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The master equation describing the non-equilibrium dynamics of a quantum dot coupled to metal-
lic leads is considered. Employing a superoperator approach, we derive an exact time-convolutionless
master equation for the probabilities of dot states, i.e., a time-convolutionless Pauli master equa-
tion. The generator of this master equation is derived order by order in the hybridization between
dot and leads. Although the generator turns out to be closely related to the T-matrix expressions
for the transition rates, which are plagued by divergences, in the time-convolutionless generator all
divergences cancel order by order. The time-convolutionless and 7T-matrix master equations are
contrasted to the Nakajima-Zwanzig version. The absence of divergences in the Nakajima-Zwanzig
master equation due to the nonexistence of secular reducible contributions becomes rather trans-
parent in our approach, which explicitly projects out these contributions. We also show that the
time-convolutionless generator contains the generator of the Nakajima-Zwanzig master equation in
the Markov approximation plus corrections, which we make explicit. Furthermore, it is shown that
the stationary solutions of the time-convolutionless and the Nakajima-Zwanzig master equations are
identical. However, this identity neither extends to perturbative expansions truncated at finite order
nor to dynamical solutions. We discuss the conditions under which the Nakajima-Zwanzig-Markov
master equation nevertheless yields good results.

PACS numbers: 03.65.Yz, 05.60.Gg, 73.23.Hk, 73.63.-b

I. INTRODUCTION

Electronic transport through small quantum systems,
such as quantum dots or single molecules, has been inten-
sively studied in recent years. 2 Apart from envisioned
applications, such devices address fundamental questions
of non-equilibrium quantum statistics. Quantum dots
coupled to electronic leads under a bias voltage generi-
cally relax towards a stationary state. Unless the number
of relevant degrees of freedom of the quantum dot is very
small, the relaxational dynamics is complex, including
broadly distributed time scales and damped oscillatory
behavior. The stationary state that is eventually ap-
proached typically depends on the physical parameters
in a complicated way and can in particular be very dif-
ferent from the equilibrium state of the isolated dot.

The descriptions of transport through quantum dots
or molecules far from equilibrium have so far followed
three broad approaches. In the first, the focus is on an
electron tunneling through the device. Its dynamics is
described by a non-equilibrium Green function (NEGF).
The current through the dot can be expressed in terms of
the local NEGF on the dot, which contains selfenergies
due to the tunneling or hybridization between dot and
leads.# This hybridization, which is described by a bilin-
ear component Hyy, of the Hamiltonian, in principle can
be incorporated exactly. On the other hand, interactions
with other electrons, with vibrational modes, or with lo-
cal spins, which all are particularly important for small
dots or single molecules, require approximations.2 12

The second approach revolves around the non-
equilibrium Keldysh generating function.26:17 It is most
naturally expressed as a functional integral and, with

suitable source terms, contains the full information on
the system. This formulation is particularly suitable for
numerical calculations. When errors due to Trotter dis-
cretization and a cutoff time for the memory kernel are
properly controlled, the results are numerically exact.

The third approach focuses on the dynamics of the
small system. An equation of motion for the reduced den-
sity operator in the Fock sub-space of the small system
is derived by integrating out the lead degrees of freedom.
The result is a master equation (ME).2:18°26 If the small
system is sufficiently simple, the interactions within this
system can be treated exactly. However, integrating out
the lead states naturally leads to a perturbative series in
the hybridization Hyyt,.

Master equations can be either non-local or local in
time. A non-local ME, for example of Nakajima-Zwanzig
(NZ) type,2©28 contains a memory kernel, which relates
the rate of change of the reduced density operator at
a time t to the reduced density operator at all previ-
ous times ¢ < t. On the other hand, a local (“time-
convolutionless,” TCL) ME223! expresses the rate of
change of the reduced density operator at time ¢ in terms
of the reduced density operator at time t only.

If one has a practical method for generating all terms
in the perturbation series for the transition rates or mem-
ory kernel in orders of Hyyt,, one can hope to resum the
series or at least a subseries. This idea has been very
fruitful for many-particle physics, from the Dyson equa-
tion to the theory of the Kondo effect. For the non-local
ME of NZ-type, Schoeller, Schon, and Konig have de-
veloped a real-time diagrammatic scheme that generates
all terms.1820:25 For a large class of systems including
a quite general coupling Hamiltonian Hyyp,, Schoeller2?
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has presented a compact superoperator formulation in
Laplace space. This formulation is particularly suitable
for a non-equilibrium renormalization-group approach,
which in principle includes all orders in Hypyp,.23

Apart from the NZ ME, the T-matrix approach from
time-dependent perturbation theory has been used to
calculate the transition rates in the ME.22:3237 Tt has
the advantage of being relatively straightforward but
is known to produce divergences beyond second or-
der in Hyyp, the nature of which has recently been
clarified 23:26:3% The superoperator derivation of the 7T-
matrix ME will make their origin transparent.

The TCL ME has the obvious advantage of being an
exact ME describing the full dynamics that is neverthe-
less local in time. However, so far a method for generat-
ing all terms in the perturbation series for the TCL ME
has been lacking, which has limited its usefulness.

The main purpose of the present paper is to derive an
iterative scheme for constructing all orders in the per-
turbative expansion of the generator of the TCL ME.
The results are valid for the exact ME describing the full
dynamics. Only at the end we will discuss the implica-
tions for the stationary state. Furthermore, a surprising
connection between the TCL generator and the T-matrix
transition rates is uncovered. This connection introduces
the divergences of the T-matrix rates into the expansion
terms of the TCL generator. We will show that these
divergences cancel order by order. In the present pa-
per, we concentrate on master equations for the diagonal
components of the reduced density matrix, i.e., for the
probabilities. We will call these the Pauli master equa-
tions or rate equations.

In the remainder of this paper, the theoretical devel-
opment is presented in Sec.[[Il After a brief review of the
superoperator formalism and the TCL ME, we derive the
Pauli version thereof, i.e., the TCL rate equations. Then
we derive the T-matrix formula for the transition rates
within the same formalism and exhibit the relation be-
tween the rates derived within the two approaches. After
that, we organize the perturbative expansion of the rates
derived within both approaches in a way that makes all
divergent terms explicit and then show that all the di-
vergences cancel in the TCL rates. Finally, additional
insight is gained by a discussion of the Nakajima-Zwanzig
ME and of the stationary state. The results are summa-
rized in Sec. [Tl where we also draw a number of conclu-
sions. Several proofs are relegated to appendices.

II. THEORY
A. Superoperators and the TCL master equation

Since we will make extensive use of the superoperator
formalism, we briefly review the superoperator deriva-
tion of the TCL ME.22:22-31.39 To make contact with the
T-matrix approach and to allow for the analysis of di-
vergences, we consider a time-dependent hybridization

between dot and leads. The Hamiltonian reads
H(t) = H() + thb e”t, (1)

where 7 is small and positive. Hy = Hgot + Hieads de-
scribes the decoupled dot and leads. For convenience
we assume that the eigenstates |m) of Hgor are non-
degenerate.2? As usual, the leads are represented by non-
interacting Fermi seas.

The density operator p of the full system satisfies the
von Neumann equation

p= —i[H(t), p] = —iL(t) . (2)

where we have defined the Liouvillian £. The resulting
unitary time evolution of p can be expressed as

pl0) =T exp (4 / @ L)) ol @

where T is the time-ordering directive.
Projection superoperators P and Q are defined by

Pp(t) = [trleads p(f)] ® p?cads (4)

and Q :=1— P. Here, p.. . describes the leads in gen-
erally separate equilibrium—each lead is in equilibrium
at its own chemical potential and possibly temperature.
We write L(t) = Lo + Lnype™ with obvious definitions
and note the identities?3

PLy = LoP, (5)
PLyuP = 0. (6)

We assume that the system was in a product state at
time tp with the leads in equilibrium, i.e., Qp(to) = 0.
Dropping this assumption would lead to additional terms
describing the propagation of Qp(tg) from time to to t.
Since we are interested in the case tg — —o0, we do not
expect the initial state to be relevant. We then obtain

t
Pp(t) = PT— exp (—z/ dt’ [Eo + Lhyb et ]) Po(to).
to
(7)
The time-ordered exponential is expanded as

v—1

[e'e] t t1 t
Pp(t) = PO (=i)” / dt / dty- - / dt,
=0 to to to
% e*iﬁo (t*tl)ﬁhybentlefiﬁo (t17t2)£hybent2 ..
X Ligne™ e =10 P (1), (8)
Equations () and (&) simply represent the time evolution
of the density operator, projected with P at time t¢.
The TCL ME is derived by splitting the von Neumann
equation (2]) into two parts,
dPp(t)/dt = —iPL(X)Pp(t) — iPL(EH)Qp(t), (9)
dQp(t)/dt = —iQL(t)Pp(t) —iQL(t)Qp(t). (10)



The second equation is solved by

dt’ L(t’)) Qp(to)

Qp(t) = T exp <—iQ
to
t t
— z/ dt' T exp (—iQ dt"” E(t”)) QL(t"YPp(t'),
to t
(11)

where the first term vanishes under our assumption of
Qp(to) = 0. The main idea of the TCL approach223? is
to express p(t') by propagating the full density operator
backward in time,

p(t") =T exp (z /tt dt”ﬁ(t”)) p(t), (12)

’

where T_, is the anti-time-ordering directive. Insertion
into Eq. () gives

t t
Op(t) = —i / dt' T exp (—z’Q dt”ﬁ(t”)) QL(t"YP
t/

x T, exp (z /t dt” C(t”)) [Pp(t) + Qp(t)]. (13)
Solving for Op(t) yields
Qp(t) = [1 = X(t,t0)] ' S(t, to) Pp(t) (14)
with

t t
Y(t, tg) := —i/ dt' T exp <—iQ dt”L(t”))
to t’

X QL(t"YPT-, exp (z /t/t dt”ﬁ(t”)) . (15)

Inserting Qp(¢) into Eq. (@) results in an equation of mo-
tion for Pp alone,

dPp(t)/dt = —iPL(t)[1 — (t, t0)] "  Pp(t).  (16)

This is the TCL ME for the case Qp(tp) = 0. Using Egs.
@) and (@) and noting that 3(¢,to) contains a projection
Q to the left, we can rewrite this more specifically as

dPp(t)/dt = —iPLyPp(t)
— P Lugve™ [L — X(t, o) 7! Pp(t) (17)

with
t
Y(t, tg) = —iQ/ dt’
to
t "
x T exp (—z/ dt” [Eo + Qﬁhybe"t Q})
t/

t
X Ehybe”t/P T, exp <z/ dt” [CO + Lhybent”]> (18)
t/

The first term in Eq. ([IT) describes the unperturbed time
evolution, while the second stems from the hybridization.

B. The TCL Pauli master equation

We here derive an exact TCL ME for the diagonal
components of the reduced density operator. Since we
are assuming non-degenerate dot states, this is equiva-
lent to an equation for the secular part of the reduced
density operator.2¢6 A ME for the diagonal components
of the density operator, albeit non-local in time, has been
derived by Zwanzig2® and rediscovered, in the context of
transport, by Leijnse and Wegewijs.24

We introduce new projection operators by

Polt) = [Z ) (mttiends p(8) ) (]| © e (19)

where the |m) are the unperturbed dot eigenstates, and
Q:=1-P. P evidently projects the density opera-
tor onto a product form with diagonal reduced density
operator.2® We will call Pp the diagonally projected den-
sity operator. It is easy to show that

PLy= LoP =0, (20)

which goes beyond Eq. (B]) for P. Since Hyyp, changes the
electron number in the leads by +1, we have

P Lyt P = 0. (21)

We now assume that the system was in a product state at
time to with the leads in generally separate equilibrium
and diagonal reduced density operator, Qp(tg) = 0.

Repeating the derivation in Sec. [LAlwith the new pro-
jections P, Q, we obtain

dPp(t)/dt = —iPLpyne™ [1 — X(t,t0)] " Pp(t)  (22)

with
~ gt
N(t, tg) = —iQ/ ar’
to
¢ ~ "o~
x T exp (—z/ dt” [Eo + Qﬁhybe"t Q})
t/
t
X Ehybe"t,ﬁ T, exp <z/ dt” [CO + Lhybent”}> (23)
t/

Due to Eq. @0), the unperturbed time evolution has
dropped out of Eq. [22)). We can now write

dPp(t)/dt = S(t,to) Pp(t) (24)
with the generator
S(t,to) = —iPLugve™ [1 — X(t, o) 'P.  (25)

Equation (24)) is an exact ME for the diagonally projected
density operator under the condition Qp(ty) = 0. It is

evidently local in time. Since it only involves the diagonal
components, we call it the TCL Pauli ME. A Pauli ME



in the reduced Fock space of the dot is of course obtained
by taking the trace over the lead degrees of freedom,

dpdot/dt = tI‘lcadss(ty tO) Pdot (t) ® p?eads = Sdot Pdot (t)
(26)
The reduced generator Sdot written in the dot eigenbasis
is the transition-rate matrix. Ensembles of such matrices
are studied in Ref. |41 within random matrix theory.

We have now eliminated the off-diagonal components
of the reduced density matrix pgot from the equations
of motion, similar in spirit to Zwanzig’s work?® and also
to Refs. 124 and 126. We are therefore able to determine
the dynamics of the probabilities of dot states exclusively
from the knowledge of these probabilities at a given time.
This does not mean that we assume the off-diagonal com-
ponents to be small, which is not generally true.

The knowledge of the probabilities is sufficient for the
calculations of dot observables that commute with the
dot Hamiltonian Hgo¢. To see this, we denote the opera-
tor for such an observable by A in the Fock space of the
dot. Then the operator in the Fock space of the whole
system is A ® 1ieags in an obvious notation. The average
of the observable is

(A)(t) = Trp(t)A R licads = trdot pdot(t) A
= Z P (t) Apin, (27)

writing matrix elements of dot states |m), |n) as pdot =

(m|paot|n) etc. If A commutes with the dot Hamiltonian
we can choose A to be diagonal in the dot eigenbasis
{|m)} so that

Apm = TrPp(t) A, (28)

Z pdot

Thus the knowledge of Pp(t) is sufficient to calculate the
average. Examples are the charge on the dot, the vibra-
tional energy of a molecule, or the component of its spin
parallel to an applied magnetic field, assuming vanishing
transverse anisotropy. On the other hand, the current
does not commute with Hgyot and thus does depend on
the off-diagonal components.4? However, it is possible to
reconstruct the full density operator from Pp(t),

[1 - E(tu tO)]

p(t) = Pp(t) + Qp(t) = Pplt), (29)

compare Eq. (I4).

C. Superoperator derivation of the T-matrix
formula

In the following, the T-matrix formula for the transi-
tion rates is rederived within the superoperator formal-
ism to allow a direct comparison with the exact TCL ME.
Moreover, we show that this derivation relies on a single
straightforward but generally unjustified approximation.

To start with, note that the exponential time depen-
dence of the perturbation in Eq. () is exactly the case
considered by Bruus and Flensberg?? in their derivation
of the T-matrix formula. The analog of Eqs. (@) and (&)
for diagonal projection reads

¢
Pp(t) = PTe exp <—z/ dt' [Lo + Luy ent,}) Pp(to)
to

t t1 ty—1
—i)¥ / dtq / dts - - / dt, ﬁhybentl
to to to

x g0 (tl_tQ)ﬁhybentQ s Chybe"t”’ﬁp(to), (30)

where we have used Eq. (20). This is the time evolution of
the full density operator under the condition Qp(to) = 0,
projected with P at time .

Taking the time derivative of Eq. (80), we obtain

dPp(t)/dt = R(t,to) Pp(to) (31)

with

ﬁ(t,to) = —lPEhybe” Z / dtl/ dts - -

tu—1
% / dtu e*iﬁo (t*tl)ﬁhybentlef’iﬂo (t17t2)
to ’

X Lugbe? -+ Lyype™ P, (32)
where the new summation index is ¢ = v — 1 and the
integration variables are now counted by p. The terms
in this series are of order y+1in Lyyp. In the limit ¢y —
—00, it is straightforward to evaluate the time integrals
at non-zero 7,

7%(15, —OO) = —1 Z ernt 75£hyb [—Eo + (V — 1)i77]_1 Luyb
v=1
X [—ﬁo + (I/ — 2)i17]_1 Ehyb e
X Lhyb (—Eo + Z'n)il Ehyb']S. (33)

The terms are of order v in Lyy,. Due to the trace over
lead states coming from the leftmost P and the equilib-
rium lead density operator p{. ;. contained in the right-
most P, this expression contains equilibrium averages of
products of lead electron creation operators alka and
annihilation operators a,ks. To obtain a non-zero con-
tribution, these operators must be paired. Since the hy-
bridization Hamiltonian Hyyy, is linear in these operators,
only terms of even order v contribute to 7~€(t, —00).

We will now show that the central approximation of
the T-matrix approach consists of taking R(t,to) to be
the generator of a Pauli ME that is local in time,

Rt to) Pp(t). (34)

To that end, we show that this ME indeed leads to the
usual T-matrix formula.22

dPp(t)/dt ~



Expressing the Liouvillians in Eq. (82) in terms of the
corresponding Hamiltonians, we obtain

t1 tM 1
/dt1 / dts / dt,

t _—iHg (t—t t —iHg (t1—t
X [thbe" ,€ o 1) [thben 1,6 o (t1—t2)

R(t,to)e = —i73{

t
X [thben 2,...

x etHo (tu=t0)] .. JgiHo (t1—t2)] giHo (t*tl)} } (35)

[Higpet, e (i) B

We now consider unequal initial and final eigenstates, |)
and |f), respectively, of Hy. Pure initial and final states
are described by the density operators |i)(i| and |f)(f],
respectively. Expanding the nested commutators, except
for the outermost one, we obtain for the matrix element
of R(t,t9) between these pure states

f|{Rtto (e
f|H§:0 —i) /dtl/ dty - - /“ ldt#

t 1 t,_1 )
></ dt’l/ dt’z---/ dt!, {thbent,ef’LHo (t—t1)
to to to

t1 —iHo (t1—t t t
X Hyyne™e o (t1 2)thben 2. Hygpes

« e~ iHo (tu—to) |z> <Z| etHo (tﬁ,—to)thbenti, ..

x HyypeM2eiHo (=t) fy o onth oifo (1=t) } ). (36)

It is helpful to rewrite this expression as a derivative,

d o t t 1
D= 5 (010 [t [Cate [,
#:0 to to to

x e’LHotl thbentlef’LHo (tlftz)thbentz .
2

x Hygpe e~ Hotu |) (37)

Next, the initial time ¢ is sent to —oo at finite n. With
71 =t—t and 7, =t,_1 —t, for p > 1 we obtain

z)‘“/ dﬁ/ dTQ"'/ dr,
0 0 0

'L.HOT2thb67'L.HOT3 -

d

Uri=a

(fletory”
X 671H071 thbei ef’LHoT“ thb
2
« efng(tfﬁngf...fTu) en[,utf,un7(;L71)727...7TM] |’L>

(38)

We have used that the p = 0 term vanishes for |f) # |i).
The fractions are to be understood as inverse ordinary
operators. The time derivative can now be evaluated,

(p +v)nernternt
Ty =
! ZZE Ey —ipn)(E; — Ey + ivn)

u=1v= 1
(il Hiyp & 1;0—”7
xthbE —Ho—li(u 0 Hyglf)
1
<f|thbE Ho T iv—1n Hhy,
e Hwn ) (39)

We notice that the limit 7 — 07 can be taken in the
factors (E; — Ho & ixn)~! independently from the first
factor under the sum. In the former, n > 0 indicates in
which complex half plane the poles are located. In the
latter, the limit n — 07 leads to a d-function implement-
ing energy conservation,

oo o0

Tpi=» Y 2m6(E; — Ey)

p=1v=1

1 et
X (i (thb m) Huyp | f)

v—1

1

H — H ). (40
< s (s o) 100 (40)
Since Hyyt, changes the electron number in the leads by
£1, I'y; can only be non-zero if ;4 and v are both even or
both odd.

Defining the T-matrix

1 w—l
T:= H; ——— H, 41
> oo (g o) )

we obtain the well-known result?2
Ty = 2m 6(E; — Ey) [{fIT]0)]*. (42)

Note that we have obtained this result explicitly for the
exponential time dependence of the hybridization. It was
not necessary to consider a different time dependence at
intermediate steps, as in Ref. 22.

We now use a product basis of unperturbed eigenstates
|m), |n) of the dot and |i)), |f)) of the leads. Summing
over all initial lead states |i)) and final lead states |f)),
we obtain the T-matrix expression for the transition rate
from dot state |n) to dot state |m) # |n),
~ |2
Ryym =21y Wi [(f1(m|T|n)[i)|” 6(En+€— Em—ey).

i f
(43)
Here, E,,, (€;) are eigenenergies of dot (lead) states and
W; is the equilibrium probability to find the leads in state



|i)). The sums over lead states are understood as integrals
if their spectrum is continuous.

We have shown that the T-matrix formula @3] for
the transition rates is what one gets if one takes the
exact time evolution of the density operator, projects
onto diagonal density operators of product form with the
leads in equilibrium, and then by hand replaces the pro-
jected density operator at the initial time, Pp(to), by the
projected density operator at the present time, 75p(t).
This confirms the statement made in Ref. 23 that the
T-matrix approach to transport misinterprets the tran-
sition rates between dot states |n) at time ¢y — —oo and
|m) at time ¢ as transition rates between |n) and |m)
both at time t¢.

D. Relation between TCL Pauli and T-matrix
generators

_ We derive two simple relations between the generators
S and R. The defining equations ([24) and (31 read

dPp(t)/dt = S(t,to) Pp(t),
dPp(t)/dt = R(t,to) Ppl(to).

The first equation is solved by

Poltr) = Te_exp ( / ' (¢ m) Poltr), (M)

where t; > t3. Choosing t; = t and t2 = ty and taking
the time derivative we obtain

%’ﬁp(t) = S(t,to) T exp (/to dt' S(t, to)) Pp(to).

(45)
Comparison with Eq. 3] yields the identity

R(t,to) = S(t, to) T exp (/t: dt’é(t’,to)) . (46)

Conversely, to represent S in terms of R, we integrate
Eq. (3I) from time ¢y to ¢,

t
Pp(t) = Pp(to) +/ dt' R(t', to) Pp(to). (47)
to
Comparison with Eq. (@4) yields
t N t N
T, exp </ dt’S(t’,t0)> =1 +/ dt' R(t',tp). (48)

to to

Inserting this equation into Eq. (#6]), we finally obtain

S(t, to) = R(t, to) [1+/tt dt’?é(t’,to)}l. (49)

This remarkable expression allows us to obtain the gener-
ator of the TCL Pauli ME from the T-matrix generator,

in principle. This result is potentially useful since we
have an explicit expression for the transition rates in the
T-matrix approach in terms of ordinary operators. It
will also allow us to derive the perturbative expansion of
S(t, o) in the following.

The derivation also goes through for the full non-
diagonal ME. The corresponding expressions can be ob-
tained by removing the tilde from all symbols. The result

is equivalent to an identity found by Buzek .43

E. Perturbative expansion in the hybridization

In this subsection we derive expansions of the TCL
Pauli and T-matrix generators in powers of Hyyt, or Lyyb.
In the following, we send g — —oo and suppress the ar-
guments (¢, —0o0). The expansion of the T-matrix gener-
ator is obtained from Eq. B3), R =377, R with

7é(2“) = —je2Hnt 'ﬁﬁhyb [—ﬁo + (2/L — 1)i77]_1 Ehyb
X [=Lo + (21— 2)in] ™" Luyp - - Luyb (—Lo + i) ™!
X ﬁhyb'ﬁ. (50)
We have used that all odd orders vanish.

The TCL generator is obtained from R using Eq. ([@3J).
The time integral is easily performed,

§= i St _ i R
pn=1

p=1

B2 -1
1+ZR(2)] . (51)

o 2un

Expanding the inverse and comparing the two sides order
by order, we obtain

p—1 - .

50w =37 (—1)e 3 A m0) REm) R ,m’
q=0 Hotp1+ . pg=p 2p1n 2p1gm

(52)

where the second sum is over ¢ + 1 positive integers pu;
adding up to . We note in passing that Eq. (52]) can also
be obtained from the expansion of the TCL generator in
terms of ordered cumulants, following van Kampen 3244
The first few terms read explicitly

$@ = R®, (53)
SW — @ _R® 72;;), (54)
S6) — (6 _ 1) @ _R® @
2n 4n
R® Rz—(;) 7%:) (55)

The first equation shows that in the sequential-tunneling
approximation the TCL and T-matrix expressions for the
transition rates agree.23

The problem in exploiting the expansion (52)) is that
the R2" diverge for n — 0% for all 2 > 4. This is



in addition to the explicit divergences due to negative
powers of 7 in Eq. (52]). We would much prefer a rep-
resentation of S#) in terms of expressions that remain
finite. To obtain one, we first simplify the notation by
setting ¢t = 0, since in the limit 7 — 0T the value of ¢
does not matter. We then define

RE#2D = —i P Lugs, [~ Lo + (211 — 1)in] ™ Luys
X [=Lo + (21 — 2)in] ™ Ligb - - - Ly,
X (=Lo + (21 + 1)in) ™ Luys P, (56)
where p > 1/, Note the identity R(Z#0) = R,

Divergences of the type of negative powers of 7 arise
whenever Ly in the inverse superoperators (—Lo+irn) !
can be replaced by zero. These divergences are singled
out by inserting 1 = P+ Q between each pair of Luyn. We
note that under the assumption of non-degenerate dot
states, the projection P projects out the secular reducible
contributions.28 These are thus removed by Q. Since the
lead-electron creation and annihilation operators must be
paired between any two P, all expressions with an odd
number of Lyy1, superoperators between two P projec-
tions vanish. Thus at the odd-numbered positions be-
tween the Lyyn,, @ =1 — P does not do anything and Q
is redundant. This also means that divergences cannot
arise from the inverse superoperators at odd-numbered
positions. We therefore only insert 1 = P 4+ Q at the
even-numbered positions,

RO = —iP Ly, [~ Lo+ (21— 1)in] " Ly (P + Q)
X [=Lo + (21— 2)in) ™ Lugh - -+ (P + Q) Liyp
X (=Lo +i17)"" Ly, P. (57)

We denote the regular parts of R (21:20) by

7@535’2“/) i= —iP Ly [~ Lo + (200 — 1)in] ™ Liyp, Q
x [=Lo + (2u — 2)in] ™ Ligb - -+ Q Ligh
X [=Lo + (21 4 1)in] ™ Lyyy, P, (58)

where a projection Q is inserted at every even-numbered
position between the Lyny,. We also define kﬁig) =
ﬁﬁig"” The finiteness of REEQ’Z”/) for n — 0T is shown
in a more general context in appendix [Al Note that
7@332“_2) = R(2m20-2) and, in particular, 7@8& =R,
since there is no position to insert Q. This reproduces
the well-known observation that the second-order rates

in the T-matrix formalism do not show divergences.
From Eq. (E7) we now obtain, using Eq. (20)),

4 ) Racg Ricy)

7R(21)
reg 477

5(21,0) | 5 (2u,2) 'oreg ﬁggé)
= chg7 + chg) 277
Riex) Ricy)

dn 21
)Rl(rgg 2,2p—4) R(Z,u 4,24—6)

+ R(2w4)

reg

2,0
LR
(2p —4)n 2
(59)

R(Qu 2u—2
R

Since we have inserted P + Q in p — 1 positions, there
are 2#~1 terms in this sum. In particular, we find

R = REZY, (60)
~ (2,0
A _ B0, A R 61
- reg + reg 277 ’ ( )
() (4,0)
RO = REY 4 RO Free Rics’ o) Rick
277 reg 477
4,2 2,0
R(G 4) RI(‘Cg) Rl(‘cg) (62)
reg 4,}7 2,]7

As an intermediate result, we have thus written the 7-
matrix generator R order by order in terms of expressions
that remain finite for 7 — 07 and explicit negative pow-
ers of 7. Since each insertion of P generates a factor of
1/n, the most strongly diverging term in R scales as
1/n* L.

Inserting Eq. (59) into Eq. (52), we obtain S#) in
terms of 7@55;”21/) with 0 < v/ < v < p for all u. The
leading terms read

c(2) __ 2,0
S( ) - Rl(reg )7 (63)
- ~ ~ 7@(2,0) ~ ﬁ(Q’O)
4) 4,0 4,2 Teg 2,0 reg
S( ) — 'R,l(reg ) + 'R,l(reg ) —277 _ 1(reg ) o , (64)
- - B 7@(2,0) ~ 7@(4,0
(6) — (6,0 (6,2) treg (6,4) Tres
S chg + chg 277 + chg 477
4,2 2,0 5 (2,0
4 R(G 4) Rl(‘cg ) Rl(‘cg ) 5(4,0) ,R,l(rcg )
Teg 4,,7 2,'7 reg 277
2,0 2,0 (4,0
_ 42 Rgeg) Rgeg) _5(2,0) Rl(reg)
reg 2,'7 277 Teg 477

4,2 2,0 2,0 2,0
. 7%(2)0) Rl(rcg) Rl(‘cg) 7%(2)0) R[(‘cg) R( )

°8 4p 2n °8 2py 2
(65)

In this expansion of the exact TCL Pauli generator, all
singular contributions in the limit 7 — 0% have been
made explicit. The maximum power is 1/n#~L.

To conclude this section, we illustrate the results by
considering the terms of fourth order. The corresponding
term in the T-matrix generator reads

R(4 = —1 'Pﬁhyb ( Lo+ 37;77)71
X (—=Lo + 2in)~

Liyb

! ﬁhyb (—ﬁo + ’L"I])il EhybP. (66)
Let R™ act upon some density operator p. Then
Lyt (—Lo + in)~t LywypPp contains contributions for
which the second (from the right) superoperator Lpyy
undoes the changes introduced by the first Lyy,. Hence,
Luyn (—Lo + in)~! Ehyb75p is an operator with non-
vanishing diagonal components in the product basis of
unperturbed eigenstates. But for diagonal components
|7)(j| we have Lo |7)(j] = 0 so that Ly in the next super-
operator to the left, (—Ly 4 2in)~!, can be replaced by
zero. We thus obtain a singular contribution proportional



to 1/2in. More formally, we single out the divergent con-
tributions by introducing 1 = Q + P,
R = —i PLugy (—Lo + 3in) ™" Ly (Lo + 2im) ™"

X QLuyb, (—Lo +in) ™ Ly, P

L~ Lo —1
—1 'Pﬁhyb (—,CO + 3277) 1 Ehyb %
X 75£hyb (—ﬁo + ’i’l])il ﬁhybfls

— R LR, (67)
The divergent part 7@5%\), is identical to 7~€§§’g2) ﬁﬁi’g()) /2,
according to the definition ().

The fourth-order term S of the TCL generator con-
tains a correction term beyond RY, cf. Eq. E4), namely

A2 RY 5o Rick

277 reg 27,]
. o —1
= +iPLuyb (—Lo + in) ! Lhyb 2_77
X ﬁﬁhyb (—ﬁo + iﬁ)_l Ehyb,]S' (68)

This looks very similar to the divergent part 7@&?3} The

differences are the opposite sign and a different prefactor
of in in the left-most inverse superoperator. If this factor
were the same, the correction term would exactly cancel
the divergent part. As it is, the correction term does

remove the divergence for n — 07 but leaves a non-zero
difference behind,

- - R®@ -
Rige = R S = i PLayn, (~Lo + in) ™ (~Lo + 3in) ™!
X Ehyb'lsﬁhyb (—Eo + in)_lﬁhyb'ﬁ. (69)

We will show that this difference indeed remains finite.

F. Cancelation of divergences

Our next goal is to show that the divergences described
by negative powers of 7 all cancel in the limit n — 0%,
It is useful to resum the terms in Eq. (52)),

[e ] 00 - ) 5 ) )
S=>(-n7 > R RGm) Rk >.
q=0 JLO 3 5+ s g =1 2pam 2/Lq77
(70)
Inserting Eq. (59)), we obtain
.- 5 (2p1,2p1)
S=2 Yy Rl B
re, 2
P=0 20,11, 11517 5112, 1 5o Hop Han
5 (2u2,2 / ~(2N 72HI :0)
y R50g2 Ka) chgp P (71)
2p2m 2upn

where n/ + 1 is the number of u; being zero. The second
sum is over p + 1 pairs (u;, p}), ¢ =0,1,...,p, with u; =

1,2,..., 4, =0,1,..., and p; > i, satisfying either u =
tit1 or p, = 0 for any two consecutive pairs. The last
i = pt, must equal zero.

In Eq. (), p represents the explicit order in 1/n. How-
ever, the superoperators 7@53&‘ 1) also depend on 7. To
find the limit n — 0T, we thus have to expand them up

to the order nP. Their Taylor series in n reads

o0
p(2u2p) _
'Rreg = —1
m2u71;m2u727“')m2u’+120

X (—i n)m2u71+m2u72+m+mg“/+1
% (2/1* _ 1)m2u—1(2u _ 2)m2u—2 - (QM’ + 1)m2m+1

X [mgu_l, mopu—2,. .. ,mgu/+1](2“’2“/), (72)

where we have defined the notation

2u,21") . 1: >
[Mmou—1,Mau—2, ... 7m2;u+1]( w2 = ng%l+Pﬁhyb

X [ Lo + (2 — 1)in) " ""2n1 £y, O
X [=Lo 4+ (2 — 2)in) 71772 Ly, - -+ Lign
X [—Lo+ (20 + 1)in] =12 41 Loy, P (73)

with Q inserted at all even-numbered positions. In par-
ticular, Eq. ({2) implies that

lim RZ® = —i[0,0,...

24,0

lim R 0. ()
It is shown in appendix [A] that the limit  — 0T in
Eq. (73) converges for all ma,—1,moy—2,...,mau41 > 0.
Moreover, we show in appendix [Blthat the superoperator
defined in Eq. (73] does not depend on the values of the
prefactors of in, as long as they are all positive. Thus it
does not depend on p and p’ except in so far as 2u—2u'—1
is the number of its arguments m,. We therefore drop
the superscript (2u,2u4') from now on.

Insertion of Eq. ((T2) into Eq. (1)) leads to an expansion
of the TCL generator S,

oo
~ ’
§=2 (=iyt >
p=0 HOsHG s KL Y 5 25 - fp
o0

X
>
0,210 =150 2p) 417+ Tp,2p —15--,Tp,1=0
(=i)>
X (2ply 4 1) ™00+ L (2p, — 1) R2ep
X [mO,Q,ugfl, ... ,m012#6+1] - [771;072#?717 o 7mp11]
xrr, (75)

(20 — 1)™0:200-1 ...

where ¥, := mo2uo-1 + ... + mp1 is the sum of all
m;,,. The two indices of m;, enumerate the factors of

ﬁﬁig 21 4y Eq. (1) and the inverse superoperators in

[Mop—1,M2p—2,. .., Mo 1], respectively.



Terms containing positive powers %,, — p > 0 of 7
vanish in the limit  — 07 and can thus be disre-
garded. On the other hand, to obtain a finite limit,
the prefactors in all terms involving negative powers
YXm —p < 0 must cancel. The cancelations can
only involve terms with the same superoperator factor
[moﬁg‘uofl, e ,m072%+1] s [mp72ﬂp,1, NN ,mpﬁl]. These
terms have the same values of p, of the orders 2n; =
2u; — 2pf, and of all m; ,. We thus write

0,210 = 15--5T0, 248 41551 2p =15+ mp 1=0

X f(n0, 11, Mpi M0 20015 - - -5 M. 1)

X [mo,zyo—l, e ;m0,2u6+1] s [mp,2,u.p717 e 7mp,1]

X am P (76)
with the prefactors
F(no,ma, oo nps Mo 20015 - - -5 M 1)

(="
= — . (2up — 1)M0:2m0—1
Z 2#12M2"'2ﬂp( )

0 5[4y s T 5 5102 5 ey 5o o5

X e (2 4+ 1) (2p, — 1)Mezep=1 L (TT)

where the sum in Eq. (T7) is now constrained by 2u; —
2u; = 2n; being given. With this constraint, the only
freedom left in the sum is the choice of which p! are zero;
recall that the non-zero p) equal p;y1. The numbers
Hos 40, 115 115 b2, [, . ., fp can be reconstructed from
the orders ng,n1,na,...,n, and the indices ¢ of the
that equal zero. Defining the set

Z = {i|u; = 0}, (78)

we have p € Z and n' = |Z| — 1, where |Z] is the cardi-
nality of Z. Defining the “non-member function”
, [o0ifiez
T '—{1if¢§zz (79)
we have 77 = 0 and n’ = p — 30" 77. Replacing y} by
i —n; in Eq. (T7) we obtain

f(no,ma, ..o Mps Mo 2p0—15 - - - s Mp,1)

1 p—1 z
z —1)™
— (_1)p 2 : Hz:O ( )
nf nZ w2 =0 2'UJ12'UJ2 o 2'up
070 90

Th =
X (2410 — )00 (2pag — 2)0w0- ..
X (2up — 2ng + 1)M0:2r0—2n0+1 . ..
X (2,Up - 1)mp,2ﬂ'p*1 (2,Up _ 2)mp,2up*2 c 1M (80)
where p; = ni+7rizni+1 +7riZ7riZ+1ni+2 +...and p, = ny,

and products are understood to equal unity if they do
not contain any factors. For convenience, we define

M; == mop,—1 +Migp—2 + .o+ Mi2p—2n41. (81)

Note that X, = Y7 M;.

The evaluation of Eq. (80), which is presented in ap-
pendix [C] is rather lengthy but has a remarkably simple
result: For all 3, < p,
mpa) =1 (82)

f(no, Ny, ... ,np;m072#0,1, ..

if and only if
YXm—p=Moy+Mi+...+M,—p=0 (83)
and there does not exist any integer ¢ < p such that
Mo+ My +...+M;—i=0. (84)

Otherwise, f = 0. Recall that f is not of interest if
Ym > p. Furthermore, we also show in appendix
that the condition for non-zero f can only be satisfied
if mp72#p71 =...=Mp1 = 0.

Inserting these results into Eq. (7)), taking the limit
n — 07, and renumbering the m; ,, we obtain

i S 0" 2
x >
0,110, 20— 1o T 1,1 ree M 1,20,y —1
X O(Mo —1)O(Mo + My —2) -+
X O(My+M +...+My,_1—Dp)
X [Mo,1,. ., Mo2ne—1] " [Mp—1,1, -+, Mp_12n, 1]

x [0,...,0], (85)

where the sum over the m,;, is constrained by mg 1 +
.+ Mp_12n, ;-1 = p and we have defined

0 forn <0,
o= { frnsh 56)

Note that the factor ©(Mo + M1 + ...+ Mp_1 — p) is
redundant.

The p = 0 contribution in Eq. (85) does not contain
any sums over m;, since ¥,, = p = 0. There just re-
mains a sum over ng, the order in Hyyy, i.e., the p =10
contribution reads —i [0] —4 [0,0, 0] —. .. According to Eq.
([7d), this equals lim, o+ >, 7@53@‘)
sion in Hygp, the expansion term S#) of the TCL gen-
erator contains the properly regularized T-matrix term

Thus in the expan-

ﬁﬁig ) plus corrections. Furthermore, all these corrections
contain [0, ...,0], i.e., an expansion term of ﬁrcg, as the
right-most superoperator factor.

Suppressing the limit directive from now on, we find
that ¢S in Eq. (8H) is the sum of all terms that can be
constructed according to the following rules:

1. Each term is a product of p+1 = 1,2,... su-
peroperators of the form [my1,...,m;2,,-1] with
j=0,...,p,n;=1,2,...,and m;, =0,1,...



2. Defining M; := mj1+...mj2n; -1, only terms with
Mo+ My + ...+ M; > j for all j < p are allowed.

3. Only terms with My+M;+...+M, = p are allowed.
4. Each term obtains a factor (—1)P.

We draw a number of conclusions: If an allowed term
contains a factor [my1,...,mj2,,-1] then any term with
this factor replaced by [m ! o) with m/ 4

TR 7mj72n.;7
-+ mJ 2n)—1 = +mj2n, 1 is also allowed. If

mj71 —|— e
we denote the sum of all such terms by

:Z Z [ml,...,

n=1 mi+...4+mop_1=M

anfl], (87)

we obtain

iS=> (-1 Y >
p=0 Mo=1 M;=max(0,2— M)
0o p—Mo—Mi—...—My_2

My=max(0,3—Mo—My) M, _1=max(0,p—Mo—...—Mp,_2)
x [[Mo]] [[My]] - - - [[Mp-1]] [[0]- (88)

The last sum is understood to equal zero if the upper
limit is smaller than the lower one. In order to ob-
tain an expansion of iS in powers of Hpyp, we note that
[m1, ..., man_1] is of order HYY, with 2n > 2. Thus [[M]]
contalns contributions of second and higher orders. To
obtain the expansion term iS2#) of order 2u, we thus
only have to consider terms with p+ 1 < p factors [[M;]]
in Eq. (88). The first few terms read

S® = —io], (89)
SW = —i[0,0,0] +i[1][0], (90)
S©® = —i[0,0,0,0,0]

+10,0,1][0] + 7 [0, 1,0][0] + 4 [1, 0, 0][0]

+ 4 [1][0,0,0] — 7 [1][1][0] — @ [2][0][0].  (91)

Higher-order terms are easily generated using computer
algebra. They become increasingly lengthy: S(®) contains
30 terms and S0 already 143. Simplification is possi-
ble by realizing that some of the terms in S contain
factors of SC#) with i/ < i, as we show now.

Equation (B8] is equivalent to the surprising identity

S =3 () (-iS)™M. (92)

M=0

The usefulness of this equation rests on the observation
that [[M]] is of at least second order in Hyyp,. Therefore,

we can express S (21) by lower-order terms 3(2“,), w < .
Together with the starting value S©) = —; [0] = Rggé, we
obtain a recursive scheme for determining S®#).
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To prove that Eq. (@2) has the solution given in Eq.

[BY)), we iterate Eq. [@2)),

i§ = [0+ 3 [Mo]) (=i &)™
=[O~ 3 S (M)} [M]) (i §)Mo+

+ ) > > [[Mo]]
Mo=1 M;=max(0,2—My) M2=0

X [[MA]] [[Mo]] (—iS) Mot M0+t

= [[0]] = [[1]] [[o]} + Z [[Mo]] [[2 — Mo)] [[0]] F .-
o= (93)

= [[0]} -

It is clear how this continues. The terms no longer con-
taining S are the ones satisfying the conditions in the
multiple sum in Eq. [88)). Thus Eq. (88) is a solution
of Eq. (@2). To show that it is the only solution, i.e.,
that Eq. (88) implies Eq. [@2]), we note that the iteration
shows that any solution S’ of Eq. ([@2) agrees with Eq.
[B8)) order by order in the number p + 1 of superoperator
factors. Thus we find S’ = S to any order p + 1.

G. Relation to the Nakajima-Zwanzig master
equation

The Nakajima-Zwanzig (NZ) ME27:28 and equiva-
lent formulations are commonly used in the field of
transport through nanostructures. The real-time dia-
grammatic techniquel® 20 and the suitably generalized
Wangsness-Bloch-Redfield theory42 47 are such equiva-
lent formulations.2326 We again only consider the initial
condition 9p(tyg) = 0. The derivation starts in the same
way as the one of the TCL ME, leading to Eq. ({I). In-
serting this equation into Eq. ([@) and using the identities
(@) and (@), we obtain the NZ ME3?

d t
a Pp(t) = —’L,C()Pp(t) - ,P,Chybent/ dtl

to
¢
x T exp [—z/ dt"” (Lo + Qﬁhybent//):|
t/

x QLpyne™ Pp(t). (94)

Expansion in powers of Ly, yields

d oo
= Pol(t) = —iLoPp(t) - PLpyne Z -

tl tu 1 tu
/ dty / dty - - / dt, / dtypq e "o (t=t)
to to to to

X QLygpe™ e o=t gry etz QL et

w g0 (tv—=tut1) Qﬁhybe”]tLH»l'Pp( U+1). (95)



As above, the projections @ at odd-numbered positions
are redundant, while at even-numbered positions they
remove divergent reducible contributions.23:26:38

The derivation goes through if we replace P and Q
by P and Q, respectively. We end up with a Nakajima-
Zwanzig-Pauli ME for the diagonally projected density
operator,

t t
%75/’(15) = —ﬁﬁhybent/ dt' T exp {_ Z/ dt”
t/

to

% (Lo + Qchybent”>] OLune Pp(f).  (96)

The bare time evolution has dropped out because of Eq.
@0). Tt is this ME that is expanded up to fourth order in
Refs. 24 and [26. The projections Q now remove only the
diagonal reducible contributions, not all of them. They
thus implement the regularization discussed by Koller et
al26 As in Ref. 126, the regularization is automatically
included. Our result shows that it can be formulated
compactly using suitable projection operators P and Q.
It has been noted in Ref. 38 and shown explicitly in Ref.
26 that the Turek-Matveev scheme3448 differs from this
built-in regularization already at fourth order.

If one is only interested in the stationary solution of
the ME, Pp(t') on the right-hand side of Eq. (6) can be
taken to be time-independent. It is then possible to eval-
uate the time integrals explicitly. The resulting equation
for the stationary state reads 0 = G ’Pp with the genera-
tor, for tg — —o0,

QEZ 2“) :—zPEthe2“"t
p=1 p=1

X [=Lo+ (2p — 1)in) ™" LugbQ [—Lo + (2 — 2)in] ™"

X Ligh -+ QLuyb (—Lo +in) " Lyt P. (97)
The redundant projections Q at odd-numbered positions
have been omitted. Since this is an exact result for the
stationary state, it should agree with what the exact TCL
ME predicts. We will return to this point shortly.

If one is interested in the dynamics, one can still ob-
tain a local ME from the NZ approach. This requires
the Markov approximation, which is based on the as-
sumption that the memory kernel in Eq. ([@6) decays
rapidly in time. This assumption is often justified since
relaxation in the leads is rapid but also follows directly
from the condition of a nearly closed conduction channel,
I/V < €%/h.22 With the Markov approximation, Pp(t')
is replaced by Pp(t). Taking ty — —oco, one obtains the
approximate “Nakajima-Zwanzig-Markov-Pauli” ME

dPp(t)/dt = G Pp(t) (98)
with the generator G defined in Eq. @1).

Comparison of Eq. @) and Eq. (B8) shows that the

expansion terms are identical to the properly regularized
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expansion terms of the T-matrix generator (we suppress
the limit n — 01),

G = R(Zm. (99)

Hence, the Nakajima-Zwanzig-Markov-Pauli ME is iden-
tical, order by order in Hyyp, to the ME with rates ob-
tained from the T-matrix approach and regularized by
dropping secular reducible contributions. Up to fourth
order, this has been shown by Koller et al.2

We can now gain additional insight into the failure2® of
the Turek-Matveev regularization scheme.2® The proper
regularization of the T-matrix expressions can be under-
stood as omitting all terms in Eq. (B9) except for the first
one or, in other words, as omitting all terms contain-
ing explicit negative powers of n. The Turek-Matveev
scheme, applied to the calculation of the fourth-order
rates,24 corresponds to expanding the rates into powers of
n and omitting the diverging part proportional to 1/5 and
then letting 1 go to zero. The obvious generalization to
all orders is to omit all negative powers of 1. The two reg-

ularization procedures thus look quite similar. They are

not identical, though, since the superoperators R( 2i)

appearing in the proper expansion (59) contain pos1t1ve

powers of . The positive powers from ﬁﬁig 24 together
with the explicit negative powers lead to terms of or-
der 1%, which are retained by the Turek-Matveev scheme
but are absent in the proper regularization. We reiter-
ate that both the Nakajima-Zwanzig-Markov-Pauli ME
and the TCL Pauli ME are automatically regularized—
for the TCL case this is one of our central results. The
discussion of the proper regularization scheme is only rel-
evant if one wants to construct the NZ transition rates
from the T-matrix expressions.

The exact TCL ME is not equivalent to the approxi-
mate Nakajima-Zwanzig-Markov-Pauli ME: As noted in
the discussion of Eq [®H), the p = 0 term in this ex-

1)

pansion is Z Rreg , which we have now identified as

the Nakajima-Zwanzig-Markov-Pauli generator G. Using
Eqs. (@) and (1) we can also write this generator as

G= Zergﬂ = —i[[0]].

The expansion (88) of the TCL generator S contains G
as the first term but it is followed by an infinite series of
additional terms.

(100)

H. The stationary state

Global conservation of probability implies that a sta-
tionary solution of any well-formed Pauli ME exists.
Equation (24)) then shows that the TCL generator S must
have a right eigenoperator psa; to the eigenvalue zero.
Due to the P projections in &, this right eigenoperator
must be of the form

Pstat = piltoa‘tt & plcads7 (101)



where p32t is diagonal.

Applying Eq. @2)) to pstat, only the M = 0 term in the

sum survives and we obtain 0 = [[0]] pstat, which together
with Eq. (I00) implies

G pstar = 0. (102)
The reverse is also true: If G pli.. = [[0]] plias = O then

Eq. ) shows that Sp,,. = 0.

Thus psa is an exact stationary state if and only if
Pstat 1S a right eigenoperator of G to the eigenvalue zero.
The exact stationary state can thus be obtained from
the regularized T-matrix or Nakajima-Zwanzig-Markov-
Pauli generator G alone, in principle. The formal origin
of this result is that all corrections to G in S contain G
as the right-most factor, cf. Eq. (8F]).

There are two caveats, though: (i) The result does
not, apply to approximations obtained by truncating the
perturbative expansion in Hyyy,. It does work trivially
at second order since G® = §@) . But already at fourth
order the TCL Pauli ME for the stationary state reads

— i ([0] +[0,0, 0] — [1][0]) pstas = O,

whereas the Nakajima-Zwanzig-Markov-Pauli ME is

(103)

— i ([0] 4 [0,0,0]) pstat = O, (104)

which is not equivalent.

(ii) The result does not carry over to time-dependent
solutions. Indeed, if p is any eigenoperator of S to the
eigenvalue A\, Eq. (O2)) gives

o0

o= 3 (=M [[M]) .

M=0

(105)

For A # 0 this does not imply anything for the eigenop-
erators of G = —i[[0]]. Conversely, knowing an eigenop-
erator of G to a non-zero eigenvalue does not help in find-
ing an eigenoperator of the TCL generator. For the dy-
namics, the regularized T-matrix or Nakajima-Zwanzig-
Markov-Pauli generator G is not sufficient.

III. SUMMARY AND CONCLUSIONS

The dynamics of a quantum dot coupled to electronic
leads can be described in the master-equation formal-
ism. To use this formalism beyond the regime of weak
hybridization between dot and leads, further insight into
the structure of higher-order terms is required. With this
motivation, we have derived Pauli master equations (rate
equations) for the probabilites of dot states, to all orders
in the hybridization, and both in time-convolutionless
and time-non-local (Nakajima-Zwanzig) form. Our ap-
proach uses a projection superoperator P onto product
states with diagonal reduced density matrix. To fourth
order, the reduction to the probabilities has been imple-
mented in Refs. 24 and 26 by explicitly eliminating the
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off-diagonal components from a Nakajima-Zwanzig-type
ME. Our approach leads to more compact superoperator
expressions and is easily generalized to all orders.

Furtermore, we have presented a superoperator deriva-
tion of the T-matrix expression for the Pauli ME and
showed that it fails to take into account the propagation
of the density operator from the present time ¢ back to an
initial time ¢g. This answers the question posed in Ref. 23
whether it is possible to derive the Pauli master equation
within the T-matrix formalism instead of using it ad hoc
to calculate the transition rates. The superoperator for-
malism has allowed us to establish relationships between
the TCL Pauli generator S, the NZ generator in the
Markov approximation (exact for the stationary state),
G, and the T-matrix generator R. The off-diagonal com-
ponents of these generators are the transition rates in
the respective pictures. Relations between the expansion
terms of order 2u, S G2 and R(#) | respectively,
have been given. In particular, the expansion terms S
of the TCL Pauli generator are the sum of the corre-
sponding terms G3#) order by order, plus corrections,
which come from propagating the density operator back-
ward in time in Eq. (IZ). Only at the second (lowest)
order the expressions are identical. We have shown that
both the Nakajima-Zwanzig-Markov-Pauli and the TCL
Pauli generators converge in the limit n — 07, order by
order. Here, n is the rate with which the hybridization is
switched on. In the NZ case, the absence of divergences
readily emerges from the superoperator expressions, in
which the secular reducible terms are explicitly projected
out, whereas for the TCL Pauli generator it relies on a
sweeping cancelation of negative powers of 7.

It is crucial for the derivation that the averages of lead
operators satisfy Wick’s theorem, i.e., that they can be
decomposed into averages of pairs. Besides reservoirs
consisting of free fermions as considered here, an anal-
ogous derivation should be possible for free bosons.

As is well known, the T-matrix rates diverge for n —
0F. Specifically, the term R(?*) diverges as 1/n*~1. The
divergence noted for the fourth-order term by Averin?
thus becomes even stronger at higher orders. We have
shown that the Nakajima-Zwanzig-Markov-Pauli rates
G2 are identical, order by order, to the T-matrix rates
with proper regularization. This might lead to an advan-
tage in practical calculations, as the T-matrix method
formulated using ordinary operators instead of superop-
erators is expected to be easier to implement. This reg-
ularization differs from the one proposed by Turek and
Matveev,26:38:48

As a consistency check, we have shown that the
stationary state obtained from the Nakajima-Zwanzig-
Markov-Pauli ME is the exact one, i.e., is identical to
the stationary solution of the TCL ME. It is quite in-
teresting how this result comes about: S can be written
as G plus corrections that all have S as the right-most
factor again, cf. Eqs. (02) and ([I00). The result does not
carry over to expansions truncated at finite order or to
time-dependent solutions, though.



Another relation between the expansion terms, Eq
[8), is also important: all correction terms in S (21)
beyond G2#) have factors G#) of lower order i/ < p
at their right end. Consider the case that all G2 for
1 < p. are suppressed but G 7(21e) i not. Then all correc-
tions in S(2#e) beyond the Nakajima-Zwanzig-Markov-
Pauli term G2#<) are also small. For example, in the
Coulomb-blockade regime, G is suppressed, but G is
not. Then the corrections to the cotunneling rates are
small in the Coulomb-blockade regime since they involve
sequential-tunneling rates. On the other hand, deep in
the sequential-tunneling regime, all fourth-order terms
are small compared to the sequential-tunneling rates if
hybridization is weak. However, close to a threshold
where some G(2#) crosses over from small to large, for
example at the Coulomb-blockade threshold, the correc-
tions can be comparable to the NZ rates.

Of course, outside of the perturbative regime there is
no a-priori reason for any term to be small. It is in
this intermediate coupling regime®® that we expect the
TCL Pauli ME to all orders to show its power. Since
the TCL ME describes the dynamics exactly, not just
the stationary state, and is local in time, it is promis-
ing for resummation schemes addressing for example the
dynamical non-equilibrium Kondo effect.
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Appendix A: Proof of the convergence of certain
superoperators for n — 0"

We want to show that the limit for n — 07 in Eq.
([@3) exists and is finite for all non-negative integers
M2pu—1,M2y—2, - - -, Moy +1, where g > p/ > 0. It is useful
to prove a more general statement: For p = 1,2,... the
limit for n — 0% of the superoperator

P Ligt, (—Lo + cop1in) 17271 Ly, O
X (_LO 4 62#722'77)*1*7”2;“2 Ehyb A

X ﬁhyb (—ﬁo + Clin)_l_ml Lhyb P, (Al)
where Q is inserted at all even-numbered posi-
tions, exists and is finite for all non-negative inte-
gers Mayu—1, May—2, - .., m1 and all positive real numbers
Cou—1,C2u—2,---,C1. By a finite limit of a superoperator
we mean a finite limit of all its matrix elements.2!
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By inserting the completeness relation
-—Zl > (il e 13) [l

ij
in suitable places, the matrix elements of Eq. (Al can be
expressed in terms of matrix elements of Ly, Ly, and

Q alone. The matrix elements of L; are

Tr |i)(j| Lo |k) (] = drdu (Ex — Ey).

il o |7){j| = (A2)

(A3)

Here, E), and E; are eigenenergies of Hy, including dot
and lead contributions. The former are discrete and, by
assumption, non-degenerate, whereas the latter have a
continuous spectrum. The proposition could fail if a zero
matrix element of Ly occured in Eq. (AT).

At this point it is useful to go over to a single-particle
description of the leads. As noted in Sec. [[IC| the pro-
jections P in Eq. (ATl introduce equilibrium averages,
trleads - - - p?eads, over lead-electron creation and annihila-
tion operators. These averages are non-zero only if all
lead operators are paired. In the expression ([ATl), which
is of order 2u in Lyyy, there are p such pairs.

Consider a certain inverse superoperator (—Ly +
cyin) "7 in Eq. (Ad). Some of the paired lead opera-
tors may straddle its position, which is numbered by v.
For two paired lead operators that are both to the right
of this position, the superoperator (—Lg + c,in)~1="
acts on an operator that is diagonal in the single-electron
state associated with the paired operators. Its energy
thus does not appear in the difference Ey — E; in Eq.
(A3). Consequently, only lead-operator pairs that strad-
dle the position v contribute to the energy difference. Let
us denote the number of such pairs by ¢, > 0. Then the
difference E), — E; has the form E,, — E,,; + Zf;l AV
where E,, E, now denote the energies of the dot many-
particle eigenstates |n) and |n'), respectively, and the
Aep, p = 1,2,...,p are lead single-electron energies.
There are y such energies, which are independently in-
tegrated over from —oo to co. The ordering of the two
Lyt insertions where the corresponding lead electron is
created and annihilated determines whether this energy
enters with a plus or minus sign in the energy differences
coming from the £y sandwiched between these two Lyyt.
The single-particle energy enters with the same sign in
all these factors. It is thus possible to absorb all minus
signs into the definitions of Ae,,.

The integrand in the integrals over Aei,...,Ae, as-
sumes the general form
F(Ael, ey Aeu)
2p—1 ¢ 1+m,’ (A4)
H (Eny — B + Z Aep,, + cl,z'n>
v=1 i=1

where the function F' contains the remaining dependence
on the single-electron energies due to Fermi functions and
possibly energy-dependent densities of states and tunnel-
ing amplitudes. F' is assumed to be a real analytic and
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bounded function of its arguments. Note that for perfect
crystals this does not hold due to the appearance of van
Hove singularities in the density of states. Any disorder

will remove these, though.
We rewrite the expression (A4)) by introducing two sets
of auxilliary variables x, and \,,

Cv
2u—1 g (:v,, - Z AePui)
=1

F(Aey,...,A dy - - - dy, '
( €1, ’ EH)/ ! :E2H 1 1;11 (EnV_EnL+Iu+Cvin)1+mV

Cv
ou_1 XD <i)\l, [a:l, — Z Aepw}>

d/\l d)\g —1 1=1
= F A e A d e d - o . '
(Aer,..., Aey) / T1-e- Gz 1/ o 2m H (En, = Eny, + 2y + cyin)t+m

v=1

(A5)

The integrand as a function of x, has a pole of order 1 + m, in the negative half plane. Furthermore, it vanishes
rapidly for x, — +ioo (z, — —ic0) if A, > 0 (A, < 0). The only possible exception is the case of m, = 0 and A, =0,
which we exclude now and treat separately later. Hence, we can close the integration contour in the upper (lower)
half plane and obtain

Cv
exp (i)\l, [x,, — Z Aepm.]> 0

for A, >0
/ dz,, =1 ={ omi , & ,
(En, — En, + T, + c,in)t+me - (iX,)™ exp | —iX, |En, — Eny + ZAepw. + cuin for A\, <0.
v i=1
(A6)

Note that for m, > 1 the case A\, = 0, which is included in both lines, is consistent. On the other hand, for m, = 0
this case was excluded. We find that Eq. (A6) shows a step discontinuity at A, = 0 for m, = 0. The result after
performing the integral over A, does not depend on the value at a single point, though. The expression in Eqs. (A4))
and (AD) now becomes

0 _jl+miym 0 _jlhmau 1 yM2u—1
F(Ael,...,AeH)/ d)\lzil---/ Aoy 1 2u-1

! !

1 —o0 mapy—1-
2pu—1 Cv
X exp (—i Z Ay [Enu —En + Z Aep,, + cﬂn})
v=1 i=1
0 _,L-1+m1)\71n1 eC1MAL 0
= F(Ael, RN AEM) / d\1 p— exp (—i)\l [Enl — E"’J) .. / dXoy—1
_i1+m2u71)\72n2f11eczufln)\mfl M
X mzu_ll exp (—i/\gu,l {Enzkl — E"'ule exp —izl [/\ug + ...+ )\U;} Ae, |, (AT)
=
where v, (1) is the first (last) position for which the X F()‘u; Fo A A T /\V;f) (A8)

single-electron energy Ae, appears in the energy denom-

inators in Eq. (A4). with the Fourier transform

Integrating Eq. (A7) over all Ae,, we obtain I - /dAel p—imiler ~/dAe# o irule,
0 _;14+my \m1 seina X e .
/ g T AT e (—id [Bu — Eug]) - Fldabo) A
- m If there are no lead-operator pairs straddling the posi-
0 —i1+m2“*1A;Tff{lecz’“l"’\z“*l tion v, i.e., ¢, = 0, the variable \, does not occur in F'
x /_OO Aoy Moy 1! in Eq. (A]). The integral over A\, can then be evaluated

X exp (—7;)\2#,1 |:E"2u71

- Bw, )
2u—1

and is proportional to [c,n — i(E,, — En)] "' "™ If in
addition E,, — Ej,: vanishes, we obtain a divergence for



n — 0%. But by our assumption of non-degenerate dot
states, Ey, = E, implies |n,) = |n;,). Thus for this con-
tribution the dot density matrix is diagonal at position
v. Because of (, = 0 we can then insert a projection P
without changing the result. But there is already a pro-
jection Q at this (even-numbered) position and we obtain
75Q = 0. The divergent term is thus removed. On the
other hand, for E,, # E, there is no divergence.

It remains to consider the case of at least one lead-
operator pair straddling position v. Then A, does occur
in . We now consider the properties of the functions
F and F. The behavior of F' at large |A¢,| should not
affect the transport and we can therefore assume that
F vanishes sufficiently rapidly and sufficiently smoothly
for Ae, — £oo. We thus assume that all derivatives
I"F/0Aey, n = 0,1,2,... vanish for Ae, — Fo0o0 and
that all these derivatives are absolutely integrable in Ae,
over the real axis. These assumptions require the previ-
ously discussed analyticity property. Under these condi-
tions we have lim,, 100 ki F' = 0 forallm =0,1,2,...
and all p =1,..., u. Thus the Fourier transform F falls
off faster than any power for x;, — fo0 for all p.

It follows that F' falls off faster than any power for
Ay — —oo. Thus the integral over )\, in Eq. (A8) con-
verges for any m,, E,, — En,, and n > 0. It thus con-
verges pointwise for n — 0. The convergence is also
uniform since the integrand in Eq. (AS) is bounded in
absolute value by the integrand in the expression

0 m 0 may—1
AT Ayt
/ d\i 1|~-~/ Aoy 1 2=
— 00 mi: — 0o may—1-
X Eo A+ Ao A o+ A0)| (AL0)

and this integral converges.

In summary, all terms generated by taking the relevant
matrix elements of Eq. (Al and introducing the com-
pleteness relation ([A2]) remain finite for n — 0. Since
the number of these terms is finite, the whole quantity
remains finite. The convergence is uniform.

Appendix B: Proof of the identity of certain
superoperators

To prove the cancelation of divergences in Sec.
M we also need to show that the superoperators
[m2#71, may—2, ... ,mQ#/Jrl](z‘u’ZU‘/) defined in Eq (m) do
not depend on the values of the prefactors of in, as long
as these are all positive. Therefore, we now prove the
following statement: In the limit n — 0%, the superop-

erator in Eq. (&) is independent of ¢o,—1,c2u—2,...,¢1
for all non-negative integers mo,_1,Mmayu—2,...,m1 and
all positive real numbers c3,,—1, c2u—2,. .., C1.

As shown in appendix [A] this limit is finite. The
derivative of (AT]) with respect to ¢, is

—i(l + mu)ﬁﬁﬁhyb (—Eo + 02#,12'77)_1_7”2”71
X Ehyb Q~ .- (—Eo +c— I/in)_2_m" .- 'Ehyb 'ﬁ (Bl)
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The derivative and the limit n — 07 commute because
(i) the expression (AJ]) is differentiable with respect to
¢, for all > 0, (ii) it converges pointwise for n — 07 as
shown in appendix[Al and (iii) its derivative with respect
to ¢, converges uniformly for  — 0% (this is shown by
a trivial modification of the proof in appendix [A]l noting
that the factor 7 is bounded by unity for 0 < n < 1).

In Eq. (BI), the part P--- P has a finite limit for n —
07T, as shown in appendix[Al Including the extra factor of
7, the limit vanishes. Consequently, the expression (AT
is a constant function of cp,—1,c2,—2,...,c1.

Appendix C: Evaluation of prefactors in the
superoperator expansion

In this appendix we evaluate the functions f defined
in Eq. (80), which appear as prefactors in the expansion
of the TCL generator in powers of n. We first consider
the case p = 0, which is more easily done for the original
expression in Eq. ([T7). This expression does not contain
any sum since n, = ny is fixed, n’ equals zero because of
ty, = pp = 0, and we obtain

J(no;mo2ne—1,---,mo,1)

= (2up — 1)™M02m0-1(2ny — 2)M02m0=2 ... 10 (C1)
Since we are only interested in the case X, = My < p =
0, the only possibility is My = 0 and thus mg, = 0 for
all v, giving f(ng;0,...,0) = 1.

For p > 1 we evaluate Eq. (B0) by iteration. We first
perform the sum over 7¢. The term under the sum is a
polynomial in 27Z uu; of order My. The zero-order term
in this polynomial vanishes when the sum is performed
due to the factor (—1)”02. In particular, for My = 0
this is the only term and the whole expression vanishes,
f(no,m1,...,np;0,...,0,m1 24, -1,...,mp1) = 0. For
My > 1, in all remaining terms of orders 1,..., My in
2n& 11, only the 7€ = 1 contribution survives. We thus
obtain a polynomial of order My in 2u; with the zero-
order term missing. It is thus possible to cancel a factor
of 2u1 with the same factor in the denominator. What
remains is a polynomial in 2uy of order My — 1 > 0.

Now we combine this polynomial with the fac-
tors (2uy — 1)™12m=1(2uq — 2)™02m-2 ... (2uy — 2nq +
1)m1.2u—2m+1 in Eq. (80). These represent a polynomial
in 2uq of order My > 0. The product is thus a polyno-
mial of order My + M; —1 > 0. Using 1 = nq + wlzug,
we obtain polynomials in 27Z o of order My + M; — 1.
If Mo+ M; —1=0and p=1, 7f = 0 is fixed and we
obtain a non-zero result. If My+ M; —1 =0 and p > 2,

we can perform the sum over 7Z. But only the factor

(—1)”12 depends on 7# and f vanishes.
If Mg+ M; —1 > 1, we necessarily have X,, > 2.

Then we only have to consider p > 2 and there exists
a sum over 7. As before, the zero-order term in the
polynomial in 277y cancels and the other terms only

survive for 7¢ = 1. The result is a polynomial in 2uy of



order My+ My —1 > 1 with the zero-order term missing.
Canceling a factor 2uy with the denominator, we obtain
a polynomial in 2us of order My + M; — 2 > 0, which we
combine with the following term to give a polynomial of
order My + M7 + My — 2 > 0. Analogously to the above,
if Mo+ M7+ Ms—2 > 0 and p = 2, we obtain a non-zero
result, whereas for Mo + M7 + My —2 > 0 and p > 3
we get f =0. If Mg+ My + My — 2 > 1, which requires
Ym > 3, we iterate these steps.
We obtain f = 0 if there exists an integer ¢ < p with

Mo+My+...+M;,—i=0. (C2)
We obtain f # 0 if this condition is not satisfied and
Moy+Mi+...+M,—p=3%,, —p=0. (C3)

This implies that My > 1, Mo+ M1 —1> 1, Mo+ My —
1+ M5 —12>1, etc. and thus

Mo+My+...+M;,—i>1 (C4)

for all ¢ < p. Finally, if Mo+Mi+.. +Mp—p=%,,—p <
0 there must exist an i < p such that condition (C2) is
satisfied and we obtain f = 0.

We draw some conclusions for the case of non-zero f
with ¥,, = p. Since Mo+ M; -1+ ...+ Mp_1—12>1
and Mo+ M; —1+4+...+ M, —1=0, we find M, =0.
This implies that Mo+ M;—1+...+M,_1—1 = 1. Since
further Mo + My — 14 ...+ M,_> —1 > 1, we conclude
that M,_; < 1. By iteration we find that M; <p — <.

The next goal is to find the non-zero values of f for
all cases with ¥,, = p. For p = 0 we have found
f(ng;0,...,0) = 1. For p > 1 we already know that
Mp2p,—1 = Mp2u,—2 = ... = My 1 = 0 is required for a
non-zero result. Equation (80) then assumes the form

f(no, ni,..

1 —1 4
[Ty (-1

0,...,0) = (=1)P =
L0 = > e,

S Mp3M02p0—15 -+« s Mp—1,2p5, 1 —2np_1+15

Wozxfflzvm’”f—l:
X (2410 — 1)"™020-1 (2pag — 2)"02w0~2 ..
X (2up — 2ng + 1)™0:2r0—2n0+1 . ..
X (21 — 1)"P a1 (2, g — Q)22
(C5)

The factors following the fraction contain exactly p fac-
tors of the form 2u; —v = 2(n; + 7¢n; 1 —|—7riZ7riZ+1ni+2 +
.)—vwithie{0,...,p—1}and v € {1,...,2n, — 1},
where for m;,, > 2 we count m;, factors. We rewrite this
product as Hi;é@ﬂik — 1), where we assume, without
loss of generality, 0 < ip < i3 < ... <ip_1 <p—1and
v, < v if 4 = 4 and k < k'. Then the condition
Mo+ M+ ...+ M; —i>1for i < pimplies iy < k for
all k. Thus we have

X 1mp71,2up,172np,1+1 .

f(nf)unlu e 7np;m072uo—1, N ,O)

1 p—1 -1
HEIY ]~ [Tz (2ua, — i)
= s ‘

 wfafm? =0i=0 i=1 21
=: fp(no,nl, Ce ,np;io,il, ce ,ip_l;UQ, Vi,... 77/1)—1)7

(C6)
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where the subscript in fp refers to the number of factors
2444, — vk in the numerator.

By adding and subtracting a constant, we can write
for any j € {0,...,p — 1} and any real number c,

Fo(no,na, .o np; 80,01, oy Gp—15 V0, Y1y« -5 Vp—1)
= fp(no,...,np;io,...,ip_l;
VO, e s Vet C Vgl e vy Vp1)
—(v;—¢) fp,l(no,...,np;io,...,ij,l,ijJrl,...,ip,l;
POy e s Vjm1, Vil e -« s Vp—1)- (Cn)

The second term on the right-hand side contains fp_l,
which has ¥, = p—1 factors 2p;, — v in the numerator.
But we have shown above that for ¥,, < p the term f
vanishes. Thus only the first term remains and we find
that f = f, does not depend on v; for any j. Thus we
can replace v; by 2(n;; + ni; 41 + ... + n;) (recall that
i; < j for all j) without changing the value of f. We
obtain

fp(n07n17 e M3 80, 81y ey bp—13 V0, V1, - - 7Vp71)
1 p—1
z
i D DI | [Co Vi
7'rOZ 71'12 ..... 7TPZ ;=0 =0
p—1 Z
p—0 2(Tiy + T iy 1 — My — M1 — . — M)

i1 240
(C8)

The factor for k = 0 in the numerator contains i, = ig =
0 and thus reads 2(no+7g p1 —no) = 27 p1. In the factor
for £k = 1 we have to distinguish the two cases i1 = 0, 1.
For 7; = 0, the corresponding factor in the numerator
reads 2(ng +7Z g1 —nog —ny) = 2(n@ng + 7d w8 e —ny).
This factor is multiplied by 7¢ from the k = 0 factor.
Since (77)? = 77, we can drop the 7 in the k = 1 factor
and write it as 2(ny + 72 s — ny) = 277 up. If instead
i1 = 1, the k = 1 factor reads 2(n1 +7Z g —n1) = 277 po.
We thus obtain the same result in both cases.
For larger k, the factor in the numerator reads

2(nlk + Wianik-i-l + ...+ 7TiZk7TiZk+1 . "F;CZ/L]C_H
(C9)

— Ny, — N +1 —...—nk).

Since this factor is multiplied by 7T0Z . ~7T,€Z_1 from the
factors for j < k, we can drop all 7TjZ with 7 < k and
obtain simply 277 py41. We finally find

fp(HOanla---7np;i07ila---7ip71;V07V17---an71)
1 p—1 p—1o_ 7
z [ [ 27 k1
= (_1)P (_1)@ k=0
z ZZZ — g f:erui
TE ST e T 0
=D (=D =1 (C10)

We have shown that the coeflicients f for ¥,, = p vanish
if condition (C2)) is satisfied and equal unity otherwise.
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