~vF

αR
(Appendix C) and the

spin transport becomes sensitive to temperature rather
than electron density. Moreover, with this value of E ,
Eq. (22) becomes

l′y =
[

eEβ/2 +
√

e2E2β2/4 + 1/l2y

]−1

, (27)

where ly is the spin diffusion length without electric
field [Eq. (14)]. This result recovers that from the two-
component drift-diffusion model, which apparently fails
to correctly reflect the anisotropy of spin transport.13,44

Therefore, our investigation again indicates that only
when the spatial spin precession is absent, the two-
component drift-diffusion model gives the appropriate
depiction of spin transport.
In Fig. 2 we plot the dependence of l′x,y,z, ω

′ and φ′

on E . From Fig. 2(a), one notices that the spin trans-
port length decreases with increasing E (E ≈ eE

αRkF
). On

one hand, this means that when the electron density is
fixed (e.g., Ne = 1012 cm−2, for which the variation of E

from −8 to 8 corresponds to a variation of E from about
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−2.2 to 2.2 kV/cm), the spin transport is suppressed (en-
hanced) by increasing the electric field parallel (antipar-
allel) to the spin injection direction. On the other hand,
this also means that when the non-zero electric field par-
allel (antiparallel) to the spin injection direction is fixed,
the spin transport is enhanced (suppressed) by increasing
electron density. Fig. 2(b) and (c) indicate that the spin
precession frequency ω′ and the phase angle φ′ vary with
E marginally (with a variation ∼ 2 %). In fact, when |E |
becomes even larger, both ω′ and φ′ quickly saturate (ω′

approaches 2αR

~vF
and φ′ approaches π/2). Therefore, the

spin precession pattern in spatial domain is insensitive to
the electric field or the electron density.

(c)

E

φ
′

86420-2-4-6-8

1.46

1.44

(b)

ω
′
(α

R
/~

v F
)

1.98

1.96

l′y

l′x (l′z)

(a)l′ s
(~

v F
/α

R
)

5

4

3

2

1

0

FIG. 2: (Color online) The dependence of (a) spin transport
length l′x,y,z, (b) spin precession frequency ω′ and (c) phase
angle φ′ on E .

C. Spin diffusion and transport: numerical results

The KSBEs need to be solved numerically in order to
take full account of all the different kinds of scattering as
well as the large electric field. To numerically solve the
KSBEs, the initial conditions are set as

ρµk(0, 0) =
F 0
k↑ + F 0

k↓
2

+
F 0
k↑ − F 0

k↓
2

n̂ · σ, (28)

ρµk(x > 0, 0) =
FL
k↑ + FL

k↓
2

, (29)
∑

µk

Tr[ρµk(0, 0)n̂ · σ]/
∑

µk

Tr[ρµk(0, 0)] = P0, (30)

and the two-side injection boundary conditions39,40 are

ρµk(0, t)|kx>0 =
F 0
k↑ + F 0

k↓
2

+
F 0
k↑ − F 0

k↓
2

n̂ · σ, (31)

ρµk(L, t)|kx<0 =
FL
k↑ + FL

k↓
2

. (32)

Here the injected spins at left boundary x = 0 are as-
sumed to be polarized along n̂ with polarization P0 =
0.05. x = L stands for the right boundary with L much

longer than the spin diffusion or transport length. F 0,L
k↑,↓

are the Fermi distributions of electrons at the two bound-
aries when the external electric field is absent. When the
electric field is present, F 0,L

k↑,↓ then stand for the drifted

Fermi distributions of hot electrons.25 In the previous
analytical study the boundary conditions are in fact ap-
proximated as the single-side injection case. This ap-
proximation works well when the scattering is strong.39

By numerically solving the KSBEs, the steady-state dis-
tribution of spin polarization along n̂ is obtained as
P (x) =

∑

µk Tr[ρµk(x,+∞)n̂ · σ]/∑µk Tr[ρµk(x,+∞)]
and then the spin diffusion or transport length is deter-
mined from the exponential decay of P (x) (or its enve-
lope) along the x-axis.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0  5  10  15  20  25

|P
|

x (µm)

T=18 K, Ne=2.9×10
12

 cm
-2

Ns=2.1×10
12

 cm
-2

, NAu=0

Numerical: x
y
z

Analytical: x
y
z

FIG. 3: (Color online) The absolute value of steady-state
spin polarization |P | versus position x with the injected spins
polarized along the x-, y- and z-axis, respectively. The
squares, circles and triangles are obtained by numerically
solving the KSBEs with T = 18 K, Ne = 2.9 × 1012 cm−2,
Ns = 2.1 × 1012 cm−2 and NAu = 0. The solid, dashed and
chain curves are calculated from Eqs. (9)-(11) with P (x) =
Sx(x)/Ne, Sy(x)/Ne and Sz(x)/Ne, respectively.

1. Anisotropic spin diffusion

As revealed by the analytical model, the spin diffusion
shows anisotropic properties with respect to the polar-
ization direction of injected spins. In Fig. 3, we show the
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spatial distribution of the absolute value of the steady-
state spin polarization |P | for the cases with the injected
spins polarized along the x-, y- and z-axis, respectively.
NAu = 0, with which αR = 0.153 meV. The squares,
circles and triangles are obtained by numerically solving
the KSBEs while the solid, dashed and chain curves are
calculated by Eqs. (9)-(11). When αR = 0.153 meV the
analytical model gives lx = lz ≈ 3.18 µm, ly ≈ 2.16 µm
and ω ≈ 0.45 µm−1. The anisotropy of spin diffusion is
clearly shown in this figure. It is noted that the simplified
analytical model almost perfectly recovers the numerical
results [except that the spin precession frequencies for
both cases with the injected spins polarized along the x-
and z-axis are numerically shown to be closer to 2 αR

~vF
rather than 1.96 αR

~vF
given by the analytical study (the

difference is expected from the approximations made in
the analytical analysis)]. In fact, further numerical cal-
culations show that varying T from 18 to 300 K and/or
Ne from 0.5 to 2.9 × 1012 cm−2 changes the numerical
results marginally. This is consistent with the conclu-
sion from the analytical model, i.e., the spin diffusion of
electrons in graphene is insensitive to T and Ne in the
strong scattering limit. As a result, in the strong scat-
tering limit, one can depict the spin diffusion quite well
with the single parameter αR via Eqs. (9)-(11).

2. Chemical doping dependence of spin diffusion

In Fig. 4, we plot the deposition time dependence of
spin diffusion length with n̂ = x̂, ŷ and ẑ respectively
by the solid curves. The spin diffusion lengths are di-
rectly obtained from Eqs. (13)-(14). It is shown that
with the increase of chemical doping time, αR increases
and the spin diffusion length decreases. For comparison,
we also plot the deposition time dependence of spin dif-
fusion length given by the two-component drift-diffusion
model (chain curves), i.e., lx = ly =

√
2lz =

√
Dτx, with

D and τx given in Fig. 1. The comparison between these
two sets of results shows that, only when the injected
spins are polarized along the y-axis, the two-component
drift-diffusion model yields the same result as that from
the KSBEs, just as revealed in the analytical study [refer
to Eq. (19) and the discussion there].

3. Effect of scattering on spin diffusion

The electron system under investigation is always in
the strong scattering limit and therefore the spin dif-
fusion becomes insensitive to scattering. However, the
properties of spin diffusion in the weak scattering limit
can be different. In order to investigate the spin diffusion
with scattering strength ranging from the weak to strong
scattering limit, we artificially vary the impurity density
in the substrate from 0 to 1012 cm−2. At the same time,
the chemical doping is absent (no adatom) and αR is kept
as a constant, e.g., 0.153 meV. We choose T = 50 K,

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  2  4  6  8

l s
 (

µm
)

Au deposition (s)

T=18 K
Ne=2.9×10

12
 cm

-2
, Ns=2.1×10

12
 cm

-2

KSBEs: x (z)
y

Drift-Diffusion: x (y)
z

FIG. 4: (Color online) Deposition time dependence of spin
diffusion length with the injected spins polarized along the
x-, y- and z-axis, respectively. The results from the KSBEs
(solid curves) and the two-component drift-diffusion model
(chain curves) are both plotted for comparison.

Ne = 5× 1011 cm−2 and n̂ = ŷ. In Fig. 5 we plot the de-
pendence of spin diffusion length ly on the impurity den-
sity by the dashed curve. For comparison, we also plot
the corresponding dependence of spin relaxation time τy
on the impurity density by the solid curve (the scale is
on the right-hand side of the frame). It is seen that with
the increase in Ns, while ly decreases obviously in the
weak scattering limit (Ns . 0.05× 1012 cm−2) and then
saturates in the strong scattering limit, τy first decreases
in the weak scattering limit (refer to the inset for detail)
and then increases almost linearly in the strong scatter-
ing limit.37 The two-component drift-diffusion model is
able to capture the dependence of spin diffusion length
on Ns by means of the relation ly =

√

Dτy : while
D ∝ τp ∝ 1/Ns, τy decreases with Ns in the weak scatter-
ing limit and ∝ Ns in the strong scattering limit; there-
fore ly first decreases with Ns and then becomes insen-
sitive to Ns (the insensitivity of ly to Ns in the strong
scattering limit is revealed previously by the analytical
study). It should be emphasized that in Fig. 5 the results
are shown with αR being a constant. In reality, when one
further takes account of the increase of αR with increas-
ing Ns, ly should always decrease with increasing Ns,
from the weak scattering limit to the strong scattering
limit.

4. Spin transport under the electric field

At last we investigate the spin transport under an elec-
tric field along the x-axis. T = 300 K, Ne = 1012 cm−2,
Ns = 2.1 × 1012 cm−2 and NAu = 0. The injected
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FIG. 5: (Color online) The impurity (in the substrate) density
dependence of spin diffusion length (dashed curve) and spin
relaxation time (solid curve with the scale on the right-hand
side of the frame). The inset shows the detail of the solid
curve in the small density regime. The injected spins are
polarized along the y-axis. T = 50 K, Ne = 5 × 1011 cm−2

and αR = 0.153 meV.

spins are polarized along the z-axis. In Fig. 6 the po-
sition dependence of |P | under different electric fields as
well as the E dependence of lz (squares with the scale
on the right-hand side and top of the frame) are plot-
ted. It is shown that while the spin-precession pattern
almost keeps the same with varying E, the spin trans-
port length is increased (decreased) by increasing the
electric field along the −x (x)-direction.39,44 These re-
sults are in consistence with the analytical study pre-
sented in Sec. III B 2. For comparison, we further plot the
E dependence of lz from Eq. (21) by the double-dotted
chain curve with the scale also on the right-hand side
and the top of the frame. It is shown that the analytical
model depicts the spin transport in the low electric-field
regime well except when the electric field antiparallel to
the spin-injection direction is large (e.g, a discrepancy
reaches 20% when E reaches −2 kV/cm).

The electron density dependence of spin transport is
also investigated. In Fig. 7, we plot the density de-
pendence of spin transport length under the electric
field parallel (E = 0.3 kV/cm) and antiparallel (E =
−0.3 kV/cm) to the spin transport direction in (a) and
(b), respectively. The squares are from the numerical
calculation and the curves are from Eq. (21). It is clearly
shown that for the cases with opposite directions of the
electric field, the density dependences of spin transport
length have opposite tendencies.

10
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-6

10
-4

10
-2

10
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2

 0  5  10  15  20  25
 0
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 15

 20

-2 -1  0  1  2

|P
|

l z
 (

µm
)

x (µm)

E (kV/cm)

T=300 K, Ne=10
12

 cm
-2

Ns=2.1×10
12

 cm
-2

, NAu=0

E= − 0.9 kV/cm
− 0.3 kV/cm

0 kV/cm
0.3 kV/cm
0.9 kV/cm

FIG. 6: (Color online) The absolute value of the steady-state
spin polarization |P | versus position x under different electric
fields. The electric field dependence of spin transport length
lz is also plotted with the scale on the right-hand side and
top of the frame, where the squares and double-dotted chain
curve are obtained from the numerical calculation and from
Eq. (21), respectively. T = 300 K, Ne = 1012 cm−2, Ns =
2.1× 1012 cm−2 and NAu = 0.

IV. CONCLUSION

In conclusion, we have investigated the spin diffusion
and transport in graphene monolayer on SiO2 substrate
as presented by Pi et al.,31 by means of the KSBE ap-
proach. The substrate (including the impurities initially
present) contributes a Rashba spin-orbit coupling field
much stronger than the one modulated by the electric
field perpendicular to the graphene layer. By surface
chemical doping with Au adatoms, the Rashba spin-orbit
coupling coefficient αR is increased. By fitting the chem-
ical doping dependence of diffusion coefficient and spin
relaxation time,31 we obtain the information on impu-
rities as well as the chemical doping dependence of αR.
Our fitting finds that αR increases linearly from 0.15 to
0.23 meV with increasing Au density when the latter is
not so high. With the necessary parameters obtained
from fitting, we investigate the spin diffusion and trans-
port in graphene both analytically and numerically.

The analytical study with only the electron-impurity
scattering included reveals that in the strong scatter-
ing limit (just as the situation under investigation in
the present work), the spin diffusion is uniquely deter-
mined by αR. When the injected spins are polarized
along the x-, y- and z-axis, the spin diffusion lengths
are given by the analytical study with an anisotropy as
lx = lz ≈ 0.74~vF/αR and ly = 0.5~vF/αR. Meanwhile,
the spatial spin precession is present when the injected
spins are polarized in the x-z plane but absent when the
injected spins are polarized along the y-axis. Further
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FIG. 7: (Color online) Electron density dependence of spin
transport length lz under electric fields with opposite direc-
tions: (a) E = 0.3 kV/cm and (b) E = −0.3 kV/cm. The
squares are from the numerical calculation while the curves
are from Eq. (21). T = 300 K, Ns = 2.1 × 1012 cm−2 and
NAu = 0.

numerical calculations with all the scattering explicitly
included show that the analytical model depicts the spin
diffusion pretty well.

It is noted that the anisotropy of spin diffusion length
from the KSBEs differs from the one from the two-
component drift-diffusion model where lx = ly =

√
2lz =

0.5~vF/αR. The qualitative discrepancy indicates the in-
adequacy of the two-component drift-diffusion model due
to the neglect of the off-diagonal spin components, i.e.,
the spin coherence. In fact, only when the injected spins
are polarized along the y-axis and the spatial spin preces-
sion is absent, the two-component drift-diffusion model
gives the same spin diffusion length as the KSBE ap-
proach does.

The analytical and numerical study of spin transport
under an electric field parallel or antiparallel to the spin
injection direction is also investigated. In the presence
of the electric field, the analytical model depicts the spin
transport with a small discrepancy which increases with
the strength of the electric field. It is shown that when
the electric field is applied, the spin precession in spatial
domain for the cases with the injected spins polarized
along the x- and z-axis remains almost unchanged. How-
ever, the spin transport length is increased (decreased)
by increasing the magnitude of the electric field when it
is antiparallel (parallel) to the spin transport direction.
Moreover, in the presence of the electric field, the spin
transport becomes sensitive to the electron density, dif-
fering from the case of spin diffusion. The spin transport

is enhanced (suppressed) by increasing electron density
when the electric field is parallel (antiparallel) to the spin
injection direction.
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Appendix A: Spin relaxation in graphene

We consider spin relaxation in graphene under the spa-
tial uniform case in the absence of the electric field. We
only include the electron-impurity scattering. The KS-
BEs, Eq. (5), are then simplified to be

∂tρµk(t) = − i

~
[Ωk · σ, ρµk(t)]−

2π

~

∑

k′

Mk−k′Ikk′

× δ(εk − εk′)[ρµk(t)− ρµk′(t)]. (A1)

Here Mk−k′ = |Us
k−k′ |2 + |UAu

k−k′ |2 is the total electron-
impurity scattering matrix element contributed by im-
purities in the substrate and Au adatoms. Ikk′ = 1

2 [1 +

cos(θk − θk′)] is the form factor.25 By expanding ρµk(t)
as ρµk(t) =

∑

l ρ
l
µk(t)e

ilθk , one comes to

∂tρ
l
µk(t) = −αR

2~
[σ+, ρ

l+1
µk (t)] +

αR

2~
[σ−, ρ

l−1
µk (t)]

−
ρlµk(t)

τ lk
, (A2)

where σ± = σx ± iσy, and

1

τ lk
=

k(1− δl0)

4π~2vF

∫ 2π

0

dθMq(1 + cos θ)(1 − cos lθ) (A3)

with Mq depending only on |q| = 2k sin θ
2 . It is noted

that 1
τ l
k

= 1

τ−l
k

.

Retaining the lowest three orders of ρlµk(t), i.e., l = 0,

±1, and using the initial conditions ρlµk(0) = δl0ρ
0
µk(0),

one obtains the second-order differential equation about
ρ0µk(t) as

∂2
t ρ

0
µk(t) +

1

τ1k
∂tρ

0
µk(t) +

α2
R

2~2
[σx, [σx, ρ

0
µk(t)]]

+
α2
R

2~2
[σy , [σy, ρ

0
µk(t)]] = 0 (A4)

with an affiliated initial condition ∂tρ
0
µk(0) = 0. Defining

the spin vector as S0
µk(t) = Tr[ρ0µk(t)σ], one can obtain

an equation satisfied by S0
µk(t) directly from the above

one, which reads

[

∂2
t +

1

τ1k
∂t +

2α2
R

~2
(1 + δαz)

]

S0
µkα(t) = 0 (A5)



11

with α = x, y, z. With the initial condition ∂tS
0
µkα(0) =

0, S0
µkα(t) is solved to be

S0
µkα(t) =

S0
µkα(0)

2

[(

1 +
1

√

1− c2α

)

e
− t

2τ1

k

(1−
√

1−c2α)

+
(

1− 1
√

1− c2α

)

e
− t

2τ1

k

(1+
√

1−c2α)
]

, (A6)

where cα = 2
√

2(1 + δαz)αRτ
1
k/~. When the scattering

is strong enough and hence cα ≪ 1,

S0
µkα(t) ≈ S0

µkα(0)e
− t

4τ1
k
/c2α

≡ S0
µkα(0)e

− t
τα . (A7)

As a result, for spins polarized along the x- and
y-axis the spin relaxation times are τx = τy =
~
2/(2α2

Rτ
1
k ), while for spins polarized along the z-axis

τz = ~
2/(4α2

Rτ
1
k ). From Eq. (A3) one notices that τ1k

is in fact the momentum relaxation time τp(k). For the
highly degenerate electron system in graphene, τp(k) ≈
τp(kF) ≈ τp. Therefore we have τx = τy = 2τz =
~
2/(2α2

Rτp).

Appendix B: Spin diffusion in graphene

The spin diffusion in the absence of an electric field
is also investigated for the case with only the electron-
impurity scattering included. Performing angle expan-
sion on the steady-state KSBEs in a way similar to that
shown in Appendix A, one arrives at

∂x
∑

l0=±1

ρl+l0
µk (x) + γ[σ+, ρ

l+1
µk (x)]− γ[σ−, ρ

l−1
µk (x)]

+
2

vF

ρlµk(x)

τ lk
= 0 (B1)

with γ = αR/(~vF). Retaining the lowest three orders of

ρlµk(x) one obtains three equations involving ρ0,±1
µk (x) as

∂x
∑

l0=±1

ρl0µk(x) + γ[σ+, ρ
1
µk(x)] − γ[σ−, ρ

−1
µk (x)] = 0,(B2)

∂xρ
0
µk(x)− γ[σ−, ρ

0
µk(x)] +

2

vF

ρ1µk(x)

τ1k
= 0, (B3)

∂xρ
0
µk(x) + γ[σ+, ρ

0
µk(x)] +

2

vF

ρ−1
µk (x)

τ1k
= 0. (B4)

From these equations one immediately arrives at Eq. (7)
with τ1k being irrelevant. By multiplying σ and perform-
ing trace on both sides of Eq. (7), one gets the equation
satisfied by S0

µk(x) which can be written as





∂2
x − 4γ2 0 −4γ∂x

0 ∂2
x − 4γ2 0

4γ∂x 0 ∂2
x − 8γ2









S0
µkx(x)

S0
µky(x)

S0
µkz(x)



 = 0.(B5)

With specified boundary conditions, S0
µk(x) is solved and

the total spin signal S(x) is obtained by Eq. (8), as pre-
sented in Sec. III B 1. Explicitly, taking the boundary
condition (I) given in Sec. III B 1 as an example, one ob-
tains S0

µk(x) as

S0
µk(x) = S0

µk(0)e
−x/lx





√
1 + ∆2 sin(ωx+ φ)

0
c1 sin(ωx)



 , (B6)

with the parameters lx, ω, ∆, φ and c1 given in
Sec. III B 1. By further summing over k and µ one arrives
at Eq. (9).

Appendix C: Spin transport in graphene

The analytical study of spin transport is carried out
analogly. The driving term from the electric field in the
steady state is approximated as

eE

~

∂ρµk(x)

∂kx
=

eE

~

∂ρµk(x)

∂εk

∂εk
∂kx

≈ eEvF cos θk
∂ρ0µk(x)

∂εk
. (C1)

Then the Fourier transformation of the steady-state KS-
BEs reads

∂x
∑

l0=±1

ρl+l0
µk (x) + γ[σ+, ρ

l+1
µk (x)]− γ[σ−, ρ

l−1
µk (x)]

− eE
∂ρ0µk(x)

∂εk
(δl−1 + δl1) +

2

vF

ρlµk(x)

τ lk
= 0. (C2)

From this equation one comes to Eq. (20) by retaining
the lowest three orders of ρlµk(x). The equation satisfied

by S0
µk(x) is then





∂2
x − eE∂x∂εk − 4γ2 0 −4γ∂x + 2eEγ∂εk

0 ∂2
x − eE∂x∂εk − 4γ2 0

4γ∂x − 2eEγ∂εk 0 ∂2
x − eE∂x∂εk − 8γ2









S0
µkx(x)

S0
µky(x)

S0
µkz(x)



 = 0. (C3)
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Having the experience of solving Eq. (B5), we assume
that S0

µk(x) has the solution as S0
µk(x) = S0

µk(0)T(x)

and therefore S(x) = S(0)T(x). Performing summation
over µ and k on both sides of the above equation and
using the trick

∫ +∞

0

dkk[∂εkS
0
µk(0)]T(x) = −

∫ +∞
0

dεkS
0
µk(0)

~2v2F
T(x)

= −
1
β ln 1+eβµ↑

1+eβµ↓

S(0)~2v2F
S(x), (C4)

one obtains the equation satisfied by S(x) as





∂2
x + γE ∂x − 4γ2 0 −4γ∂x − 2γ2

E

0 ∂2
x + γE ∂x − 4γ2 0

4γ∂x + 2γ2
E 0 ∂2

x + γE ∂x − 8γ2





×





Sx(x)
Sy(x)
Sz(x)



 = 0, (C5)

in which E is given by Eq. (24). With the three differ-
ent typical boundary conditions presented in Sec. III B 1,
S(x) is solved to have the same form as Eqs. (9)-(11)
except that the parameters are now given in Sec. III B 2.
We now calculate E in both the degenerate and

nondegenerate limits. In the degenerate limit,

ln 1+eβµ↑

1+eβµ↓
≈ ln eβ(εF↑−εF↓) = β~vF(kF↑ − kF↓) =

β~vF
√
πNe(

√
1 + P0 −

√
1− P0) ≈ β~vF

√
πNeP0. Mak-

ing use of the relation S(0) = NeP0, one has

E ≈ eE√
πNeαR

=
eE

αRkF
, (C6)

where kF =
√
πNe, the magnitude of Fermi momentum

of unpolarized electrons with density being Ne. In the

nondegenerate limit, ln 1+eβµ↑

1+eβµ↓
≈ eβµ↑ − eβµ↓ and

S(0) ≈ 1

π

∫ +∞

0

dkk[e−β(εk−µ↑) − e−β(εk−µ↓)]

=
1

π(β~vF)2
(eβµ↑ − eβµ↓), (C7)

therefore

E ≈ eEβ~vF
αR

. (C8)

Appendix D: Derivation of two-component

drift-diffusion equation from KSBEs

The two-component drift-diffusion equation can be de-
rived from the KSBEs in the collinear spin space57 with
the z-axis along the initial spin-polarization direction n̂,
by neglecting the spin coherence (i.e., the off-diagonal

components of the density matrices). The density ma-
trices then have the diagonal form as 1

2 [fµk↑(x, t) +
fµk↓(x, t) + (fµk↑(x, t) − fµk↓(x, t))σz ]. In the following
we present a brief derivation of the two-component drift-
diffusion equation from the KSBEs with only the strong
electron-impurity scattering considered. Other kinds of
scattering can also be incorporated similarly under elas-
tic scattering approximation. The spin relaxation time
is τn̂ and the momentum relaxation time is τp (both are
given in Appendix A) and we neglect their momentum
dependence hereafter. The two-component drift-diffusion
equation is obtained from the equation of continuity and
the equation of current, both to be derived from the KS-
BEs.
The equation of continuity is derived as follows. By

multiplying the KSBEs [Eq. (5)] with 1
2 (1±σz) and then

performing the trace, one obtains the simplified KSBEs
for each spin band (σ =↑, ↓) as

∂fµkσ(x, t)

∂t
− eE

~

∂fµkσ(x, t)

∂kx
+ vF cos θk

∂fµkσ(x, t)

∂x

= −fµkσ(x, t)− fµk−σ(x, t)

2τn̂
. (D1)

The right-hand side of the above equation comes from
the term Tr{ 1

2 (1± σz)[∂tρµk(x, t)|coh + ∂tρµk(x, t)|scat]},
which can be calculated with the aid of the KSBEs in the
time domain [Eq. (A1)] and the corresponding solution
[Eq. (A7)]. Performing summation over µ and k on both
sides of Eq. (D1) in the steady state, one comes to

−eE

~

∑

µk

∂fµkσ(x)

∂kx
+

∂

∂x

∑

µk

vF cos θkfµkσ(x)

= −Nσ(x) −N−σ(x)

2τn̂
, (D2)

where Nσ(x) is the electron density with spin σ at posi-
tion x. Up to the first order of the electric field E, the
first summation over k in the above equation leads to
zero when fµkσ is approximated by f0

µkσ, the distribu-
tion in equilibrium. Defining the charge current along
the x-axis with spin σ as

Jσ(x) = −
∑

µk

evxfµkσ(x) (D3)

with vx = vF cos θk, one has the equation of continuity

−1

e

∂Jσ(x)

∂x
= −Nσ(x) −N−σ(x)

2τn̂
. (D4)

We then calculate the current Jσ from the diagonal
part of the KSBEs

∂fµkσ(x, t)

∂t
− eE

~

∂fµkσ(x, t)

∂kx
+ vF cos θk

∂fµkσ(x, t)

∂x

= −
fµkσ(x, t)− f0

µkσ(x, t)

τp
, (D5)
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where the right-hand side of the equation comes from the
electron-impurity scattering (Appendix A). In the steady
state, multiplying −evx on both sides of the equation and
then summing over µ and k, one comes to

e2EvF
~

∑

µk

cos θk
∂fµkσ(x)

∂kx
− ev2F

∑

µk

cos2 θk
∂fµkσ(x)

∂x

= −Jσ(x)

τp
. (D6)

Again, up to the first order of the electric field, one has

Jσ(x) = eµσENσ(x) + eD∂xNσ(x), (D7)

where the mobility µσ =
evFτp

~
√
2πNσ

and the charge diffusion

coefficient D = 1
2v

2
Fτp. For the case with small spin po-

larization, µ↑ ≈ µ↓ = µe ≡ evFτp
~
√
πNe

in whichNe = N↑+N↓
is the total electron density.
Finally, the two-component drift-diffusion equation is

obtained by combining Eqs. (D4) and (D7)

−µeE
∂Nσ(x)

∂x
−D

∂2Nσ(x)

∂x2
= −Nσ(x)−N−σ(x)

2τn̂
.

(D8)

This equation is consistent with that in the
literature.44–47 The equation of ∆N = N↑ − N↓
then reads

−µeE
∂∆N(x)

∂x
−D

∂2∆N(x)

∂x2
= −∆N(x)

τn̂
. (D9)

With boundary condition ∆N(+∞) = 0, ∆N(x) is
solved as ∆N(x) = ∆N(0)e−x/ln̂ where the spin trans-
port length44

ln̂ =

[

µeE

2D
+

√

(µeE

2D

)2
+

1

Dτn̂

]−1

. (D10)

When the electric field is zero,

ln̂ =
√

Dτn̂. (D11)

As indicated by Eqs. (D10) and (D11), in the frame of
the two-component drift-diffusion model, the anisotropy
of the spin transport or diffusion is solely determined by
that of the spin relaxation and no spatial spin precession
can be obtained.
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