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There exist three conformers of hydrogenated graphene, referred to as chair-, boat-, or washboard-
graphane. These systems have a perfect two-dimensional periodicity mapped onto the graphene
scaffold, but they are characterized by a sp3 orbital hybridization, have different crystal symmetry,
and otherwise behave upon loading. By first principles calculations we determine their structural
and phonon properties, as well as we establish their relative stability. Through continuum elasticity
we define a simulation protocol addressed to measure by a computer experiment their linear and non-
linear elastic moduli and we actually compute them by first principles. We argue that all graphane
conformers respond to any arbitrarily-oriented extention with a much smaller lateral contraction
than the one calculated for graphene. Furthermore, we provide evidence that boat-graphane has a
small and negative Poisson ratio along the armchair and zigzag principal directions of the carbon
honeycomb lattice (axially auxetic elastic behavior). Moreover, we show that chair-graphane admits
both softening and hardening hyperelasticity, depending on the direction of applied load.

PACS numbers: 81.05.ue, 62.25.-g, 71.15.Nc

I. INTRODUCTION

The hydrogenated form of graphene is referred to as
graphane. It is described as a two-dimensional, periodic,
and covalently bonded hydrocarbon with a C:H ratio of 1.
Hydrogen atoms decorate the carbon honeycomb lattice
on both the top and bottom side (see Fig. 1). Graphane
was theoretically predicted by Sofo et al.,1 further in-
vestigated by Boukhvalov et al.

2 and eventually grown
by Elias et al.3 The investigation of graphane properties
was originally motivated by the search for novel materials
with possibly large impact in nanotechnology.

The attractive feature of graphane is that by variously
decorating the graphene atomic scaffold with hydrogen
atoms (still preserving periodicity) it is in fact possi-
ble to generate a set of two dimensional materials with
new physico-chemical properties. This is obviously due
to change in the orbital hybridization which, because of
hydrogenation, is now sp3-like. For instance, it has been
calculated1,2 that graphane is an insulator, with an en-
ergy gap as large as ∼ 3 eV, while graphene is a highly
conductive semi-metal. In case the hydrogenated sample
is disordered, the resulting electronic and phonon proper-
ties are yet again different.3 Hydrogenation likely affects
the elastic properties as well. Topsakal et al.

4 indeed
calculated that the in-plane stiffness and Poisson ratio
of graphane are smaller than those of graphene. In ad-
dition, the value of the yield strain is predicted to vary
upon temperature and stoichiometry.

As far as the mechanical properties of graphane are
concerned, the sp2-to-sp3 change in orbital hybridiza-
tion causes a major difference with respect to graphene.
There in fact exist graphane conformers which are not
isotropic, at variance with graphene which is so (in lin-
ear approximation5). This feature stimulates an intrigu-

ing change of perspective, namely: hydrogenation could
not only affect the actual value of some linear elastic
moduli;4 it could even dramatically change the overall
mechanical behavior of the system by introducing an
anisotropic dependence of its respose to an external load.
This is in fact what we predict in this work by first prin-
ciples total energy calculations, combined to continuum
elasticity: we show that there is a graphane conformer
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Figure 1: (color online) Pictorial representations of the
graphane conformers, obtained by different hydrogen deco-
rations (the actual atomic positions are reported in Fig. 2).
Top hydrogen atoms are indicated by red (dark) circles, while
bottom ones by gray (light) circles. Shaded areas represent
the unit cell and the corresponding lattice vectors are indi-

cated by ~a and ~b. Panel a: graphene scaffold (full lines) with
zigzag (zz) and armchair (ac) directions. Panel b, c, and d:
chair-, boat-, and washboard-graphane, respectively.
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(i.e., boat graphane as detailed below) showing a vanish-
ingly small (possibly negative) Poisson ratio upon load-
ing along given directions. In other words, we provide
evidence that upon suitable hydrogenation a graphene
sheet behaves as an axially auxetic material,6 namely: it
does not shrink, but actually slightly elongates perpen-
dicularly to an applied traction force. Nonlinear elastic
features show an interesting anisotropic behavior as well.

This paper is organized as follows. In Sec. II, the meth-
ods and the general computational setup adopted in our
calculations are outlined. In Sec. III we provide a full
structural characterization of three graphane conformers
and we discuss their stability. In Sec. IV and Sec. V
we describe their linear and nonlinear elastic properties,
respectively, and we compute all the relevant elastic mod-
uli.

(a)C-graphane

(b)B-graphane

(c)W-graphane

Figure 2: (color online) Perspective representations of fully re-
laxed graphane conformers. Gray (light gray) and red (dark
gray) spheres represent carbon and hydrogen atoms, respec-
tively. Labels Cn and Hn (with n = 1, 2, 3 and 4) provide
the atom identifications used in Table I. Right panels show
the orientation with respect to the armchair (ac) and zigzag
(zz) direction, as well as the structural parameters h and ϕ
reported in Table I.

Table I: Space groups and structural parameters for each
graphane conformers. The cell parameters a and b are de-
fined in Fig. 1 while the other quantities are reported in Fig. 2.
Note that the B-graphane shows two types of C-C bonds while
W-graphane exhibits a large buckling parameter, h.

C-graphane B-graphane W-graphane

Space Group P-3m1 (164) Pmmn (59) Pmna (53)

a 2.54 Å 2.53 Å 2.55 Å
b - 4.31 Å 3.82 Å

C1 − C2 1.54 Å 1.54 Å 1.54 Å
C3 − C4 1.54 Å 1.57 Å 1.54 Å
C −H 1.11 Å 1.11 Å 1.11 Å

h 0.46 Å 0.65 Å 1.14 Å

ϕ 0.0◦ 16.7◦ 30.1◦

̂C1C2C3 111.5◦ 110.7◦ 111.2◦

̂C2C3C4 111.5◦ 112.3◦ 112.3◦

Ĥ1C2C3 107.4◦ 107.2◦ 106.5◦

̂H1C2C3H2 180.0◦ 180.0◦ 51.2◦

̂H2C3C4H3 180.0◦ 0.0◦ 0.0◦

II. COMPUTATIONAL SETUP

All calculations have been performed by Density Func-
tional Theory (DFT) as implemented in the Quantum

ESPRESSO package.7 The exchange correlation poten-
tial was evaluated through the generalized gradient ap-
proximation (GGA), using the Vanderbilt ultrasoft pseu-
dopotential PW91.8 A plane wave basis set with kinetic
energy cutoff as high as 50 Ry was used and in most cal-
culations the Brillouin zone (BZ) has been sampled by
means of a (18x18x3) Monkhorst-Pack grid. The atomic
positions of the investigated samples have been optimized
by using the quasi-Newton algorithm and periodically-
repeated simulation cells. Accordingly, the interactions
between adjacent atomic sheets in the supercell geometry
was hindered by a large spacing greater than 10 Å.

The elastic moduli of the structures under considera-
tion have been obtained from the energy-vs-strain curves,
corresponding to suitable sets of deformations applied to
a single unit cell sample. As discussed in more detail
in Sec. IV and Sec. V, for any deformation the magni-
tude of the strain is represented by a single parameter ζ.
The curves have been carefully generated by increasing
the magnitude of ζ in steps of 0.001 up to a maximum
strain |ζmax| = 0.05. All results have been confirmed by
checking the stability of the estimated elastic moduli over
several fitting ranges. The reliability of the above com-
putational set up is proved by the estimated values for
the Young modulus and the Poisson ratio of graphene,
respectively 344 Nm−1 and 0.169, which are in excellent
agreement with recent literature.9–11 Similarly, our re-
sults for the same moduli in C-graphane (respectively,
246 Nm−1 and 0.08) agree very well with data reported



3

in Ref. 4.
The stability of the three graphane conformers

has been established by calculating the corresponding
phonon dispersions. Phonon dispersions, have been ob-
tained by means of Density-Functional Perturbation The-
ory (DFPT),12 based on the (2n + 1) theorem. In this
case, during the self-consistent field calculation, the BZ
has been sampled by a (16x16x3) Monkhorst-Pack grid.
The accuracy of the phonon dispersion evaluations has
been tested on a graphene sample (see below).

III. STRUCTURE AND STABILITY OF
GRAPHANE CONFORMERS

By hydrogenating a honeycomb graphene lattice, three
ordered graphane structures can be generated, namely:
the chair (C-graphane), boat (B-graphane) and wash-
board (W-graphane) conformers1,13 shown in Fig. 2.
Each conformer is characterized by a specific hydro-

gen sublattice and by a different buckling of the carbon
sublattice. In particular: in C-graphane the hydrogen
atoms alternate on both sides of the carbon sheet; in B-
graphane pairs of H-atoms alternate along the armchair
direction of the carbon sheet; finally, in W-graphane dou-
ble rows of hydrogen atoms, aligned along the zigzag di-
rection of the carbon sublattice, alternate on both sides
of the carbon sheet. A perspective view of the conformers
is shown in Fig. 2 and the corresponding structural data
are given in Table I. In C-graphane and W-graphane the
calculated C-C bond length of 1.54 Å is similar to the
sp3 bond length in diamond and much larger than in
graphene. Moreover, we note that the B-graphane shows
two types of C-C bonds, namely: those connecting two
carbon atoms bonded to hydrogen atoms either lying on
opposite sides (bond length 1.57 Å) or lying on the same
side of honeycomb scaffold (bond length 1.54 Å). Finally,
the C-H bond length of 1.1 Å is similar in all conformers
and it is typical of any hydrocarbon.
The stability of the three graphane conformers has

been established by calculating the phonon dispersion
curves reported in Fig. 3. Graphene phonon spectrum
is reported as well for comparison. No soft modes (with
negative frequency) corresponding to possible instabili-
ties were found along any high-symmetry direction of the
Brillouin zone. Furthermore, as expected,14 the zone-
center longitudinal (LA) and transverse (TA) acoustic
branches show a linear dependence upon the wavevector,
while the acoustic mode ZA (with displacement patterns
along the z-direction shown in Fig. 2) shows a quadratic
dependence. We observe that in C-graphane, as well as in
graphene, the speed of sound (i.e. the slope of the acous-
tic branches at Γ-point) is the same along the Γ − M
and Γ−K directions. On the other hand, the B- and W-
graphane conformers are characterized by different sound
velocities along the Γ−X and Γ−Y directions. This is the
fingerprint of an unlike elastic behavior: as extensively
discussed in Sec. IV, C-graphane is elastically isotropic
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(c) B-graphane
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(d) W-graphane
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Figure 3: (color online) Phonon dispersion relations of
graphene (panel a), C- (panel b), B- (panel c) and W- (panel
d) graphane. Acoustic and optical modes correspond, respec-
tively, to blue (dark gray) and yellow (light gray) dispersions.
Longitudinal and transverse acoustic branches are indicated
as LA and TA, respectively. The acoustic branch with dis-
placement patterns along the z-direction of Fig. 2 is marked
as ZA.



4

while neither B- nor W-graphane are so.
Finally, according to the present first principles total

energy calculations we identified C-graphane as the most
energetically favorable conformer. W- and B-graphane
have higher ground-state energy of 0.05 and 0.10 eV (per
C-H unit), respectively. These small differences in energy
demonstrate that all three conformers are thermodynam-
ically accessible, as indeed experimentally guessed.13

IV. LINEAR ELASTICITY

While C-graphane has trigonal symmetry (and, there-
fore, is elastically isotropic as hexagonal graphene), the
remaining B- and W-conformers show an orthorhombic
symmetry, which causes an anisotropic linear elastic be-
havior. Accordingly, the elastic energy density (per unit
of area) accumulated upon strain can be expressed as15

Utrigo =
1

2
C11

(

ǫ2xx + ǫ2yy + 2ǫ2xy
)

+ C12

(

ǫxxǫyy − ǫ2xy
)

(1)

for the isotropic structures and as

Uortho =
1

2
C11ǫ

2
xx +

1

2
C22ǫ

2
yy + C12ǫxxǫyy + 2C44ǫ

2
xy (2)

for the anisotropic ones. In Eqs.(1) and (2) we have ex-
plicitly made use of the elastic linear constants C11, C22,
C12 and C44. Furthermore, the infinitesimal strain ten-

sor ǫ̂ = 1
2 (
~∇~u + ~∇~uT) is represented by a symmetric

matrix with elements ǫxx = ∂ux

∂x
, ǫyy =

∂uy

∂y
and ǫxy =

1
2

(

∂ux

∂y
+

∂uy

∂x

)

, where the functions ux(x, y) and uy(x, y)

correspond to the planar displacement ~u = (ux, uy). It is
important to remark that Utrigo can be obtained from
the Uortho by simply imposing the isotropy condition
C11 = C22 and the Cauchy relation 2C44 = C11 − C12,
holding for both the hexagonal and trigonal symme-
try. We will take profit of this by focussing just on the
elastic behavior of a system described by Eq.(2); when
needed, the general results so obtained will be applied
to the isotropic structures by fully exploiting the above
conditions. The constitutive in-plane stress-strain equa-
tions are straightforwardly derived from Eq.(2) through

T̂ = ∂U/∂ǫ̂, where T̂ is the Cauchy stress tensor16. They
are: Txx = C11ǫxx + C12ǫyy, Tyy = C22ǫyy + C12ǫxx and
Txy = 2C44ǫxy.
We now suppose to apply an axial tension σ to any

two dimensional hydrocarbon shown in Fig. 2 along the
arbitrary direction ~n = cos θ~ex+sin θ~ey, where ~ex and ~ey
are, respectively, the unit vectors along the zigzag and the
armchair directions of the underlying honeycomb lattice.
In this notation, therefore, θ is the angle between ~n and
the zigzag direction. Under this assumption we get T̂ =
σ~n⊗~n, where the in-plane stress components are defined,
respectively, as Txx = σ cos2 θ, Txy = σ cos θ sin θ, and

Tyy = σ sin2 θ. By inverting the constitutive equation we
find the corresponding strain tensor ǫ̂. In particular, we

easily get its longitudinal component ǫl = ~n · ǫ̂ ~n along
the direction ~n

ǫl = σ

[

C11

∆
s4 +

C22

∆
c4 +

(

1

C44
− 2

C12

∆

)

c2s2
]

(3)

as well as its transverse component ǫt = ~t · ǫ̂ ~t along the
direction ~t = − sin θ~ex + cos θ~ey (with ~t · ~n = 0)

ǫt = σ

[(

C11 + C22

∆
−

1

C44

)

c2s2 −
C12

∆

(

c4 + s4
)

]

(4)

where ∆ = C11C22 − C2
12, c = cos θ, and s = sin θ. By

means of Eqs.(3) and (4) we obtain, respectively, the
~n-dependent Young modulus E~n = σ/ǫl (i.e. the ratio
between the applied traction and the longitudinal exten-
sion) as

E~n =
∆

C11s4 + C22c4 +
(

∆
C44

− 2C12

)

c2s2
(5)

and the ~n-dependent Poisson ratio ν~n = −ǫt/ǫl (i.e. the
ratio between the lateral contraction and the longitudinal
extension) as

ν~n = −

(

C11 + C22 −
∆
C44

)

c2s2 − C12

(

c4 + s4
)

C11s4 + C22c4 +
(

∆
C44

− 2C12

)

c2s2
(6)

Eqs.(5) and (6) are central to our investigation.
First of all, we remark that they allow for the full linear

elastic characterization of both the anisotropic graphane
conformers and the trigonal one (as well as graphene),
provided that in the latter case the isotropy and Cauchy
conditions are duly exploited. In this case we in fact
obtain the Young modulus E = (C2

11−C2
12)/C11 and the

Poisson ratio ν = C12/C11, which are independent of the
angle θ, confirming the planar isotropy.
More importantly, however, Eqs.(5) and (6) imply that

E~n and ν~n can be directly obtained by the linear elastic
constants Cij , in turn computed through energy-vs-strain
curves corresponding to suitable homogeneous in-plane
deformations. This implies that there is no actual need
to mimic by a computer simulation a traction experiment
along the arbitrary direction identified by ~n or θ, indeed
a technically complicated issue to accomplish. Rather,
for the isotropic case (graphene and C-graphane) only
two in-plane deformations should be applied in order to
obtain all the relevant elastic constants, namely: (i) an
axial deformation along the zigzag direction; and (ii) an
hydrostatic planar deformation. For the anisotropic case
(B- and W-graphane) two more in-plane deformations
must be applied: (iii) an axial deformation along the
armchair direction; and (iv) a shear deformation. The
strain tensors corresponding to deformations (i)-(iv) de-
pend by a unique scalar strain parameter ζ as shown in
Table II. For all imposed deformations the elastic energy
of strained structures can be written in terms of ζ as

U(ζ) = U0 +
1

2
U (2)ζ2 +O(ζ3) (7)
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Table II: Deformations and corresponding strain tensors applied to compute the elastic constants Cij of graphane. The relation
between such constants and the fitting term U (2) of Eq.(7) is reported as well. Deformations (i)-(ii) are applied to the C-
conformer, while the full set (i)-(iv) of deformations is applied to the B- and W-conformers. ζ is the scalar strain parameter.

strain tensor U (2) U (2)

isotropic structures anisotropic structures

(i) zigzag axial deformation
(

ζ 0
0 0

)

C11 C11

(ii) hydrostatic planar deformation
(

ζ 0
0 ζ

)

2(C11 + C12) C11 + C22 + 2C12

(iii) armchair axial deformation
(

0 0
0 ζ

)

C22

(iv) shear deformation
(

0 ζ
ζ 0

)

4C44

where U0 is the energy of the unstrained configuration.
Since the expansion coefficient U (2) is related to the elas-
tic moduli as summarized in Table II, a straightforward
fit of Eq.(7) has provided the full set of linear moduli for
all structures.

The synopsis of the calculated elastic constants for all
graphane conformers, as well as graphene, is reported in
Table III, from which three qualitative information can
be extracted. First, we observe that the difference be-
tween C11 and C22 is much smaller for the B-conformer
than for W-graphane; therefore, this latter is by far the
most elastically anisotropic conformer. Then, the value
of C44, measuring the resistance to a shear deformation,
decreases monotonically from graphene to W-graphane.
Finally, we remark that the value of C12 (or, similarly,
of the Poisson ratio) is much smaller in any graphane
structure than in pristine graphene. The change in hy-
bridization has therefore largely reduced the property of
lateral contraction upon extension. Interestingly enough,
the B-conformer is characterized by a negative C12 value,
something unexpected and worthy of further investiga-
tion, as reported below.

Through Eqs.(5) and (6) and by using the elastic con-
stants reported in Table III, we can quantify the ~n-
dependence of E and ν for the anisotropic structures
by using polar coordinates, as illustrated in Fig. 4 and
Fig. 5, respectively. In such a representation, a fully
isotropic elastic behavior is represented by a perfectly
circular shape of the E~n and ν~n plots. This is indeed
the case, as expected, of graphene and C-graphane. On
the other hand, Fig. 4 confirms that W-graphane is much
more anisotropic than the B-conformer. Furthermore, as
anticipated, Fig. 5 provides evidence that the Poisson ra-
tio in any graphane conformer is much smaller than in

Table III: Graphene and graphane independent elastic con-
stants (units of Nm−1). For graphene and C-graphane C11 =
C22 and 2C44 = C11 − C12.

graphene C-graphane B-graphane W-graphane

C11 354 248 258 280
C22 225 121
C12 60 20 -1.7 14
C44 93 81

pristine graphene, since the corresponding ν~n polar plots
are contained within the graphene circle.
An intriguing unconventional behavior is observed in

Fig. 5 for B-graphane, namely: for extensions along to
the zigzag and armchair directions, the corresponding
Poisson value is vanishingly small. This feature appears
as a flower petal structure of the ν~n plot for such a sys-
tem. By considering Fig. 6, where a zoom of the pre-
vious plot nearby the origin has been reported, we can
actually learn more information. It is evident that four
small lobes appear along the zigzag and armchair direc-
tions (i.e. along the principal axis of the orthorhombic
symmetry), corresponding to a Poisson ratio varying in
the range −0.0075 < ν < −0.0065. The limiting values
are computed for extensions along the zigzag and arm-
chair directions, respectively. It is truly remarkable that
ν could be negative in B-graphane. While a negative
Poisson ratio value is allowed by thermo-elasticity, this
peculiar situation is only observed in special systems (i.e.
foams, molecular networks or tailored engineering struc-
tures) or just rarely in ordinary bulk materials (i.e. SiO2,
cubic metals, or polymer networks)17.
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Figure 4: (color online) Polar diagram for the Young mod-
ulus E of graphene and graphane conformers. The angle θ
identifies the extension direction with respect to the zigzag
one. Isotropic (anisotropic) behavior is associated to a circu-
lar (non circular) shape of the E~n plot.
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Figure 5: (color online) Polar diagram for the Poisson ra-
tio ν of graphene and graphane conformers. The angle θ
identifies the extension direction with respect to the zigzag
one. Isotropic (anisotropic) behavior is associated to a circu-
lar (non circular) shape of the ν~n plot. The special case of
B-graphane is enlighten by shading (see text).

V. NONLINEAR ELASTICITY

In this Section we generalize the previous analysis in
order to draw a comparison between the nonlinear elas-
tic behavior of graphene5 and the three conformers of
graphane. The nonlinear strain energy function Uhex for

zigzag

armchair

ν > 0
ν < 0

         

θ=30°

θ=
60

°

 

 

 

 

 0

 0.004

 

 0.008

Figure 6: (color online) The same as Fig. 5 zoomed in the
region nearby the origin. Positive and negative Poisson ratio
values are differently shaded as indicated.

Table IV: Strain fields applied to compute the linear (Cij)
and nonlinear (Cijk) elastic constants of the C-graphane. The

relation between such constants and the fitting terms U (2) and
U (3) of Eq.(11) is reported as well.

Strain U (2) U (3)

tensor
(

ζ 0
0 0

)

C11 C111
(

ζ 0
0 ζ

)

2 (C11 + C12) 2C111 + 6C112
(

0 ζ
ζ 0

)

2 (C11 − C12) 8C444
(

ζ ζ
ζ 0

)

3C11 − 2C12 C111 + 12C144 + 6C114 + 8C444
(

0 ζ
ζ −ζ

)

3C11 − 2C12 −C111 − 12C144 + 6C114 + 8C444
(

ζ ζ
ζ −ζ

)

4 (C11 − C12) 12C114 − 12C124 + 8C444

an hexagonal two dimensional lattice is5

Uhex =
1

2
C11

(

ǫ2xx + ǫ2yy + 2ǫ2xy
)

+ C12

(

ǫxxǫyy − ǫ2xy
)

+
1

6
C111ǫ

3
xx +

1

6
C222ǫ

3
yy +

1

2
C112ǫ

2
xxǫyy

+
1

2
(C111 − C222 + C112)ǫxxǫ

2
yy

+
1

2
(3C222 − 2C111 − C112)ǫxxǫ

2
xy

+
1

2
(2C111 − C222 − C112)ǫyyǫ

2
xy (8)

where all the nonlinear features are described by the three
independent moduli C111, C222 and C112.

Similarly, the strain energy function Utrigo for C-
graphane depending on the linear (C11 and C12) and
nonlinear (C111, C112, C144, C114, C124 and C444) elastic

Table V: Strain fields applied to compute the linear (Cij) and
nonlinear (Cijk) elastic constants of the B- and W-graphane.
The relation between such constants and the fitting terms
U (2) and U (3) of Eq.(11) is reported as well.

Strain U (2) U (3)

tensor
(

ζ 0
0 0

)

C11 C111
(

0 0
0 ζ

)

C22 C222
(

ζ 0
0 ζ

)

C11 + C22 + 2C12 C111 + C222 + 3C112 + 3C122
(

0 ζ
ζ 0

)

4C44 0
(

ζ ζ
ζ 0

)

C11 + 4C44 C111 + 12C144
(

0 ζ
ζ ζ

)

C22 + 4C44 C222 + 12C244
(

ζ 0
0 −ζ

)

C11 + C22 − 2C12 C111 − C222 − 3C112 + 3C122
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constants is found to be

Utrigo =
1

2
C11

(

ǫ2xx + ǫ2yy + 2ǫ2xy
)

+ C12

(

ǫxxǫyy − ǫ2xy
)

+
1

6
C111

(

ǫ3xx + ǫ3yy
)

+
1

2
C112

(

ǫ2xxǫyy + ǫxxǫ
2
yy

)

+ 2C144

(

ǫxxǫ
2
xy + ǫyyǫ

2
xy

)

+ C114

(

ǫ2xxǫxy + ǫ2yyǫxy
)

+ 2C124ǫxxǫxyǫyy +
4

3
C444ǫ

3
xy (9)

For such a trigonal symmetry we have C111 = C222,
C112 = C122 and C144 = C244. Nevertheless, it is im-
portant to underline that the overall nonlinear elastic
response is truly anisotropic since not all the relevant
isotropic conditions are fulfilled.
Finally, the strain energy function Uortho for the B- and

W-graphane, expressed through the linear (C11, C22, C12

and C44) and nonlinear (C111, C222, C112, C122, C144 and
C244) elastic constants, is given by

Uortho =
1

2
C11ǫ

2
xx +

1

2
C22ǫ

2
yy + 2C44ǫ

2
xy + C12ǫxxǫyy

+
1

6
C111ǫ

3
xx +

1

6
C222ǫ

3
yy +

1

2
C112ǫ

2
xxǫyy

+
1

2
C122ǫxxǫ

2
yy + 2C144ǫxxǫ

2
xy + 2C244ǫyyǫ

2
xy (10)

Eqs.(8), (9) and (10) can be obtained by using the stan-
dard tables of the tensor symmetries, found in many crys-
tallography textbooks (see for instance Ref. 15).
As above described, in any symmetry the strain energy

function depends on the third-order elastic constants (as
well as the linear ones). Once again, they can be com-
puted through energy-vs-strain curves corresponding to
suitable homogeneous in-plane deformations. For each
deformation the elastic energy of strained graphene or
graphane can be written in terms of just the single de-
formation parameter ζ

U(ζ) = U0 +
1

2
U (2)ζ2 +

1

6
U (3)ζ3 +O(ζ4) (11)

Since the expansion coefficients U (2) and U (3) are related
to elastic constants, as summarized in Table IV for the

Table VI: Graphene and graphane independent nonlinear
elastic constants (units of Nm−1).

graphene C-graphane B-graphane W-graphane
C111 -1910 ± 11 -1385±18 -1609±31 -1756±33
C222 -1764 ± 3 -1827±7 -487±85
C112 -341 ± 35 -195±41 -20±14 -75±54
C122 -55±22 -296±36
C124 -411±17
C114 530±12
C144 568±7 -161±4 -143±17
C244 -159±3 -287±10
C444 0.0±10−5

zigzag

θ=30°

θ=
60

°

armchair

C−graphane (D>0)     
C−graphane (D>0)     

B−graphane           
W−graphane           

  
 

  
 1000

 
 500

 

Figure 7: (color online) Polar representation of the nonlinear
elastic moduli D~n of the three graphane conformers. In the
B- and W-graphane cases, D~n ≡ D are everywhere negative
(softening hyperelesticity), while in the C-graphene one the
D~n alternates negative and positive values (hardening hyper-
elesticity).

C-graphane and in Table V for the B- and W-graphane,
a straightforward fit of Eq.(11) has provided the full set
of third-order elastic constants.
The results have been reported in Table VI where only

the values of the independent elastic constants appear-
ing in Eqs. (8), (9) and (10) are reported. We note
that graphene and B-graphane are characterized by an
inverted anisotropy: while C111 < C222 for graphene,
we found C222 > C111 for B-graphane. On the con-
trary, W-graphane has the same anisotropy of graphene
(C111 < C222), but a larger |C111−C222| difference. So, it
is interesting to observe that the different distribution of
hydrogen atoms can induce strong qualitative variations
for the nonlinear elastic behavior of these structures.
We finally observe that necessarily C444 = 0 for B-

and W- graphane because of the orthorhombic symme-
try. On the other hand, this nonlinear shear modulus
could assume any value for the trigonal lattice. Interest-
ing enough, we have verified that C444 = 0 also for C-
graphane. This is due to the additional (with respect to
the trigonal symmetry) mirror symmetry of C-graphane.
Similarly to the case of graphene,5,21 a nonlinear stress-

strain relation can be derived for the three graphane con-
formers:

σ~n = E~nǫ~n +D~nǫ
2
~n (12)

where E~n and D~n are, respectively, the Young modu-
lus and an effective nonlinear (third-order) elastic mod-
ulus, along the arbitrary direction ~n, as defined in

Sec. IV. The nonlinear elastic modulus D
(trigo)
~n for

the C-graphane (as well as for any trigonal 2D lattice) is
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given by

D
(trigo)
~n = 1

2

[

ν (1− ν) (C111 − 3C112)

+ (1− ν)
(

1 + ν2
)

C111

+6cs (1 + ν)
(

1 + ν2
)

C114 − 12cs (1 + ν) νC124

+3c2s2 (1− ν)
(

1 + ν2
)

(−C111 + 4C144 + C112)

+4c3s3 (1 + ν)
(

1 + ν2
)

(−3C114 + 2C444 + 3C124)

+8c3s3 (1 + ν) ν (−6C114 + 5C444 + 6C124)
]

(13)

while the corresponding modulus D
(ortho)
~n B- and W-

graphene is

D
(ortho)
~n

=
1

2∆3E3
~n

[

C111

(

C22c
2 − C12s

2
)3

+C222

(

C11s
2 − C12c

2
)3

+3C112

(

C11s
2 − C12c

2
) (

C22c
2 − C12s

2
)2

+3C122

(

C22c
2 − C12c

2
) (

C11s
2 − C12c

2
)2

−3C166c
2s2

(

C22c
2 − C12s

2
)

(∆/C44)
2

−3C266c
2s2

(

C11s
2 − C12c

2
)

(∆/C44)
2
]

(14)

Since Cijk < 0, as shown in Tab.VI, D
(ortho)
~n are negative

for any direction ( see Fig. 7), so both B- andW-graphane
show an hyperelastic softening behavior. The trigonal C-
graphane behaves in a very different way instead. Since
the C114 and C144 are positive, the C-graphane can show

an hyperelastic hardening behavior in the angular sectors
5/12π + kπ < θ < 1/12 + kπ and 8/12π + kπ < θ <
10/12 + kπ (kǫZ).

VI. CONCLUSIONS

In conclusion, present first principles calculations pre-
dict that the class of auxetic materials is larger than re-
ported so far, including as well two dimensional hydro-
carbons like B-graphane. More precisely, since a negative
Poisson ratio is observed for extensions along the zigzag
and armchair principal directions, B-graphane is better
referred to as an axially auxetic atomic sheet. Moreover,
we calculated that the other two conformers, namely the
C- and W-graphane, exhibit a vanishingly small value
of the Poisson ratio. The nonlinear elastic behavior of
graphane shows peculiar features as well. In particular,
we have found that the C-graphane admits both soft-
ening and hardening hyperelasticity, depending on the
direction of the applied strain. These features makes
graphane a very intriguing material with potentially large
technological impact in nanomechanics.
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