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We have investigated the response of amorphous silicon (a-Si), in particular crystallization, to
external mechanical shear deformations using classical molecular dynamics (MD) simulations and the
empirical Environment Dependent Inter-atomic Potential (EDIP) [Phys. Rev. B 56, 8542 (1997)].
In agreement with previous results we find that, at low shear velocity and low temperature, shear
deformations increase disorder and defect density. At high temperatures, however, the deformations
are found to induce crystallization, demonstrating a dynamical transition associated with both shear
rate and temperature. The properties of a-Si under shear deformations and the extent at which
the system crystallizes are analyzed in terms of the potential energy difference (PED) between the
sheared and non-sheared material, as well as the fraction of defects and the number of particles that
possess a crystalline environment.
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I. INTRODUCTION

Amorphous silicon (a-Si) is widely used in the elec-
tronic and semiconductor industries. From a theoretical
point of view, because of its simplicity, it has become the
archetype of covalent amorphous systems that include sil-
ica and chalcogenide glasses. While these materials have
been extensively studied for almost four decades, their
behavior under external forces has received significant
attention only recently;1–9 yet, many questions remain
unanswered. For example, while the plasticity of a-Si is
attributed to the presence of liquid-like particles associ-
ated with 5-fold coordinated atoms,5,6 a complete picture
of the deformation effects on disordered and amorphous
materials is far from being complete. It has been shown
that, under external forces, amorphous materials may
crystallize,10–13 providing insight into the nucleation pro-
cess for these covalent materials which is only partially
understood.14,15 Indeed, crystallization is often studied
using amorphous-crystal or liquid-crystal interfaces16–19

and this is in particular the case for Si.16,17,20–22 Crys-
tallization may also result from the application of exter-
nal forces such as mechanical shear deformations23–25 or
magnetic fields.26

The properties of bulk crystalline silicon (c-Si) have
been investigated by means of molecular dynamics (MD)
simulations using both classical potentials5,6 and ab-
initio methods.27 It has been demonstrated that, un-
der the effect of shear, the interatomic bonds lose their
covalent character until a metallic state is established
in the shear direction;27 upon inverting the deforma-
tion, however, the perfect diamond structure is recov-
ered. In the case of disordered materials, it has been
shown that small strains bring these systems to deeper
energy minima in the glassy state.28 Under deformations,
these materials might escape the minima through the
high energy barrier and visit other minima of the energy
landscape giving rise to new local rearrangements of the

amorphous structure.29 These features depend on strain,
shear rate and temperature at which the deformations
are applied.3,7,30

Strain can also play a role in re-ordering the network.
Lee et al.,31 for example, have investigated deformation
and grain growth in partially crystallized nickel by means
of MD simulations and showed that shear deformations
can enhance crystallization in amorphous materials. Re-
cently, Mokshin and Barrat24,25 have demonstrated that
shearing an initially amorphous system leads to an in-
crease of the nano-crystalline ordering. They examined
both a one-component Lennard-Jones system 24 and the
one-component short-range Dzugutov potential.32 As the
disordered phase of these single-component close-packed
systems is known to be very unstable (even though the
Dzugutov model does better in this respect25), however,
it is not clear whether this shear-induced crystallization
is generic. Talati et al.,7 using both the Tersoff33 po-
tential and various versions of the Stillinger-Weber34 po-
tential for silicon, found no evidence of ordering from
the amorphous state in the range of shear velocities
and temperatures they considered. The crystallization
of computer-simulated silicon is, however, known to be
potential dependent,16 and both standard Tersoff and
the Stillinger-Weber potentials tend to over-stabilize the
liquid-like environments in the amorphous phase. Given
the importance of shear-induced crystallization, further
study of this covalent system is clearly warranted.

In view of this situation, we have carried out a detailed
MD study of the properties of a-Si under low-velocity
shear deformations, describing the energetics of the sili-
con atoms in terms of the Environment Dependent Inter-
atomic Potential (EDIP).35,36 The present study follows
up on a previous investigation of the effects of shear ve-
locity and temperature on amorphous silicon.30 In partic-
ular, it deals with the extent of the distribution of defects
when a low shear velocity is imposed on the system or
when the deformations are applied at high temperature.
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Our previous study was concerned with the effects of
shear velocity and temperature on amorphous silicon; it
was found that the impact of an externally applied strain
can be almost fully compensated by increasing the tem-
perature, allowing the system to respond more rapidly
to the deformation. In this article we show that that,
depending on shear velocity and temperature, a-Si can
either crystallize or remain in its glassy state, following a
more complex kinetic path than the Lennard-Jones sys-
tem but consistent with the ”universality” proposed by
Mokshin and Barrat.24,25

II. COMPUTER MODEL

As mentioned above, our calculations were performed
within the framework of MD and the EDIP classical
potential.35,36 This potential, which was fitted to vari-
ous zero-temperature bulk phases and defect structures,
reproduces accurately the structure and the dynamics
of a-Si as well as different crystalline structures. It
possesses remarkable transferability for zero-temperature
properties, including elastic constants, bulk crystal struc-
tures and point defects.36,37 This potential has been
used with success to study ion-beam induced amor-
phization of c-Si38,39 as well as crystallization of a-Si at
the amorphous-crystalline silicon interface.17,20 All sim-
ulations were performed using the massively parallel
MD package LAMMPS developed by Sandia National
Laboratories.40

The method adopted to apply the mechanical shear de-
formations has been discussed in detail in Ref.30 Three
regions are defined, as illustrated in Fig. 1: an upper
and a lower walls (perpendicular to the y-axis) used to
apply the mechanical shear deformations, and a central
region, with unconstrained mobile particles. The parti-
cles in the lower wall are fixed while those in the upper
wall move as a whole in the shear direction (x) at fixed
velocity vs (shear velocity). The distance between the
two walls (' 42 Å) is kept constant during the simula-
tions. The equations of motion for the mobile particles
are integrated using the velocity-Verlet algorithm with a
time step of 1 fs. Periodic boundary conditions are im-
posed in the x and z directions, while they are fixed in
the y direction. The thickness of the walls ('6 Å) is cho-
sen such as they each contain 1000 particles; the mobile
region thus contains 6000 particles. The walls are made
out of material from the a-Si matrix, so that their struc-
ture is similar to that of the bulk before shear is applied;
this choice ensures that no bias towards crystal growth
or structural modifications can be induced by the wall
layers.

To follow the system’s response to shear deformations,
we compute the radial distribution function (RDF), the
potential energy difference (PED) and the fraction of de-
fects (5-fold coordinated atoms) between the deformed
system and the initial non-sheared model.30 To follow a
possible crystallization process, we employ a topological

FIG. 1: (color online) A typical snapshot of the (8000-atom)
a-Si model; the mobile particles are in the center region be-
tween two parallel walls (see text for details).

description based on the ring structure of the two small
crystalline building blocks that characterize the diamond
and the hexagonal structures.41

III. SHEAR DEFORMATION RESULTS

A. Effects of shearing as a function of temperature

We have shown, in a previous study,30 that high shear
rates (relative to the temperature-dependent relaxation
rate) induce strong and inhomogeneous local strains in
the plastic regime; to allow the system to adapt to the
shear deformations, it is therefore necessary to drive it as
slowly as possible. On the basis of this work, we select a
shear velocity of 10−5 Å/ps, the slowest rate that allows
the system to reach the plastic regime at all temperatures
studied in the time scale accessible by MD simulations.

Simulations were performed at four different tempera-
tures (300, 600, 900 and 1000 K) and were stopped when
the total strain reached 12 %, which is sufficient to in-
duce plastic deformations of amorphous silicon.30 The
total simulation time of each run is about 500 ns. Fig-
ure 2 shows the evolution of the PED between sheared
and non-sheared system as a function of imposed strain
for the different temperatures considered. While a sys-
tematic increase of the PED was observed at all temper-
atures when the deformations are driven with high shear
velocity,30 Fig. 2 presents a more complex picture with
three well-defined regimes: an overall energy increase for
the two lowest temperatures, slight relaxation at 900 K,
and clear energy decrease at 1000 K.

More precisely, for the two lowest temperatures, 300
and 600 K, the potential energy increases by 0.02 and
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FIG. 2: (color online) PED between sheared and non-sheared
systems at temperatures 300, 600, 900, and 1000 K. The arrow
indicates increasing temperature.

0.004 eV/atom, respectively, from the initial equilibrium
state to the steady plastic regime. This behavior is
characteristic of strain-induced disordering, in agreement
with the results discussed by us in Ref. 30. At 900 K,
there is no peak associated with the elastic to plastic
transition; we observe rather a drop in energy at low
strain to a plateau 0.005 eV/atom below the initial value.
Shearing thus allows the system to reach a lower-energy
state — still amorphous — as had been observed, for
example, by Isner and Lacks.28 At 1000 K, finally, the
system’s response to the deformation is qualitatively dif-
ferent: the energy falls almost linearly up to a strain of
about 10 %, reaching a value about 0.06 eV/atom below
the initial state. The energy continues to fall, albeit at
a slower rate, for strains up to 12 %. Clearly, the en-
ergy change resulting from the application of shear is the
manifestation of strong structural modifications in the
network.

To understand the microscopic origin of these changes,
it is useful to examine the behavior of some structural
parameters. We present, in Fig. 3, the variation as a
function of strain of the proportion of 4- and 5-fold coor-
dinated atoms for the four temperatures considered. We
have demonstrated, in a previous article,30 that the in-
crease in potential energy of a-Si resulting from shear is
related to the increase in the number of defects, mainly
5-fold coordinated atoms that are considered as ”liquid-
like”. As suggested in Refs. 5 and 6, these defective
liquid-like atoms are directly associated with plastic de-
formations in amorphous silicon.

Fig. 3 demonstrates, here also, a direct correlation be-
tween changes in the potential energy and defects cre-
ated by the shear deformation. Our simulations show
that the number of 5-fold atoms (liquid-like] atoms first
increases as a function of shear at low temperatures, but
decreases at 900 K and 1000 K. At equilibrium (zero

FIG. 3: (color online) 4- (top panel) and 5-fold (bottom panel)
coordinated atoms as a function of strain at temperatures 300,
600, 900, and 1000 K. A cutoff of 2.8 Å is used for d efining
which atom are included in the nearest-neighbour count. The
arrow indicates increasing temperature.

strain), the fraction of 5-fold defects increases with tem-
perature, from 1.5 % at 300 K to 4.9 % at 1000 K, as can
be seen in Fig. 3. Upon shearing, in contrast, the system
crosses over to the opposite situation: the relative num-
ber of defects decreases as temperature increases. Thus,
from almost 7 % at 300 K for maximum strain — the
system is unable to relax the defects resulting from the
shear —, it drops to 4 %, at 600K and to 1.6 % at 1000 K.
As with the PED, the 900 K simulation shows the least
impact under shear, with the proportion of defects drop-
ping from 3.5 % to about about 2.5 % at a 12 % strain.

To characterize the response of amorphous silicon to
shear deformations, we show in Fig. 4 a 3D representa-
tion of the distribution of defects as a function of strain
and layer index (distance from the edges of the simula-
tion cell — see caption). This figure reveals that, in the
plastic regime, the defects are mostly concentrated in a
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few layers at 300 K, but that this distribution widens
as temperature is raised and becomes uniform at 900 K.
While the defect concentration is similar between 900
and 1000 K, we note that the distribution are qualita-
tively different and defects are concentrated at the in-
terface with the rigid walls for the highest temperature
(Fig. 4 (d)). The decrease of the defect fraction at 900 K
is consistent with the small relaxation observed in the
PED. At 1000 K, the small proportion and flat distri-
bution of defects over several layers indicate significant
changes in the structure of the sheared material. As we
discuss below, this behavior is associated with crystalliza-
tion spreading over a large region about the center of the
system. Since the walls are frozen in the a-Si structure,
the extent of crystallization is limited by the presence of
the walls and liquid-like defects are likely to occur at the
amorphous-crystal interface.

To obtain a first characterization of the structural sig-
nificance of these changes, we examine the radial distri-
bution function (RDF) of these four models at maximum
strain (12 %) and compare it with that of unstrained a-
Si at 300 K (Fig. 5). At 12 % strain, the energy and
the defect density are saturated in all cases and are thus
representative of the steady state plastic regime.

For temperatures 300, 600, and 900 K, the RDFs are
very similar and resemble closely that of relaxed a-Si.
The positions of the first- and second-neighbor peaks co-
incide, as evident in the inset. The main manifestation of
shearing is the formation of a new and small structure be-
tween the first and second peaks in the RDF. This is asso-
ciated with 5-fold coordinated atoms and was discussed
in details in Ref. 30; it is strongest at the lowest tem-
peratures and essentially disappears at 900 K, consistent
with the results of Fig. 3. Interestingly, at this tempera-
ture, the shearing counterbalances the effects of thermal
disorder, yielding an amorphous state with fewer coor-
dination defects (lower energy) than the original model.
The amorphous model is thermodynamically meta-stable
and the combination of the shearing and thermal effects
brings the system to a more relaxed structure with fewer
defects and low energy.

At 1000 K, now, a completely different behavior is ob-
served: the RDF is qualitatively different from the low-
temperature ones, exhibiting much better-defined peaks,
corresponding in fact to the crystalline state: closer ex-
amination of the system reveals that it is actually crys-
tallizing under the yoke of shear. However a complete
crystallization of the system cannot be reached since it is
limited by the presence of the walls which remain amor-
phous during the whole shearing process.

B. Extent of crystallization

The extent to which crystallization takes place is best
understood, and quantified, in terms of an order param-
eter. For this purpose, we use a topological character-
ization based on two-ring structures (”blocks”) associ-

FIG. 4: (color online) Fraction of 5-fold coordinated atoms
at 300 K (a), 600 K (b), 900 K (c) and 1000 K (d). The
configurations are divided into 12 layers along the y direction;
layers 1 and 12 are not shown as they correspond to the frozen
walls.

ated with local crystalline order;15,41 they are displayed
in Fig.6 (bottom panel). These blocks represent the
smallest 3D rigid structures that can be extracted from
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FIG. 5: (color online) Radial distribution function of the sys-
tem in the non-sheared state and at 12 % strain for the four
temperatures considered; the curves are shifted for clarity in
the main diagram and overlaid in the inset.

the tetrahedral lattice. The first one derives from the
Wurtzite (hexagonal) structure and contains 12 atoms;
the second is extracted from the diamond structure and
is made up of 10 atoms assembled as four 6-fold rings
back to back. A similar approach was used, for example,
in dense-packed systems by Mokshin and Barrat.24,25

We present in Fig. 6 a snapshot of the system under-
going crystallization; this corresponds to a configuration
obtained at the end of the simulation at 1000 K and
a total strain of 12 %. Clearly, the amorphous particles
(blue) are concentrated near the walls (dark) while atoms
within a crystalline environment occupy the bulk region
(yelow). The high concentration of the amorphous par-
ticles at the interfaces between the walls and the bulk
region is due to the presence of the walls. Let us men-
tion that the structure of the walls remain the same dur-
ing shear deformations. Therefore the crystallization of
amorphous silicon is limited by the amorphous nature
of the walls. This situation is similar to that found in
solid-liquid or amorphous-crystal interface studies. The
interface is extended over several layers, as for example
see the Ref. 19.

We present in Fig. 7 the fraction of atoms which can
be tagged as crystalline within the central region of the
system as a function of strain for the four temperatures
considered. At zero strain, about 20 % of all atoms can
be associated with a wurtzite or diamond structure at
all temperatures. Since the crystal-like particles are dis-
tributed uniformly across the simulation box, these are
associated with local topological fluctuations and do not
represent a crystalline phase; as discussed in Ref. 41,
the specific fraction of these crystal-like atoms in a well-
relaxed amorphous network actually depends on the de-
tails of the interatomic potential.

Consistent with the results presented in the previous

FIG. 6: (color online) Snapshot of the system showing the dis-
tribution of crystalline particles, in light/yellow, at 1000 K;
amorphous and liquid-like particles are in dark/blue, and the
rigid walls are in black. The bottom panel shows the blocks
used to characterize the local crystalline order: Wurtzite
(hexagonal) structure (right) and diamond structure (left);
see text for details.

section, the proportion of crystalline atoms remains ap-
proximately constant at the three lowest temperatures
considered (300, 600, 900 K), while fluctuations get larger
as temperature increases (see inset). These fluctuations
indicate that, by increasing temperature, a large fraction
of atoms see their local topological environment change
between amorphous and crystalline state. The wider dis-
tribution of the slip planes; slippage is concentrated in a
few layers at low temperature, as was shown in Fig. 4,
and involves a larger fraction of the box as the tempera-
ture rises.

At 1000 K, however, we observe a qualitative change.
The fraction of crystalline particles increases steadily —
slowly for strains ≤ 2 %, then more rapidly up to '10 %,
where it reaches a plateau close to 80 %. Such a three-
stage curve is similar to that observed in the crystal-
lization of silicon from the liquid phase (see for exam-
ple Fig. 4 of Ref. 41), suggesting a strain-induced nucle-
ation process leading to crystallization, limited only by
the presence of amorphous walls and grain boundaries.
Complete crystallization however cannot be expected, es-
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pecially close to the interfaces with the walls.

FIG. 7: (color online) Fraction of crystalline particles versus
strain for the four temperatures considered.

IV. DISCUSSION

While several experiments have been conducted to un-
derstand the micro-mechanisms of plasticity in metallic
glasses, precise understanding of the atomic processes
involved in shear propagation is far from being com-
plete. In particular, several experiments suggest the
possibility of deformation-induced crystallization, as well
as nano-void formation.31,42–46 Likewise, recent work on
single-component Lennard-Jones systems has shown that
shearing can lead to crystallization from the disordered
state.24,25 However, this has not yet been confirmed for
more complex, and more stable, disordered systems such
as amorphous silicon. Indeed, this material is known to
be very stable at low temperature; it can nevertheless
crystallize at temperatures well below the melting point
and numerous studies have focused on crystallization di-
rectly from the liquid phase41 or at the liquid-crystal
or amorphous-crystal interfaces.16,17,20–22 Here, we have
shown that, when external strain is imposed by a very
low shear velocity, three different regimes are observed:
(i) disordered, (ii) annealed and (iii) crystallized. The
first regime is systematically observed at low tempera-
tures or at high shear velocity (see Ref. 30 for more de-
tails). The second and third regimes are clearly observed
at 900 and 1000 K, respectively.

As we have discussed previously,30 when the shear rate
is faster than thermal relaxation, the steady-state plastic
regime involves the creation of additional 5-fold, liquid-
like coordinated atoms that facilitate the constant re-
organization of the network; the system is thus ”more
disordered” compared to the initial model. This behav-
ior has also been characterized for various other silicon
classical potentials by Talati et al.7

The second regime prevails when thermal effects are
sufficiently large to counterbalance the shear deforma-
tions. In this case, the applied strain allows the system
to sample more efficiently the energy landscape, finding
new basins with low-energy states that can be reached
due to the available thermal energy.28 This is what we
observe at 900 K for all quantities studied: energy per
atom (Fig. 2), defect density (Fig. 3), radial distribution
function (Fig. 5) and proportion of crystalline particles
(Fig. 7). From local to global properties, shearing at
this high temperature leads to deeper annealing. Inter-
estingly, even though considerable rearrangements take
place, the available thermal energy is not sufficient to
allow nucleation of the crystal and the phenomenon is
more akin to standard thermal annealing used for pro-
ducing ”good quality” glasses and amorphous materials.

At 1000 K, however, the combination of temperature
and shearing leads to crystallization. The evolution of
the order parameter shown in Fig. 7 follows closely that
observed for the nucleation from the liquid phase41: first,
small nuclei appear with a slow increase of the order
parameter; this is followed by the rapid growth of the
largest nuclei until the grains touch and the system be-
comes poly-crystalline. Remarkably, the time scale over
which crystallization takes places from the liquid phase
is more than a 100 times slower than for shearing; this
is likely due to the fact that diffusion is much slower in
the amorphous than in the liquid state, and so crystals
cannot assemble as quickly.

The validity of our results can be established to
some degree by noting that they are consistent with
the corresponding situation in such systems as amor-
phous alloys based on iron and nickel.49 Some experi-
ments have shown, for example, that an external driv-
ing force can induce crystallization in jammed sys-
tems that can be considered as models for disordered
materials.24,25 Vibrations,47,48 shear oscillations,50,51

and steady shear52 have been shown to induce crystalliza-
tion in granular systems of spherical particles, and shear
oscillations induce crystallization in colloidal glasses.53

We note also that crystallization was not observed by
Talati et al.7 in their MD simulations using both the SW
and the Tersoff potential; this is likely related to the fact
that they have considered relatively low temperatures.
We speculate that the details of the crystallization pro-
cess — temperature range, shear rate, etc. — are poten-
tial dependent, but the physics is not.

In contrast to single-component Lennard-Jones, amor-
phous silicon is a metastable phase that can be an-
nealed experimentally without crystallization; this al-
lows us to observe a much slower crystallization pro-
cess, emphasizing the similarities with classical nu-
cleation. This suggests that this phenomenon could
be more much generic that initially thought and
adds weight to previous observation relating shear and
temperature.4,10,12,14,21,41,42,44,49 This relation is not per-
fect, clearly, and further studies are necessary to fully
understand how one can integrate external deformations
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into standard nucleation theory.

V. CONCLUSION

In summary, we have investigated the behavior of
amorphous silicon subject to slow shear deformations
using classical MD simulations with the EDIP poten-
tial. While we found a systematic increase of the PED
and the defects fraction at low temperatures or at high
shear velocities, the shear deformations, when induced
by low shear velocities, lead to three different regimes
that emerge as a function of temperature: increased dis-
order for temperatures below ' 900 K, enhanced relax-
ation around 900 K, and crystallization at ' 1000 K.
The crystallization of amorphous silicon appears to fol-
low classical nucleation. While the exact parameter space

for these three regimes to develop certainly depends on
the choice of interatomic potential, our results, which are
consistent with a number of other observations, appear
to be robust and open a new approach for modifying and
manipulating glasses, and even controlling the formation
of crystalline nano-structures inside disordered matrices.
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