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We propose a model for a molecular junction with internal anharmonic torsional vibrations in-
teracting with an electric current. The Wangsness-Bloch-Redfield master equation approach is used
to determine the stationary reduced density matrix of the molecule. The dependence of the cur-
rent, excitation energy and angular momentum of the junction on the applied voltage is studied.
Negative differential conductance is observed in the current-voltage characteristics. It is shown that
a model with vibrationally dependent coupling to the electrodes, asymmetric with respect to the
interchanging of electrodes, leads to a strong correlation between the applied voltage and the an-
gular momentum of the junction. The model thus works as a molecular motor, with the angular
momentum controlled by the size and sign of the voltage.
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I. INTRODUCTION

Molecular electronics has become a dynamically grow-
ing field in the last decade. It is a highly interdisciplinary
research topic presenting many challenges in both the-
oretical and synthetic chemistry, solid state and many
particle physics and non-equilibrium statistical physics.
Much attention has been paid to the careful prepara-
tion of single molecule junctions and to studies of the
conductive properties of different molecules. Numerous
papers1–4, studying both the experimental and theoret-
ical aspects, have already been devoted to the subject.
It has also been noted5–8 that the molecular structure
and vibrations or conformational changes are among the
main points of interest, making the molecules distinct
from other electronic elements.

The coupling of electronic and mechanical degrees of
freedom is a standard part of electrical engineering and
the resulting gadgets are a standard part of our life. In
recent decades the coupling of electronic and vibrational
degrees of freedom has been achieved in nanoscale solid
state devices (see Schwab and Roukes 9 and Blencowe 10

for reviews on NEMS) with the quantum regime reached
in the mechanical degree of freedom. Driving the molecu-
lar vibrations with the electronic current is a natural ex-
tension of this concept. We can consider a molecular elec-
tronic element or molecular junction with some molecu-
lar groups performing rotational motion in response to
the bias voltage across the molecular junction. Such el-
ements have already been anticipated11 and the work is
closely related to electron shuttles12,13. Recently, the
excitation of periodic nuclear motion in molecular junc-
tions has been studied as a classical motion of atoms in
non-conservative forces induced by the current flow4,14.
Artificially-built molecular motors, where molecular vi-
brations are driven by light or stochastic fluctuations
due to interaction with a thermal bath (Brownian mo-
tion), have also been studied. The externally-driven tor-

sional motion of some small parts of molecules has been
demonstrated for molecules both in gas15 and mounted
on surfaces16.
The main goal of this paper is to demonstrate that

the rotational motion of a molecular group in a metal-
molecule-metal junction should in fact be a very common
phenomenon and that there are only two conditions re-
quired: 1) the presence of some part of the molecule capa-
ble of rotation with a moderately small potential barrier
against this rotation; and 2) a breaking of the mirror
symmetry in the junction (chirality of the junction).
To achieve this goal we set up a general model for the

description of the interaction of a current flowing through
a molecule with anharmonic molecular vibrations. To an-
alyze and understand the effect of anharmonicity in more-
or-less well-controlled conditions we first define a model
with some small vibrational coupling due to a small vi-
brational potential energy shift. We then switch to a
more realistic model of molecular vibrations motivated
by real molecular rotors as used in a previous experiment
with light-driven artificial molecular motors16. The dy-
namics of the system will be studied using rate equations
for the reduced density matrix of the molecule. The cur-
rent through the junction and the average angular mo-
mentum of the molecule are calculated as a function of
the voltage drop across the junction.

II. MODEL

The molecular junction consists of two metallic elec-
trodes or leads L and a molecular bridge M connected
between them. The corresponding division of the Hamil-
tonian reads

H = HM +HL +HML. (1)

The model of the bridging molecule is assumed to con-
sist of one vacant electronic level that allows electrons

http://arxiv.org/abs/1007.4826v3
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FIG. 1. Schematic representation of the junction

to tunnel through it from the left lead to the right lead.
We will call this state the localized state. There is an
extra charge on the molecule when this state is occupied,
and we will thus speak about a neutral, or a charged,
molecule (anion) if the state is unoccupied or occupied,
respectively. In addition, we include a vibrational degree
of freedom on the bridge, which exchange energy with
the electrons. We thus assume

HM = h0dd
† + h1d

†d, (2)

where d† and d create and annihilate electrons in the lo-
calized state on the bridge. The operators h0 and h1

describe the vibrational motion of the nuclei in the neu-
tral and charged state respectively. The form of both
h0 and h1 is based on the Born-Oppenheimer vibra-
tions for isolated molecules and in the spirit of the Born-
Oppenheimer approximation we assume, that both h0

and h1 commute with d† and d. The Born-Oppenheimer
approximation is, of course, broken when we allow elec-
tronic transitions due to the coupling to the leads HML.
Figure 1, showing schematically the system that we

have in mind, may serve to guide us through further
specifications of the model. We will consider only one
nuclear (vibrational) degree of freedom representing the
rotation of a part of the molecule, pictured as a ben-
zene ring bound in para positions to other parts of the
molecule that are directly attached to the metal leads.
The vibrational Hamiltonians h0 and h1 are both of the
form

hi = −
1

2I

∂2

∂ϕ2
+ Vi(ϕ), (3)

where ϕ ∈ 〈0, 2π〉 represents the vibrational coordinate
(angle of rotation of the ring), I is the moment of inertia
of the ring and Vi(ϕ) is the Born-Oppenheimer vibra-
tional potential of the molecule with unoccupied (i = 0)
or occupied (i = 1) electronic level. In this paper we
want to characterize the main features of the dynam-
ics of transport through junctions with such anharmonic
vibrations and we assume a simple analytic yet rather
general shape of potentials17 as

Vi(ϕ) = εi +Ai cos(niϕ+ ϕi). (4)

We use two sets of models. In the models of group 1 we
want to capture the basic features of the usual models

used for studing molecular conduction junctions coupled
to vibrations18–21, but to allow for large amplitude an-
harmonic motion. We thus take both V0 and V1 to be the
potentials of the mathematical pendulum (n0 = n1 = 1),
one shifted with respect to the other (ε0, ϕ0 differs from
ε1, ϕ1). For these models we also set the moment of iner-
tia I to an unrealistically small value22 to allow for a more
efficient numerical solution. The second group of mod-
els are motivated by more realistic parameters, as might
be expected in real molecular systems (see, for example,
Fortrie and Chermette 23 or Tsuzuki et al. 24 ). The vi-
brational potential V0 for the neutral molecule is thus
characterized with a smaller amplitude A0 and larger
number of oscillations (n0 = 2) than the potential for
the charged molecule V1 (for biphenyl junction see Čı́žek
et al. 25 ). Also the value of I is set larger to describe
the inertia of the benzene ring. All values of the model
parameters are summarized in Table I.
In principle, the parameters of the molecular Hamilto-

nian should also depend on the voltage applied across the
junction. We follow the common practice (see, for exam-
ple, Galperin et al. 21 or Hartle et al. 26 and the works
cited there) of using the molecular Hamiltonian indepen-
dent of voltage. This approximation is also supported by
the calculation of molecular potentials in the electric field
made by Petreska et al. 17 , where the potential barriers
do not show a significant change for realistic values of the
electric field.
The Hamiltonian of the leads is written in the form

HL =
∑

α=l,r

∑

k

εkαc
†
kαckα, (5)

where the operator c†kα creates an electron in the state
with a wave number k in the lead α ∈ {l, r}. To be
more specific we assume that the Hamiltonian (5) was
obtained from the diagonalization of the one-dimensional
nearest-neighbor tight-binding model27, i. e. the disper-
sion relation reads

εkα = µα + 2β1 cos(k), (6)

where µα is the chemical potential of the lead α. When
we talk about the voltage U applied to the junction we
assume µl = +U

2 for the left lead and µr = −U
2 for

the right lead. The parameter β1 = 3 eV defines the
width of the conduction band in the leads. It is chosen
in order to provide a band, wide enough to exclude edge
effects. Each lead is separately assumed to be in thermo-
dynamic equilibrium with states populated according to
the Fermi-Dirac distribution

fα(εkα) =
[

1 + e(εkα−µα)/kT
]−1

. (7)

To complete the description of the model the molecule-
lead coupling

HML =
∑

α=l,r

∑

k

Vdkα(d
†ckα + c†kαd) (8)



3

TABLE I. Summary of all parameters for the models in use. The energies εi, Ai are in units of eV, angles in radians and
moment of inertia in atomic units (mea

2
0).

V0(ϕ) = ε0 + A0 cos(n0ϕ) V1(ϕ) = ε1 +A1 cos(ϕ+ ϕ1) Vα(ϕ) = cos(ϕ− ϕα)

Model I ε0 A0 n0 ε1 A1 ϕ1 ϕl ϕr

1a - -

1b 2000 1.25 1.25 1 1.35 1.25 0.03 π π

1c π 3π/2

2a

2b
226852 -0.05 0.05 2 0.10 0.20 π+0.03 0

1.0

2.0

must be specified. We assume the separable form of
the coupling coefficients Vdkα = VkVα(ϕ). The depen-
dence on the electron momentum Vk = β2 sin(k) is again
motivated by the one dimensional nearest-neighbor tight
binding model, where the sine term comes from the elec-
tronic wavefunction20 and the parameter β2 is the overall
coupling strength, which is set to β2 = 0.07 eV. We shall
study several forms of the angle dependent part Vα(ϕ).

• Model 1a. The case of angle-independent coupling
Vα(ϕ) = 1. This assumption simplifies the treat-
ment of the dynamics significantly. Furthermore,
this is the case most often considered by other
studies18–21.

• Model 1b. Here we introduce angle-dependence into
the coupling term Vα(ϕ) = cos(ϕ − ϕα) but we
do not break the symmetry between the left and
right lead ϕl = ϕr = π. The form of the angular
dependence can be motivated by the Hückel model
(see Čı́žek et al. 25 , Pauly et al. 28 ).

• Model 1c. Finally we break the symmetry of the
system, taking Vα(ϕ) in the same form as in model
1b but with ϕl = π, ϕr = 3π/2. The asymmetry
can arise as a result of different molecular bonding
to the left and right lead. We can, for example,
consider a molecule consisting of a chain of three
aromatic rings with the first ring fixed to the left
lead the middle ring acting as the rotor, and the
right ring fixed to the right lead (this idea is used
in the diagram of the model in Figure 1). Breaking
the symmetry provides circumstances for observing
the ”motor effect”, i.e. preferential rotation of the
rotor in one direction depending on the sign of the
voltage applied across the junction.

• Models 2a and 2b use the same form of coupling as
the Model 1c. The parameters ϕl, ϕr for all models
are summarized in Table I.

III. THEORY

The Hilbert space of our system is a direct product of
the spaces of electronic and vibrational degrees of free-
dom. In the electronic space, we can define a complete

set of projectors

dd† + d†d = 1, (9)

where the projector dd† projects on the part of the
Hilbert space with the unoccupied molecular bridge and
d†d projects on the occupied bridge space. It is advan-
tageous to use different basis sets in the vibrational part
of the Hilbert space according to the occupation of the
bridge. We thus define two basis sets |n〉 and |v〉

h0|n〉 = En|n〉,

h1|v〉 = Ev|v〉.
(10)

This choice diagonalizes the molecular part of the Liou-
villian operator L0 (see next section) and in the case of
the harmonic molecular potentials Vi it is equivalent to
performing the polaron transform29 as made in the in-
dependent boson model30. With cosinusoidal potentials,
the states |n〉, |v〉 can be expressed in terms of Math-
ieu functions. Energy levels En and Ev (n,v = 0,1,...)
of the unoccupied and occupied molecule for models 1
and 2 are shown in Figures 2 and 3 respectively. From
the point of view of classical mechanics, such a shape of
the potential provides a rotational barrier with an en-
ergy of ǫi + Ai, which divides the two types of motion:
vibrational (when the energy of the system is below the
barrier) and rotational. In a quantum mechanical de-
scription the wavefunctions of states with an energy be-
low the barrier are localized in space and in this sense
can be called vibrational. In contrast, states above the
barrier are delocalized through the whole interval 〈0, 2π〉.
These states are two times degenerate, as the two direc-
tions of rotation are available above the barrier and they
are energetically equivalent. We will call them rotational
states. Well above the classical barrier, when the sys-
tem has a lot of energy and does not feel the potential
anymore, the states almost coincide with the free rotor
states.

A. Master Equation

Different theoretical approaches to the transport of
charge across a molecular junction with a coupling to
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FIG. 2. Energy levels of the unoccupied (red lines) and occu-
pied (green lines) molecular bridge of Model 1. The respective
potentials are the borders of dark gray and light gray areas.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 π/2 π 3π/2 2π

E
n

e
rg

y
 [

e
V

]

Angle [rad]

0 π/2 π 3π/2 2π

C
o

u
p

lin
g

 s
tr

e
n

g
th

left right

FIG. 3. The energy levels and potentials for Model 2 plotted
in the same way as in the previous figure. The angular de-
pendence of molecule-lead couplings Vα(ϕ) = cos(ϕ−ϕα) are
shown in the inset for the left α = l and right α = r leads.

vibrations have been discussed in the review article of
Galperin et al. 3 . Here we consider a weak-coupling case,
which can be treated with the standard master-equation
approach26,31,32. A slight modification is needed to ac-
count for the anharmonicity of the vibrations as de-
scribed in what follows.

In the framework of master equation (ME) theory
we calculate the reduced density matrix (RDM) of the
molecular bridge ρ. We start from ME in the Wangsness-
Bloch-Redfield (WBR) form33

∂

∂t
ρ(t) = L0[ρ(t)] + L1[ρ(t)], (11)

where the Liouvillian super operator L ≡ L0 + L1 with

L0[ρ(t)] = −i[HM , ρ(t)],

L1[ρ(t)] = −TrL
∞
∫

0

dτ [HML, [HML(−τ), ρ(t) ⊗ ρ0L]],

(12)
and

HML(−τ) = e−i(HM+HL)τHMLe
+i(HM+HL)τ . (13)

These equations are derived as a second order expansion
in HML, which is assumed to be small. The equilibrium
RDM of the leads is denoted ρ0L. The first term L0 de-
fines the time evolution for a ”free” molecular bridge that
is disconnected from the leads. The second term L1 in-
corporates the influence of the leads and could be written
as the sum of two independent terms L1 = L1,l+L1,r for
the left and right leads respectively.
Here we are not interested in the time evolution of the

density matrix. We assume the existence of a stationary
state ∂ρ/∂t = 0 which satisfies the equation L[ρ] = 0. In
basis representation, the Liouvillian is a 4th rank tensor.
We search for a nontrivial solution of the equation

∑

kl

Lijklρkl = 0. (14)

Before we write expressions for the components of this
tensor we decompose RDM ρ in the following way

ρ = ρ00dd
† + ρ11d

†d+ ρ01d+ ρ10d
†. (15)

With this representation the right hand side of the equa-
tion (11) can be reorganized in blocks

L

(

ρ00
ρ11

)

=

[(

L0
00 0

0 L0
11

)

+

(

Ll
00 Ll

01

Ll
10 Ll

11

)

+

(

Lr
00 Lr

01

Lr
10 Lr

11

)](

ρ00
ρ11

)

.

(16)

Equations for ρ01 and ρ10 are decoupled from this system
for ρ00 and ρ11 and they are not included here, since the
observables of interest are also independent of ρ01 and ρ10
(see below). To write the elements explicitly we use basis
sets (10). Basis {|n〉} for the block ρnn′ ≡ 〈n|ρ00|n

′〉 and
{|v〉} for the block ρvv′ ≡ 〈v|ρ11|v

′〉. We will consistently
use the letters n, n1, n2, n

′ to number the vibrational
states of the unoccupied molecule and the letters v, v1,
v2, v

′ for the states of the occupied molecule, omitting
the index 0/1 that would otherwise distinguish the occu-
pancy. Thus the components L0

n′

1
n′

2
n1n2

, L0
v′

1
v′

2
v1v2

of the

zeroth order contributions L0
00, L

0
11 read

L0
n′

1
,n′

2
,n1,n2

= iδn′

2
n2
δn′

1
n1
(En2

− En1
),

L0
v′

1
,v′

2
,v1,v2

= iδv′

2
v2δv′

1
v1(Ev2 − Ev1).

(17)

The lowest order contributions Lα
ij describing the pres-

ence of the leads α = l, r in eq. (16) are expressed as
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Lα
n′

1
,n′

2
,n1,n2

= − 1
2δn1n′

1

∑

v
fα(ωn2v)Γα(ωn2v)V

α
n2vV

α
vn′

2

− 1
2δn2n′

2

∑

v
fα(ωn1v)Γα(ωn1v)V

α
vn1

V α
n′

1
v,

Lα
v′

1
,v′

2
,v1,v2

= − 1
2δv1v′

1

∑

n
[1− fα(ωnv2)]Γα(ωnv2)V

α
v2nV

α
nv′

2

− 1
2δv2v′

2

∑

n
[1− fα(ωnv1)]Γα(ωnv1)V

α
nv1V

α
v′

1
n,

Lα
n′

1
,n′

2
,v1,v2

= 1
2 [1− fα(ωn′

1
v1)]Γα(ωn′

1
v1)V

α
n′

1
v1
V α
v2n′

2

+ 1
2 [1− fα(ωn′

2
v2)]Γα(ωn′

2
v2)V

α
v2n′

2

V α
n′

1
v1
,

Lα
v′

1
,v′

2
,n1,n2

= 1
2fα(ωn1v′

1
)Γα(ωn1v′

1
)V α

v′

1
n1
V α
n2v′

2

+ 1
2fα(ωn2v′

2
)Γα(ωn2v′

2
)V α

n2v′

2

V α
v′

1
n1
,

(18)

where ωnv ≡ Ev − En is the transition energy, V α
nv ≡

〈n|Vα(ϕ)|v〉 is the generalized Franck-Condon overlap
for the transition and the factors fα(ω)Γα(ω) and [1 −
fα(ω)]Γα(ω) come from the imaginary part of the func-
tions

ξ1(E) ≡ i
∞
∫

0

dτ
∑

k

e−i(εkα−E)τ (fkα)V
2
k ,

ξ2(E) ≡ i
∞
∫

0

dτ
∑

k

e+i(εkα−E)τ (1− fkα)V
2
k

(19)

resulting from the time integration in eq. (12). The real
part of these functions that leads to renormalization of
the energy levels is neglected here (see also discussion in
Leijnse and Wegewijs 34 where it is argued that the real
part is canceled out in higher orders). The imaginary
parts can be calculated analytically. For the tight binding
model of leads Γ(E) become20

Γ(E) =
β2
2

β2
1

√

4β2
1 − (E − µα)2 (20)

inside the band (i.e. when E ∈ [µ − 2β1, µ + 2β1]) and
equal to zero outside.

It is often argued that the nondiagonal elements (ρnn′

and ρvv′ for n 6= n′, v 6= v′ ) in RDM decay rapidly in
time and are neglected in the search for the stationary
state. Here the nondiagonal elements for near-degenerate
states lead to a nonzero angular momentum for the ring
and can not be neglected. However, to increase the nu-
merical efficiency we consider only the elements close to
the diagonal and assume that the RDM has a band struc-
ture. Final results are presented for the RDM, which
includes 14 sub diagonals, while its overall dimensions
are 202×202 for Model 1 and 402×402 for Model 2. We
tested that the presented results are stable with respect
to changes in the number of sub diagonals and the num-
ber of basis functions used in the calculation.

For numerical convenience, we reshape the tensors L
of the fourth rank into matrices using compound indices,
mapping the pair of numbers nn′ to a single number ν
(and similarly for vv′). Instead of (14) we then solve the
set of equations

∑

ν′

Lνν′ρν′ = 0 (21)

together with the normalization condition Tr{ρ} ≡
∑

n ρnn +
∑

v ρvv = 1 to find the stationary state.

B. Observables of interest

The general formula for the current (see, for example,
Hartle et al. 26 ) through one level in ME theory reads

I =

∞
∫

0

dτTr

{

[HML(−τ), ρ⊗ ρ0l ]
∑

k

Vdk(d
†ck − c†kd)

}

,

(22)
where only the contribution from the left lead is included
in HML. In our case, the formula reduces to

I =
∑

nv

Γl(ωnv)V
l
nv

{

fl(ωnv)
∑

n′

V l
n′vρn′n−

−[1− fl(ωnv)]
∑

v′

V l
n,v′ρvv′

}

. (23)

The mean value of the molecular Hamiltonian HM gives
the average excitation energy of the bridge. This quan-
tity can be expressed as the sum of two contributions
from the molecule occupied/unoccupied with an addi-
tional electron, and in similar fashion as was the current

〈HM 〉 = 〈E0〉+ 〈E1〉 =
∑

n

Enρnn +
∑

v

Evρvv. (24)

The last important observable to be discussed is the an-
gular momentum of the molecule. This is by construction
constrained along the rotational molecular axis z in our
model. The corresponding operator reads

Lz = −i
∂

∂ϕ
. (25)

We notice, that the operator Lz acts independently on
the occupied and unoccupied bridge spaces, or, in other
words, the off-diagonal blocks ρ01 and ρ10 in the expan-
sion (15) do not contribute to the mean value. It allows
us to write the mean value in the form

〈Lz〉 =
∑

nn′

〈n|Lz|n
′〉ρn′n +

∑

vv′

〈v|Lz|v
′〉ρv′v =

=
∑

m

mρ0m +
∑

m

mρ1m, (26)

where we have defined the populations ρ0m, ρ1m of ro-
tational eigenstates Lz|m〉 = m|m〉 for unoccupied and
occupied states of the molecule respectively, i. e.

ρ0m =
∑

nn′

〈m|n′〉ρn′n〈n|m〉, (27)

ρ1m =
∑

vv′

〈m|v′〉ρv′v〈v|m〉. (28)
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Notice the importance of the off-diagonal elements of
the RDM in (26). Since the diagonal elements 〈n|Lz|n〉,
〈v|Lz|v〉 are zero we get 〈Lz〉 = 0 if we neglect the off-
diagonal elements ρnn′ , ρvv′ for n 6= n′, v 6= v′. While
the value of the current is mainly determined by the di-
agonal elements ρnn, ρvv the nonzero angular momen-
tum is a consequence of the non-vanishing off-diagonal
elements in the energy representation, or equivalently a
consequence of the asymmetry ρim 6= ρi−m in the angular
momentum representation.

IV. RESULTS AND DISCUSSION

In this section we discuss the results for the calculation
of the current-voltage characteristics and other proper-
ties of the junctions. We start with Model 1, where the
harmonic approximation holds for the small amplitude
of vibrational motion and the levels are near equidistant.
In addition to the known behavior of such junctions with
harmonic vibrations we can expect some new effects due
to the dependence of the molecule-lead coupling on the
vibrational coordinate. For any higher vibrational excita-
tion of the junction molecule we would expect a breaking
of the harmonic approximation.

A. Current and excitation function

The current-voltage characteristics and the vibrational
excitation energy of the junction for Models 1a-c at tem-
perature T = 50K are shown in Figure 4. Let us first fo-
cus on the current-voltage curve. The red curve, for the
model 1a, exhibits the behavior expected for the model
with a very small coupling between the vibrations and
electronic motion. We observe a resonance step at the
voltage of 0.2 V corresponding to twice the charging en-
ergy of the molecule 0.1 eV.
The models 1b (green line) and 1c (blue line) differ by

having a more complicated step structure and the dif-
ferent stationary value of current that is finally reached.
This second difference is easily understood: while the
coupling to the leads has the same maximum strength
for all of the models (they all reach the value 0.07 eV),
the angular dependence in models 1b, 1c makes it effec-
tively smaller (a quantitative argument as to why this
difference is given by factor of two follows at the end of
this section). The angular dependence is also a source of
the negative differential conductance since the coupling
in Model 1b reaches a maximum for angles near the equi-
librium position of the vibrational coordinate ϕ. The
non-equilibrium vibrational distribution for larger volt-
ages therefore reduces the coupling. The negative differ-
ential conductance effect disappears in Model 1c because
the coupling to the right lead VR(ϕ) peaks at a different
angle and is therefore effectively increased by the increase
in the vibrational excitation of the molecule. Both Mod-
els 1b and 1c have the same average value of couplings
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FIG. 4. Current (top) and mean value of excitation energy
〈HM 〉 (bottom) as a function of the voltage, applied to the
junction, for models 1a-c at temperature T = 50K. The
shaded bars show the positions of the steps derived from the
energies of the molecular levels (see text).

VL/R(ϕ) and the asymptotic value of the current for large
voltages is therefore identical for both models.
To explain the details of the step-like behavior of the

curves we start with the mechanism of sequential tun-
neling through the bridge. Thus electron conduction is
understood as a sequence of charging (electron attach-
ment)

e− +M(n) → M−(v) (29)

and discharging (electron detachment)

M−(v) → M(n) + e− (30)

events on the bridge, where e− is the electron in the leads
and M(n) and M−(v) stands for the neutral molecule
and the anion with the vibrational states |n〉 and |v〉
respectively. In the first event (charging), the electron
starts in one of the leads in state |k〉 and jumps into the
unoccupied bridge in the vibrational state |n〉 and turns
it into an occupied bridge in the vibrational state |v〉.
In the second event the electron starts in the occupied
bridge in the state |v〉 and leaves the bridge in the state
|n〉 jumping into the leads to the state |k〉. The energy
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TABLE II. Inelastic one-electron attachment and detachment processes. The table gives the threshold electron energies of the
inelastic processes and approximate size of the matrix elements responsible for the transitions due to electrons from the left
and right leads. All values are in units of eV.

Series Process ωNv = Ev − En |〈n|Vl|v〉|
2 |〈n|Vr|v〉|

2

El ek +M0
n ↔ M1

v=n 0.1 0.2− 1 ∼ 10−4

Ex1 ek +M0
n ↔ M1

v=n+1 0.21-0.23 0.005 − 0.015 0.05− 0.3

Ex2 ek +M0
n ↔ M1

v=n+2 0.31-0.36 0.001 − 0.06 0.001 − 0.01

Ex3 ek +M0
n ↔ M1

v=n+3 0.42-0.48 < 0.005 < 0.005

Dx1 ek +M0
n ↔ M1

v=n−1 -(0.01-0.03) 0.005 − 0.015 0.05− 0.3

Dx2 ek +M0
n ↔ M1

v=n−2 -(0.16-0.12) 0.001 − 0.05 0.001 − 0.01

Dx3 ek +M0
n ↔ M1

v=n−3 -(0.23-0.28) < 0.005 < 0.005

is conserved in both of the events

εk + En = Ev, (31)

where εk is the energy of an electron in a state |k〉. The
vibrational energies En and Ev of the occupied and un-
occupied molecular bridge were defined in equation (10).
Each difference ωnv ≡ Ev−En defines a threshold energy
for one possible in/out channel, which becomes available
at the voltage U = ±2ωnv (when the chemical potentials
of the leads are equal µα = ±U

2 = ±ωnv) and can (but
not necessary will) show itself as a step in Figure 4. Since
the structure of the energy levels is the same for all the
models 1a-c, we can expect the steps at the same volt-
age in all three current-voltage curves. The values of the
threshold energies ωnv ≡ Ev −En are shown in Table II.
The transitions are divided into several groups. The

vibrational state of the molecule is unchanged and v = n
in the first group denoted El. The corresponding thresh-
old energy is ωnv = 0.1eV independent of the value of n
because the shape of the two potentials V0(ϕ) and V1(ϕ)
is identical except for a vertical and horizontal shift. The
excitation groups Ex1-Ex3 correspond to v = n + 1,
v = n+2 and v = n+3. In the harmonic approximation
the threshold energies would also be independent of n.
Table II shows the range of values of ωnv for low states
n = 0, 1, ..., 10 (the choice of this maximum value of n
is guided by the average excitation energy shown in the
lower part of the figure). Lastly, the deexcitation groups
Dx1-Dx3 are characterized by v = n− 1, v = n − 2 and
v = n − 3. If we compare the predicted positions of the
steps U = ±2ωnv given by the values from Table II with
the positions of the steps in Figure 4, we see that the
steps correspond to voltages approximately 0.2, 0.3, 0.45
and 0.7 volts, i. e. to the series El, Dx2, Ex1 and Ex2.
It is remarkable that the vibrational energy of the bridge
doesn’t show any steps for a voltage |U | > 0.8V and
grows parabolically for all models. The current-voltage
characteristics also become smooth in this voltage region.
The level of excitation of the molecule is too high for the
harmonic approximation to apply and many different vi-
brational states are involved. The energy differences be-
come irregular and it is not possible to sort them into
groups, as in the case of the low, near harmonic vibra-
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FIG. 5. Angle distributions and populations calculated inde-
pendently for the unoccupied and occupied bridge in Model
1c.

tions above. We would expect that quasi-classical theory
can be applied in this regime.
At equilibrium (U = 0) only one lowest vibrational

level E0
n = 0.065 eV is populated (it is localized close

to the minimum in the vibrational excitation curve in
Fig. 4). The bridge remains ”closed” for current until
the first step occurs at the voltage 0.2 V, at which point
the whole El set of channels then opens. If we consider
the bridge originally in its ground state with energy E0

n

the first tunneling event

εk + En=0
El

−−−→ Ev=0

El
−−−→ En=0 + εk
Dx1

−−−→ En=1 + εk′

(32)

can leave the bridge in the excited state En=1 through
the channel Dx1. When the next electron comes and the
bridge is already in an excited state, tunneling can excite
it even higher, but only by one quantum per tunneling
event. Excitation to higher levels is limited by the com-
peting process of de-excitation. This picture is the same
for all three models. To appreciate the differences among
the models we must look at the Franck-Condon factors
|〈n|Vl|v〉|

2 and |〈n|Vr|v〉|
2 responsible for the strength of

each ek +M0
n ↔ M1

v transition.
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FIG. 6. Angular probability distribution of the bridge p(ϕ)
at different voltages.

It is Vl = Vr =constant for the Model 1a. Since the
potentials V0 and V1 differ only slightly, it is 〈n|v〉 ≃
δnv and the El channels are dominant with only a small
contribution from Ex1, Dx1 and virtually no contribution
for higher channels. This explains why the red curves in
the current-voltage and excitation graphs show steps only
at voltages corresponding to these channels.
The values of |〈n|Vα|v〉|

2 for Models 1b and 1c are
shown in Table II. We should keep in mind that Vl=Vr

for Model 1b. The values of |〈n|Vr|v〉|
2 shown in the last

column are the ones for Model 1c. There is a pronounced
difference between Models 1b and 1c in the first step at
U = 0.2V and we can now understand why. While both
charging and discharging of the bridge proceeds domi-
nantly through the El channel for Model 1b (giving a
step similar to that in Model 1a), the discharging to the
right electrode through the channel El is strongly sup-
pressed for Model 1c. Thus for Model 1c discharging of
the molecule to the right lead is possible mainly through
the channel Dx1. This gives a smaller value for the cur-
rent, but a higher value of vibrational excitation for this
model. Also, for higher voltages, the sizes of the steps
in the excitation curves follow the sizes of the Franck-
Condon factors.
One striking feature apparent from Figure 4 is the

asymmetry of the curves for Model 1c - a consequence
of the asymmetry |〈n|Vl|v〉|

2 6= |〈n|Vr|v〉|
2. For negative

voltages the channel El is not available in Model 1c, even
for U < −0.2V, because charging has to proceed from the
right electrode and the Franck-Condon factor |〈n|Vr|v〉|

2

is suppressed by four orders of magnitude. Charging of
the bridge only becomes possible with the availability of
the Ex1 process. Both current and vibrational excitation
is thus only significant for negative voltages U . −0.45V.
Another way to look at this asymmetry is to inspect the
angle distributions

p0(ϕ) ≡ Tr{dd†ρ|ϕ〉〈ϕ|} (33)

p1(ϕ) ≡ Tr{d†dρ|ϕ〉〈ϕ|} (34)

and the populations ρvv of vibrational levels on the oc-

cupied and ρnn on the unoccupied bridge, respectively.
These are shown in Figure 5 for voltages U = ±0.5V.
We can make the observation that the angular distribu-
tion for the occupied molecule follows the shape of the
angular dependence of the coupling to the donor elec-
trode (left/right for positive/negative voltage), and the
distribution of angles for the unoccupied molecule follows
the coupling to the acceptor electrode. The same effect
is responsible for the asymmetry found in the population
distributions in the lower part of Figure 5. Similar dis-
tributions for Models 1a and 1b (not shown here) exhibit
no asymmetry for the change U → −U . For these two
models the vibrational distribution is also weakly corre-
lated with the charging state of the molecule, i. e. the
distributions ρnn and ρvv have almost identical shape as
functions of energy En and Ev (i. e. the red and green
curves in Figure 5 are almost overlapping for Models 1a
and 1b). The small difference in the populations is only
due to the small difference between the potentials V0 and
V1. The role of symmetries is further discussed in the
next section.
The angular distributions p(ϕ) = Tr{ρ|ϕ〉〈ϕ|} at the

voltages U = 0.25, 0.5, 0.75 and 1.0 volts are compared in
Figure 6 for all the models 1a-c. There is a common trend
for the angle to become more and more delocalized while
the voltage grows. The degree of delocalization follows
from the excitation curve in Figure 4 (lower graph). At
U = 0.25V, the distribution for Model 1c is the broad-
est, while Model 1a wins out at higher voltages. The
angle is completely delocalized above the last step of the
excitation in the IV curves. The current for Models 1b
and 1c is asymptotically a factor of two smaller than the
current for Model 1a. We have just seen that the angle
distribution at the bridge is more or less homogeneous
for large voltages. For this reason, the angle-dependent
part of the coupling for Models 1b and 1c, which is equal
to (cos(ϕ−ϕα))

2, reaches its mean value 0.5. For Model
1a, the angle-dependent part of the coupling is constant
and equal to 1, i.e. twice as large.

B. Angular momentum (motor effect)

In Figure 7, we plot the mean value of the angular
momentum 〈Lz〉 against the voltage applied across the
junction. The calculated value of the angular momentum
〈Lz〉 is in general nonzero for all the models 1a-1c and can
reach values of the order of the reduced Planck constant ~
(atomic unit of angular momentum), the value depending
strongly on the voltage. The model is thus an example
of a molecular scale device which can perform rotations
controlled by the voltage applied to the device. This
effect is particularly pronounced in Model 1c, where the
direction of rotation is inversed with the inversion of sign
of the voltage.
The symmetries of the curves can be understood from

the symmetries of each model. None of the models ex-
hibit symmetry with respect to the inversion of the an-
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FIG. 7. Mean value of the angular momentum of the molecule
〈Lz〉 as a function of voltage for Models 1a, 1b and 1c at the
temperature T = 50K

gle ϕ → −ϕ, because this change inverts the horizontal
shift of potential V1(ϕ) relative to V0(ϕ). Breaking of
this symmetry allows for nonzero values of angular mo-
mentum in all the models. But Models 1a and 1b are
symmetric with respect to the mutual interchange of the
left and right lead. This is reflected in the symmetry of
the angular momentum with respect to the voltage inver-
sion U → −U . Breaking of this symmetry makes Model
1c distinct.

In all the models 1a-1c, the molecule does not rotate
when the absolute value of the voltage is smaller than
0.4V. The onset of each curve follows a degree of vibra-
tional excitation of the molecule (examine lower graph
of Figure 4). This behavior reflects the fact that the
molecule should be excited sufficiently high and overcome
the rotational barrier at 2.5-2.6 eV in order to perform
rotational movement. A significant population of states
above the barrier can only be expected when the mean
value of the vibrational energy of the bridge molecule
(lower graph, Figure 4) is of the order of magnitude of
1eV. The role of these ”over-the-barrier” states was also
checked by omitting all of the states below the barrier
from the calculation. The linear growth of the angu-
lar momentum in Model 1c is hardly sensitive to this
change. Another way to restate this discussion is to look
again at the angle distribution functions in Figure 6. The
rotational motion of the molecule is indicated in the de-
localization of the angle distribution through the whole
interval 〈0, 2π〉. At 0.5V, only Model 1a has this prop-
erty, but at 0.75 V all three models can rotate. These
observations are in correspondence with Figure 7.

The off-diagonal elements of the RDM are often ne-
glected in the master equation approach, resulting in a
set of equations only for the population ρnn, ρvv of the
states. In fact, we used this line of thinking when dis-
cussing the current-voltage and excitation curves in the
previous section. If we want to capture the motor effect
we have to consider the off-diagonal elements - at least
for the near degenerate states close to or above the rota-
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FIG. 8. Populations ρ0m and ρ1m in the angular momentum
basis for Model 1c at different voltages.

tional barrier. This matter we discussed already in the
Theory section below Formula (26), where we also saw
that the coefficients ρ0m and ρ1m give a better insight into
the calculation of 〈Lz〉. These coefficients are shown in
Figure 8 for four voltages. The nonzero mean value of
the angular momentum is a consequence of the asymme-
try of these distributions with respect to m = 0. For
example, the last two graphs at voltages U = 0.75V and
U = 1.0V have a small asymmetry (about 1 per cent,
not possible to see in the figure). This asymmetry will
be much more pronounced in Model 2.
At the beginning of this section, we discussed the role

of symmetry in the models with respect to the transfor-
mation ϕ → −ϕ and U → −U . The parameters respon-
sible for the asymmetry of the models with respect to
these two transformations are the charged bridge poten-
tial shift ϕ1 and the right coupling shift ϕr. In Figure
9, we show 〈Lz〉 as a function of ϕ1 and ϕr for Model
1c with the voltage fixed at U = 1.5V; the red line in
the figure marks the values actually used in Model 1c.
The angular momentum first grows with ϕ1 but higher
shifts suppress the effect again. This effect is similar to
the Frank-Condon blockade for the current observed in
Koch and von Oppen 35 . Selecting the optimum value for
this parameter can enhance the angular momentum by a
factor of three. The dependence of 〈Lz〉 on ϕr is shown
in the lower graph of Figure 9. It is possible to maximize
the ”motor effect” by optimizing ϕr, gaining another fac-
tor of 2. Coupling becomes symmetrical when ϕr = π or
ϕr = 2π as in Model 1b, where 〈Lz〉 vanishes.

C. Results for the model 2

We now discuss the more realistic model 2. Here
the difference between the shapes of the potentials for
the charged and uncharged molecule is large, leading to
strong coupling and the impossibility to sort the vibra-
tional transitions into more or less sharp lines. Further-
more, we took a more realistic value for the moment
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of inertia (corresponding to benzene), leading to a very
dense vibrational spectrum. The calculation is therefore
much more numerically demanding and we had to cover
a smaller voltage range.

The current and the excitation function of the molecule
for three different temperatures are plotted in Figure 10
as a function of voltage. As we have already mentioned,
the density of the possible tunneling channels in Model 2
is much higher than in Model 1. We therefore expect no
distinct steps in the voltage dependencies of observables
for this model. Another difference is that the ground
state energies of the unoccupied and occupied bridge al-
most coincide in Model 2. This means that the bridge is
open for electrons with zero energy and tunneling events
can happen at zero voltage. Despite the large amount of
possible channels, we observe a zero current plateau in
Fig. 10. This is again a consequence of the small values of
the Frank-Condon overlaps for the low-lying vibrational
states in both potentials. The current plateau disappears
for the calculation at higher temperatures, where higher
states, not subjected to the Frank-Condon blockade, are
already excited at zero voltage.

Temperature effects become much more important for
Model 2 than it was for Model 1. This is connected with
the fact that even at the lowest temperatures considered
here (50K), kT is comparable with distances between en-
ergy levels of the molecule. It is also interesting to note,
that the vibrational excitation curve in the lower graph of
figure 10 does not have the minimum at zero voltage, but
at approximately U = ±0.15V. This implies the pres-
ence of a cooling effect of the current, which has already
been observed experimentally36 and also been discussed
theoretically26,37,38.

Both the excitation function and the angular momen-
tum voltage dependence (see Figure 11) are strongly
asymmetric, which is not surprising, for the strongly
asymmetric coupling. It is also obvious from Figure 3
that the left lead coupling strength is minimal in the
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FIG. 10. The current and the excitation function for Model
2a are plotted as a function of the bias voltage. The results
for three different temperatures (including room temperature)
are shown. The inset in the bottom part shows the contribu-
tion to vibrational energy from the unoccupied and occupied
bridge for the temperature 50 K.

area where the unoccupied bridge wave functions are lo-
calized, which makes the overall coupling of the left lead
smaller compared to the right lead.
The angular momentum reaches much higher values

(up to 12~) inside the considered voltage interval, which
could partially be attributed to the high moment of in-
ertia. Temperature has some influence on the shape of
the angular momentum curve but its maximum value is
rather insensitive to temperature. From this we can con-
clude that the motor effect can be observed at room tem-
peratures as well as at cryogenic temperatures.
As we discussed before, the nonzero mean values of

the angular momentum are connected with asymmetries
in the population distributions of the eigenstates of Lz,
which are plotted in Figure 12. Large values of 〈Lz〉
are accompanied by large asymmetries, which are clearly
seen for U = −0.3V and U = −0.4V.

V. CONCLUSIONS AND FUTURE PROSPECTS

In this paper we have discussed the models of a
molecule coupled to two conducting leads with coupling
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FIG. 12. Populations distributions ρ0m and ρ0v of the RDM
in momentum basis are plotted for different bias voltages. It
is clearly seen how distributions become wider and lose their
symmetry while absolute values of the voltage grow. Graphs
are plotted for room temperature (295 K).

depending on the vibrational coordinate. It was shown

how the steps in the current-voltage characteristics can
be analyzed in the case of anharmonic vibrations of the
molecule. We have also calculated the population of
molecular vibrational states for different voltages. In the
case of the model which was asymmetric with respect to
an exchange of the left and the right leads, we had to dis-
tinguish between the two charging states of the molecule,
which have different populations, i. e. the population of
vibrational states was strongly correlated with the charg-
ing state of the molecule.
In addition, we have studied the ”motor effect”, i. e.

the response of the angular momentum of the molecule to
the voltage applied across the junction. We have demon-
strated that the mean value of the angular momentum
strongly depends on the voltage. For the asymmetrically
coupled molecule, the direction of the molecular rotations
can be controlled by the polarity of the voltage. Signif-
icant values of angular momentum were reached when
the vibrational levels above the potential energy barrier
against full rotation were populated.
It will be interesting to see the effect of the higher or-

der terms (see, for example, Esposito and Galperin 39),
as well as friction, to the dynamics of the molecular rotor
in future work. We believe that the ”motor effect” must
survive these additional corrections since it is quite stable
with respect to changes to the model and it is a conse-
quence of the breaking of symmetry of the junction with
respect to the inversion of the angular coordinate and
the interchange of the left and right electrode (chirality
of the junction).
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Phys. Rev. Lett. 101, 186808 (2008).
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