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Abstract

A theory of the electronic structure and excitonic absorption spectra of PbS and PbSe nanowires

and nanorods in the framework of a four-band effective mass model is presented. Calculations con-

ducted for PbSe show that dielectric contrast dramatically strengthens the exciton binding in

narrow nanowires and nanorods. However, the self-interaction energies of the electron and hole

nearly cancel the Coulomb binding, and as a result the optical absorption spectra are practically

unaffected by the strong dielectric contrast between PbSe and the surrounding medium. Mea-

surements of the size-dependent absorption spectra of colloidal PbSe nanorods are also presented.

Using room-temperature energy-band parameters extracted from the optical spectra of spherical

PbSe nanocrystals, the theory provides good quantitative agreement with the measured spectra.
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I. INTRODUCTION

Solution-based chemical synthesis of semiconductor nanostructures has allowed tremen-

dous flexibility in crystal morphology. After much work on zero-dimensional (0D) nanocrys-

tals (NCs), attention is shifting to one-dimensional (1D) nanorods (NRs) and nanowires

(NWs)1–4 and the variation of material properties in the transition from 0D to 1D. The

electronic structure of these crystals is the foundation for understanding their properties.

Previously, the electronic structure of 1D nanocrystals has been modeled using a variety of

methods, including effective-mass theories based on k · p Hamiltonians5–9, pseudopotential

techniques10–12, tight binding models13–17, and density functional theory9,17–21. The relax-

ation of confinement in going from 0D to 1D goes hand–in–hand with an increase in the

importance of Coulomb effects mediated through the nanocrystal’s dielectric environment22.

Lead–salt (PbS, PbSe, PbTe) nanocrystals offer unique advantages to study the interplay

of these two effects. Their large exciton Bohr radii places them at the limit of strong

confinement, while their large dielectric constants coupled with their mirror–like electron and

hole spectra substantially reduce the Coulomb interaction in spherical quantum dots23,24.

However, in a 1D structure the Coulomb interaction can act primarily through the host

medium, so it will not be screened as effectively as in 0D7. Thus, the lead salts provide a

unique system to study the transition from strong confinement to strong Coulomb binding

as the length of the nanocrystal changes.

Within k ·p theory, the general treatment of the optical properties of NWs and NRs sur-

rounded by media with small dielectric constant was developed in Refs. [5–7]. A type of adi-

abatic approximation naturally separates the calculation into pieces. In recognition of strong

confinement perpendicular to the NR or NW axis, one first calculates the 1D subband ener-

gies and wavefunctions, while neglecting the Coulomb interaction. Next, using these wave

functions of transverse electron and hole motion, one can calculate the longitudinal motion

of the exciton, including corrections from image forces in the surrounding medium. To do

that, the three-dimensional Coulomb potential is averaged to a one-dimensional Coulomb

interaction between the electron and hole along the NW or NR axis. Using this potential,

the spectra of 1D excitons and their transition oscillator strengths are found. Finally, in

NRs one should find the spectrum of the exciton center of mass motion, in order to include

this additional effect of confinement. The main aspects of this framework were performed
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for lead–salt nanowires recently by Rupasov25, although approximations to the simplified

band structure used in that paper preclude the description of real experimental results.

In this paper we present calculations of the 1D subband energy spectra of lead–salt

nanowires with arbitrary axis orientation, taking into account the multi-valley structure and

accurate electron and hole energy-level dispersions in these semiconductors. For PbSe NWs

with axis along the 〈100〉 direction, we calculate the spectra of 1D excitons including self-

interaction corrections. Surprisingly, the calculations show that although the binding energy

of excitons in the smallest NWs reaches 350 meV, the optical transition energies are not

affected by the small dielectric constant of the surrounding medium and are almost identical

to the transitions between non-interacting electron and hole subbands. The cancelation

of the exciton binding energy and the self-interaction corrections to the electron and hole

levels is a consequence of the almost mirror symmetry of the conduction and valence bands

of PbSe. The theoretical results agree well with the measured absorption spectra of 〈100〉
PbSe NRs.

The paper is organized as follows. In Section II we will describe the Hamiltonian governing

the 1D nanowire system, with solutions in Section III. In Section IV we present the effects

of dielectric confinement and Coulomb forces on the 1D exciton, with 1D wavefunction

solutions in Section V. Experimental data and comparison with theory are presented in

Section VI, followed by discussion and conclusion.

II. FOUR BAND EFFECTIVE MASS MODEL

PbS, PbSe, and PbTe are direct-gap semiconductors, with extrema of the conduction and

valence bands at the L points in the Brillouin zone. The energy bands near the L point

can be well-described within the four–band k · p model26,27. This model takes into account

the direct interaction between the nearest conduction and valence bands, as well as the

contributions of the remote bands to the electron and hole effective masses. Following Ref.

[24], we use the multiband effective mass approximation and expand the full wave functions

inside the nanorod as

Φ(r) =
∑

µ=±1/2

Ψc
µ(r)|L−

6,µ〉 +
∑

µ=±1/2

Ψv
µ(r)|L+

6,µ〉 , (1)
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where |L−
6,µ〉 and |L+

6,µ〉 are the Bloch functions of the conduction band and valence band

edge, respectively, at the L–point. The upper sign “± ” in the notation reflects the invariance

of these functions with respect to the operation of spatial inversion. The smooth functions

Ψc
±1/2( r ) and Ψv

±1/2( r ) are the components of the conduction band and valence band

spinor envelopes, respectively:

Ψc =




Ψc

1/2

Ψc
−1/2



 , Ψv =




Ψv

1/2

Ψv
−1/2



 . (2)

The bi–spinor envelope function Ψ =




Ψc

Ψv



 is the solution of the Schrödinger equation

Ĥ(p̂)Ψ = EΨ , where p̂ = ~k̂ = −i~∇ is the momentum operator, and the Hamiltonian

Ĥ(p̂) of Ref. [24] can be written in compact form as

Ĥ(p̂) =







(
Eg

2
+

p̂2z
2m−

l

+
p̂2⊥
2m−

t

)

Û2
Pl

m0
p̂zσ̂z +

Pt

m0
(p̂⊥σ̂⊥)

Pl

m0
p̂zσ̂z +

Pt

m0
(p̂⊥σ̂⊥) −

(
Eg

2
+

p̂2z
2m+

l

+
p̂2⊥
2m+

t

)

Û2







. (3)

In Eq. (3) Û2 is the 2 × 2 unit matrix, σ̂ = {σ̂x, σ̂y, σ̂z} are the Pauli matrices that

act on the spinor components of the wave functions (µ = ±1/2 ), Eg is the bulk energy

gap, E is the electron or hole energy measured from the middle of the gap, m0 is the

free electron mass, p̂2⊥ = p̂2x + p̂2y , (p̂⊥σ̂⊥) = p̂xσ̂x + p̂yσ̂y , Pt and Pl are the transverse

and longitudinal momentum matrix elements taken between the conduction and valence

band edge Bloch functions24, and m±
t and m±

l are the remote-band contribution to the

transverse and longitudinal band edge effective masses, respectively. For electrons and holes,

these band edge effective masses can be expressed as me
l,t = [1/m−

l,t + 2P 2
l,t/m

2
0Eg]

−1 and

mh
l,t = [1/m+

l,t+2P 2
l,t/m

2
0Eg]

−1 , respectively. In each valley, the z axis in Eq. (3) is directed

toward the L–point of the Brillouin zone, e.g. along the 〈111〉 direction of the cubic lattice.

As a result, for each of the four valleys, the z axis will point in different directions.

Although the Hamiltonian of Eq. (3) has cylindrical symmetry with respect to, e.g.,

the 〈111〉 crystallographic direction, this direction may not coincide with the NR growth

direction. For a description of NR electronic and optical properties it is convenient to

use coordinates connected with the latter direction instead, even though the cylindrical

symmetry of the Hamiltonian is generally broken. In PbS and PbSe, the small anisotropy

of conduction and valence bands allows us to treat deviations from cylindrical symmetry
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perturbatively. The Hamiltonian (3) can be written Ĥ = Ĥ0+Ĥan , where the cylindrically-

symmetric part Ĥ0 is

Ĥ0(p̂) =







(
Eg

2
+

p̂2z
2m−

z

+
p̂2⊥
2m−

⊥

)

Û
Pz

m0
p̂zσ̂z +

P⊥
m0

(p̂⊥σ̂⊥)

Pz

m0

p̂zσ̂z +
P⊥
m0

(p̂⊥σ̂⊥) −
(
Eg

2
+

p̂2z
2m+

z

+
p̂2⊥
2m+

⊥

)

Û







. (4)

The modified band parameters are

P⊥ =
Pt

2
(1 + cos2 θ) +

Pl

2
sin2 θ Pz = Pt sin

2 θ + Pl cos
2 θ (5)

1

m±
⊥
=

1

2m±
t

(1 + cos2 θ) +
1

2m±
l

sin2 θ
1

m±
z

=
1

m±
t

sin2 θ +
1

m±
l

cos2 θ (6)

where θ is the angle between the growth axis and the 〈111〉 direction. The anisotropic

part of the Hamiltonian is given in Appendix A. Note that Eq. (4) has a form identical to

Eq. (3), but the z axis is now directed along the growth axis. For arbitrary orientation of

the growth direction, there will be four different angles θ for each of the four valleys, and

therefore four different sets of modified band parameters defined in Eq. (5). As a result,

each valley will have unique electronic structure.

The energy spectra associated with the different valleys become degenerate when the

growth direction leads to identical values of θ for them. The highest degree of degeneracy

is reached when the growth direction is along the 〈100〉 crystal axis. In this case all four

valleys have the same θ ; cos2 θ = 1/3 , which results in P⊥ = Pz and m⊥ = mz in Eq. (4).

All of the spectra are degenerate.

The anisotropic part Ĥan of the full Hamiltonian can be considered as a perturbation

if |Pl − Pt| ≪ Pl + Pt and |1/m±
l − 1/m±

t | ≪ 1/m±
l + 1/m±

t . The first-order corrections

to the solutions of Ĥ0 caused by Ĥan vanish in the 2-fold Kramers-degenerate subspace at

each energy level. As a result, only second-order perturbation theory gives corrections to

the energy levels. We will neglect these corrections from this point on, although an example

higher-order calculation appears in Appendix A.

III. ENERGY SPECTRA OF ELECTRONS AND HOLES IN PBSE NANOWIRES

The first step in our modeling process is to find the energy spectra of 1D subbands of

infinitely-long cylindrical nanowires, temporarily ignoring the Coulomb interaction. The
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cylindrical symmetry of the Hamiltonian of Eq. (4) allows the solutions to take the form

Ψn(kz) =










Rn
1 (ρ) exp(i(n− 1/2)φ)

iRn
2 (ρ) exp(i(n + 1/2)φ)

Rn
3 (ρ) exp(i(n− 1/2)φ)

iRn
4 (ρ) exp(i(n + 1/2)φ)










exp(ikzz) , (7)

where φ is the azimuthal angle, n = ±1/2,±3/2,±5/2, ... is the total angular momentum

projection on the nanowire axes defined by the operator Ĵz = −i∂/∂φ + Ŝz , ~kz is the

momentum along the nanowire z axis, and ρ =
√

x2 + y2 is the radial coordinate in the

plane perpendicular to the NW axis. The chosen phase of each component of the function

Ψn(kz) allows the radial functions Rn
i (ρ) to be pure real. Substitution of Eq. (7) into Eq.

(4) yields the system of differential equations that defines these functions:
(

α− +
~
2

2m−
⊥
∆n−1/2

)

Rn
1 (ρ) +

~kzPz

m0
Rn

3 (ρ) +
~P⊥
m0

D̂−
n+1/2Rn

4 (ρ) = 0 ,

(

α− +
~
2

2m−
⊥
∆n+1/2

)

Rn
2 (ρ) +

~P⊥
m0

D̂+
n−1/2Rn

3 (ρ)−
~kzPz

m0
Rn

4 (ρ) = 0 ,

−~kzPz

m0

Rn
1 (ρ)−

~P⊥
m0

D̂−
n+1/2Rn

2 (ρ) +

(

α+ +
~
2

2m−
⊥
∆n−1/2

)

Rn
3 (ρ) = 0 ,

−~P⊥
m0

D̂+
n−1/2Rn

1 (ρ) +
~kzPz

m0
Rn

2 (ρ) +

(

α+ +
~
2

2m−
⊥
∆n+1/2

)

Rn
4 (ρ) = 0 , (8)

where α± = Eg/2±E + ~
2k2z/(2m

±
z ) . The differential operators

D̂±
m = ∓ ∂

∂ρ
+
m

ρ
(9)

are the raising and lowering operators D̂±
mJm(kρ) = kJm±1(kρ) for the Bessel functions

Jm(kρ) with integer index, and the operator ∆m = D̂−
m+1D̂

+
m = −(1/ρ)(∂/∂ρ)ρ(∂/∂ρ) +

m2/ρ2 .

It is easy to check using the raising and lowering properties of the D̂±
m operators that

the radial eigenfunctions of Eqs. (8) should take the form










Rn
1 (ρ)

Rn
2 (ρ)

Rn
3 (ρ)

Rn
4 (ρ)










=










C1Jn−1/2(kρρ)

C2Jn+1/2(kρρ)

C3Jn−1/2(kρρ)

C4Jn+1/2(kρρ)










. (10)
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Substitution of this into Eqs. (8) yields a 4x4 system of linear equations for the coefficients

C1,2,3,4 . Setting the determinant of this system to zero produces the relation between the

quasi-momentum kρ and the energy of electrons or holes E :

~
2k2ρ = −α(E)±

√

α(E)2 + β(E) , (11)

where

α(E) = m+
⊥

(

E +
~
2k2z

2m+
z

+
Eg

2

)

−m−
⊥

(

E − ~
2k2z

2m−
z

− Eg

2

)

+m−
⊥m

+
⊥
2P 2

⊥
m2

β(E) = 4m+
⊥m

−
⊥

(

E +
~
2k2z

2m+
z

+
Eg

2

)(

E − ~
2k2z

2m−
z

− Eg

2

)

− 4
m−

⊥m
+
⊥

m2
P 2
z ~

2k2z . (12)

From Eq. (11) it is clear that k2ρ can be positive or negative. The negative value of k2ρ results

in an imaginary kρ = iλρ , with λρ defined by Eq. (11) as ~
2λ2ρ = α(E)+

√

α(E)2 + β(E) .

The complex arguments in Eq. (10) are then simplified by replacing the Bessel functions

Jm(iλρρ) with the modified Bessel functions Im(λρρ) using the relationship Jm(iλρρ) =

imIm(λρρ) . For each value of k2ρ , there are two independent solutions of the 4x4 linear

system for the coefficients C1,2,3,4 . These two solutions can be chosen such that either

C3 = 0 or C4 = 0 , which allows the remaining coefficients Ci to be found. Taking into

account the positive and negative value of k2ρ , there are four independent solutions for each

energy E .

The energy spectrum is determined by the boundary conditions at the NW surface. The

boundary conditions are defined on all four components of the wave function, which inside

of the NW can be always written as a linear combination of the four degenerate solutions

discussed above









Rn
1 (ρ, kz)

Rn
2 (ρ, kz)

Rn
3 (ρ, kz)

Rn
4 (ρ, kz)










= a










kρP⊥Jn−1/2(kρρ)

−kzPzJn+1/2(kρρ)

0

ΓkJn+1/2(kρρ)










+ b










kzPzJn−1/2(kρρ)

kρP⊥Jn+1/2(kρρ)

ΓkJn−1/2(kρρ)

0










+

+c










λρP⊥In−1/2(λρρ)

−kzPzIn+1/2(λρρ)

0

ΓλIn+1/2(λρρ)










+ d










kzPzIn−1/2(λρρ)

−λρP⊥In+1/2(λρρ)

ΓλIn−1/2(λρρ)

0










, (13)
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where

Γk =
m0

~

(

E − Eg

2

)

− ~m0

2m−
⊥m

−
z

(k2zm
−
⊥ + k2ρm

−
z ) ,

Γλ =
m0

~

(

E − Eg

2

)

− ~m0

2m−
⊥m

−
z

(k2zm
−
⊥ − λ2ρm

−
z ) , (14)

and a , b , c , and d are determined by the boundary conditions.

For NWs with an impenetrable surface, the standard boundary conditions require each

component of the wave function defined in Eq. (13) to vanish, leading to Rn
i (R, kz) = 0 ,

where i = 1, 2, 3, 4 and R is the NW radius. These four equations define the 4x4 system

for the a, b, c, d coefficients. Requiring the determinant of this system to be zero yields the

following implicit equation for the 1D energy bands for angular momentum n , and as a

function of the parameter kz :

kρλρ
[
(In+)

2(Jn
−)

2 − (In−)
2(Jn

+)
2
]
+
k2zP

2
z (Γk − Γλ)

2 + P 2
t (k

2
ρΓ

2
λ − λ2ρΓ

2
k)

P 2
t ΓkΓλ

In−I
n
+J

n
−J

n
+ = 0 , (15)

where we use the notation Jn
± = Jn±1/2(kρR) and In± = In±1/2(λρR) .

After determining the energy from Eq. (15), the wavefunctions can be constructed from

Eq. (13), with only the normalization undetermined. We will use the following notation

for normalized eigenfunctions: Ψn,k
e and Ψn,k

h for the electron and hole levels given by Eq.

(15), correspondingly, where k = 1, 2, 3... is the index of the 1D subband with angular

momentum n , and
∫ R

0
|Ψn,k

e |2ρedρe2π =
∫ R

0
|Ψn,k

h |2ρhdρh2π = 1 .

Using Eq. (15) we calculated the energy levels for a 4-nm PbSe NW with various growth

directions. The energy band parameters of PbSe which we used in this calculation will

be described in a later section. The effective energy gap of the NW, which is the energy

distance between the top of the highest 1D sub-band of the valence band and the bottom of

the lowest 1D sub-band of the conduction band, impacts many material properties. Figure 1

shows the effective energy gap for all four valleys as a function of the growth direction of the

nanowire. Because the plot is calculated along high–symmetry directions in the Brillouin

zone, the degeneracy of the four valleys is never completely lifted. Without any intervalley

coupling, each of these energy gaps would have separate optical absorption and emission

peaks associated with it.

Figures 2a and 2b show the dispersion of the several lowest 1D subbands of the conduction

and valence bands in NWs grown along the 〈111〉 and 〈100〉 directions, respectively. NWs

grown along 〈111〉 have one valley oriented parallel to the growth direction and the other

8
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FIG. 1. Energy gaps of a 4-nm diameter PbSe NW at each of the four valleys as a function of

the growth direction of the NW (red lines). The numbers indicate the valley degeneracy of the

energy gaps. Dashed grey lines are the same energy gaps after accounting for the self-Coulomb

interaction, described later in the text.

three valleys oriented at the equal angles θ = 71o from it. For the 〈100〉 NW, all four

valleys are at the same angle θ = 55o from the growth direction. It is clear that both

the band-edge energies and the effective masses of the 1D subbands depend strongly on the

growth direction.

IV. DIELECTRIC CONFINEMENT

The optical properties of all semiconductor nanostructures are controlled by the strength

of the Coulomb interaction between the electron–hole pair participating in the emission

and absorption of photons28. Compared to the screened Coulomb interaction in a bulk

crystal, the interaction is usually enhanced because the electric field of the electron and hole

localized inside the nanostructure penetrates into the surrounding medium, which commonly

has a dielectric constant smaller than that of the semiconductor. In addition, any charge

in the vicinity of this interface polarizes it. In the case of a flat interface, for example, this

polarization can be described easily using an image charge that interacts with the primary

charge29. In the case of small external dielectric constant the interaction is repulsive. This

repulsive potential in nanostructures of any shape leads to an additional confinement of

carriers, which is referred to as dielectric confinement.
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FIG. 2. 1D band structure of a 4-nm PbSe NW for the cases of the axis along the directions (a)

〈111〉 and (b) 〈100〉 . The bands are labeled by the angle θ between the considered valley and the

rod growth axis and also by their multiple valley degeneracy, up to a maximum of (x4). In (b), the

individual subbands are labeled using notation adopted from molecular physics: kXe,h
|n| for the kth

electron or hole level of certain symmetry with total z angular momentum n , where X = Σ , Π ,

∆ ,. . . , is used for |m| = 0 , 1, 2,. . . , respectively, where m is the angular momentum projection

of the conduction (valence) band component of the wavefunction of the electron, ‘ e ’, (hole, ‘ h ’)

state. In (a), the order of the levels is the same, and the labeling is suppressed for clarity.

To model these effects in NRs and NWs, the analytic potential for two charges in an

infinite dielectric cylinder U(re, rh)
30 is used. It was shown previously7 that this approx-

imation works well as long as the rod length is larger than the size of the exciton. The

potential naturally divides into four terms31: the unscreened direct interaction of the two

charges Ud , the modification of this interaction due to the image effects of the solvent Us ,

and the two self-interactions of each charge with its own image Ue and Uh :

U(re, rh) = −e2/(κs|re − rh|) − eVs(re, rh) + eVs(re, re)/2 + eVs(rh, rh)/2

≡ Ud(|re − rh|) + Us(re, rh) + Ue(re) + Uh(rh)
(16)

where the function Vs has the form

Vs(re,rh) =
e

2π2κs

∫ ∞

0

du

∞∑

m=0

cos(u(ze − zh)) cos(m(φe − φh))(2− δm0)× (17)

× (κs − κm)Im(uρe)Im(uρh)Km(Ru) (Km−1(Ru) +Km+1(Ru))

κsKm(Ru) (Im−1(Ru) + Im+1(Ru)) + κmIm(Ru) (Km−1(Ru) +Km+1(Ru))

and where κs and κm are the optical dielectric constants of the bulk semiconductor and

the surrounding medium, respectively. Im and Km are the modified Bessel functions of the

10



first and second kind. For PbSe we will use κs = 23 , and for the medium, if not explicitly

stated otherwise, κm = 2 throughout this work.

The self-interaction terms Ue(re) and Uh(rh) always contribute to the energy of each

electron and hole subband calculated in Section III. In narrow NWs and NRs, where the self–

interaction energy is smaller than the confined energies, this contribution can be calculated

perturbatively for electron and hole levels, respectively:

En,k
self,e =

∫

ρedρedφe|Ψn,k
e |2Ue(re) , E

n′,k′

self,h =

∫

ρhdρhdφh|Ψn′,k′

h |2Uh(rh) . (18)

The self-interaction terms En,k
self,e and En′,k′

self,h increase the energy of all electron and hole 1D

subbands and consequently the effective energy gap in nanowires. The perturbed electron

and hole subbands with n = n′ = 1/2 and k = k′ = 1 are shown in Fig. 1.

In addition, in narrow NWs and NRs one can used an adiabatic approximation of the

Coulomb interaction32,33, which replaces the three-dimensional potential of electrons and

holes of Eq. (16) by a one-dimensional Coulomb potential that describes their interaction

along the NW/NR axis. The adiabatic potential is obtained by averaging the potential over

wave functions Ψn,k
e and Ψn′,k′

h of the corresponding electron and hole subband. Averaging

the first two terms of Eq. (16) results in the 1D adiabatic potential

V n′k′

n,k (|ze − zh|) =
∫

ρedρedφe

∫

ρhdρhdφh|Ψn,k
e |2|Ψn′,k′

h |2(Ud(|re − rh|) + Us(re, rh)) , (19)

which describes the interaction of electrons and holes occupying different subbands. This

adiabatic potential is a function of the electron and hole separation, |ze−zh| , only. One can

show that at large distances |ze − zh| ≫ R it takes the form of a one-dimensional Coulomb

potential with the dielectric constant of the surrounding medium, V n′k′

n,k ∼ −e2/(κm|ze−zh|) .
The adiabatic potential for the ground electron and hole subbands with n = n′ = 1/2 and

k = k′ = 1 is shown in Fig.3.

V. 1D EXCITONS IN PBSE NANOWIRES AND NANORODS

The attractive 1D potential described by Eq. (19) creates a series of one-dimensional

exciton states for each pair of electron and hole subbands (n, k) and (n′, k′) . The effective

masses of electrons and holes along the NW axis mn,k
e and mn′,k′

e at the bottom and the

top of each subband, correspondingly, is determined by Eq. (15). This allows us to write a
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FIG. 3. Points show the effective binding potential, V
1/2,1
1/2,1

, between an electron and a hole

occupying the ground one dimensional subband n = n′ = 1/2 and k = k′ = 1 as a function of

their separation, calculated for a 4-nm radius PbSe NW. The solid line shows the approximation

of this dependence by the Elliott & Loudon effective potential described by Eq. (21)

one-dimensional Schrödinger equation for these 1D excitons:

− ~
2

2µn′k′
n,k

∂2

∂z2
Ψ1D − ~

2

2Mn′k′
n,k

∂2

∂Z2
Ψ1D + Un′k′

n,k (z)Ψ1D = εn
′k′

n,k Ψ1D , (20)

where we introduce the electron-hole separation, z = ze−zh and the exciton center-of-mass

coordinate Z = (mn,k
e ze+m

n′,k′

h zh)/(m
n,k
e +mn′,k′

h ) . µn′k′

n,k = mn,k
e mn′,k′

h /(mn,k
e +mn′,k′

h ) is the

reduced mass and Mn′k′

n,k = mn,k
e +mn′,k′

h is the total effective mass of the 1D exciton. Impor-

tantly, the exciton binding energy εn
′k′

n,k in this equation is calculated relative to the distance

between the bottom of the (n, k) conduction subband and the top of the (n′, k′) valence

subband, assuming the self–interaction energy terms En,k
self,e and En′,k′

self,h are already taken

into account. The solution of Eq. (20) can be separated into Ψ1D(z, Z) = ψ1D(z)Ψcm(Z) .

The wave function ψ1D(z) describes relative electron-hole motion and gives the spectrum of

1D excitons. The second component, Ψcm(Z) , describes the exciton center of mass motion,

and in the case of an infinite NW Ψcm(Z) ∼ exp(iKZ) , where ~K is the exciton momen-

tum along the NW axis. This replaces the second term in Eq. (20) by the exciton kinetic

energy, ~
2K2/2Mn′k′

n,k .

Equation (20) allows us to numerically calculate the energy spectrum of 1D excitons

created from any pair of electron and hole subbands. In this paper, we will be interested

primarily in the spectrum that arises from the lowest electron and hole subbands 1Σe
1/2 and
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1Σh
1/2 , and we will use the approach suggested by Elliott & Loudon33 to describe the spec-

trum of one-dimensional excitons in a strong magnetic field. They suggest approximation

of the one-dimensional adiabatic potential by an effective one-dimensional potential, which

has well-known Schrödinger equation solutions,

Ueff(z) = − e2

κm(|z|+ ρeff)
− Aρeff e

2

κm(|z| + ρeff)2
, (21)

where ρeff and A are the two fitting parameters. The medium dielectric constant κm is

used in Eq. (21) so that the correct asymptotic form of the potential is maintained. For a

4-nm PbSe NW immersed in a medium with κm = 2 , the numerically-calculated effective

potential is described very well by the potential Ueff with ρeff = 5.49R and A = 2.73 , as

seen in Fig. 3. The slight dependence of these fit parameters on NW size is shown in Fig.

4a and the much stronger dependence on κm is shown in Fig. 4b.
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FIG. 4. Fitting parameters used in the effective potential described by Eq. (21) in PbSe NWs of

various radius and medium dielectric constant. The parameter is plotted vs. (a) nanowire diameter

with κm = 2 (b) medium dielectric constant with R = 2 nm.

The energy spectrum and eigenfunctions of Eq.(20) with effective attractive potential

Ueff(z) can be obtained analytically. The eigenfunctions of each 1D exciton level, ψα(z) ,

can be written as32,33

ψα(z > 0) = a1Wα,− 1

2

√
1−4Aαρ̃(z̃ + ρ̃) + a2Mα,− 1

2

√
1−4Aαρ̃(z̃ + ρ̃) (22)

ψα(z < 0) = ±ψα(|z|) (23)

where Wα,β(x) and Mα,β(x) are the Whittaker functions, z̃ = 2z/(a0α) , ρ̃ = 2ρeff/(a0α) ,

a0 = ~
2κm/(µ

1/2,1
1/2,1e

2) is the effective Bohr radius of a 1D exciton, and a1 and a2 are
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arbitrary coefficients. The sign of Eq. (23) is “+ ” for an even eigenfunction and “− ” for

an odd one. The coefficients a1 , a2 , and parameter α in Eq. (22) as well as the exciton

binding energy:

εα = − ~
2

2µ
1/2,1
1/2,1a

2
0α

2
(24)

are determined by the boundary conditions.

There are two boundary conditions to impose on the solution in Eq. (22): one at z =

ze − zh = ±L and one at z = 0 . We first consider infinite nanowires; the effects of finite

length will be treated in the following section. In this case, the first boundary condition is

satisfied by letting a2 = 0 , because Mα,− 1

2

√
1−4Aαρ̃(|z̃|+ρ̃) diverges as ˜|z| → ∞ . The second

boundary condition, requiring ψα(z) to be either an even or odd function of z , determines

α and the energy spectrum of the exciton. It was shown in Refs. [32 and 33] that for excited

doubly-degenerate exciton states, α takes almost-exactly integer values α = 1, 2, 3, ... and

that α → 0 for ground states with decreasing exciton transverse radius. Following Refs.

[32 and 33] we use ε0 for the ground exciton binding energy.
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FIG. 5. Coulomb energies calculated for (a) κm = 2 with varying R and (b) R = 2 nm with

varying κm . Lines are the sum of the electron E
1/2,1
self,e and hole E

1/2,1
self,h self interaction energies

(red circles); the electron-hole binding energy ε0 (blue triangles); and their total (black squares).

Figure 5 shows the calculated binding energy of the ground exciton state ε0 and the

Coulomb self–interaction energies E
1/2,1
self,e and E

1/2,1
self,h of electrons and holes from the ground

1D subbands 1Σe,h
1/2 . The binding energy decreases dramatically with NW radius or external

dielectric constant. The exciton binding energy in the narrowest NW surrounded with

κm ∼ 2− 3 reaches values > 300 meV.
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Surprisingly, however, the binding energy is almost exactly compensated by the electron

and hole self–interaction terms, which leads to practical cancelation of most effects connected

with the small dielectric constant of the surrounding medium. Because of this cancelation,

the optical transitions between 1D subbands will be determined primarily by the energies

calculated in Section III. This result has important practical consequences. For example,

the linear optical spectra of PbSe NWs will not be sensitive to the dielectric constant of the

surrounding medium.

This cancelation is well–known in spherical semiconductor NCs. The exact cancelation

of these three terms was shown for parabolic valence and conduction bands in Ref. [34].

This is because in a parabolic-band approximation the wave function of electrons and holes

are identical and depend only on the NC radius. As a result the electron and hole charge

distributions exactly compensate each other at each point in the NC. If there is no local

charge in the NC, there is no electric field outside of the NC, and the external medium does

not affect the optical properties. This cancelation is nearly exact even when the electron

and hole masses are different35.

The cancelation of the Coulomb energies in the ground exciton of PbSE NWs can be

attributed to a similar charge compensation. The mirror symmetry of the conduction and

valence bands in PbSe makes the wave functions of the electron and hole transverse motion

nearly identical. The similar values of effective masses along the NW axes also makes the

electron and hole contributions to the 1D exciton wave function identical. It is interesting to

note here that because of the large binding energy, the electron and hole in the exciton are

remarkably tightly bound, with average separation only slightly larger than the NW radius.

Fig. 6 shows the average separation, calculated as
√

〈(z − z̄)2〉 , as a function of radius,

with inset showing the wavefunction ψ1D for the case of R = 2 nm. One can see that the

average electron-hole separation in the exciton is an order of magnitude smaller than the

46 nm Bohr radius in bulk PbSe. Further calculations show that this unusual increase in

the strength of the binding is due entirely to the 1D shape of the NR, and is only weakly

affected by the dielectric contrast. For the weakest dielectric contrast when κm = κs = 23 ,

the average separation increases slightly to ≈ 4 nm, still much closer to the 4-nm diameter

than to the Bohr radius.
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FIG. 6. Dependence on PbSe NW radius of the average (r.m.s.) separation of the electron and

hole in the 1D exciton. Inset shows the square of the ground exciton wavefunction |ψ1D|2 for a

NW with 2 nm radius.

A. Finite length effects

For a nanorod, which has finite length, the relative and center-of-mass (CM) motions

of the electron and hole can never be completely separated. If the NR is much longer

than the radius of the 1D exciton, one can still approximately separate variables to create

effective boundary conditions for the exciton CM motion. No other boundary condition

(BC) is needed for the exciton separation coordinate, because the assumption is that the

tightly–bound wavefunction is already zero well before any additional confinement is felt.

On the other hand, the CM motion can be considered as the motion of a free particle

confined in a 1D box of length L . If the box is much larger than the exciton radius one

can apply the standard boundary conditions on Ψcm to obtain the well-known spectrum

Ecm(l) = ~
2π2l2/(2M

1/2,1
1/2,1L

2) , where l is the level number.

Even though this CM boundary condition makes intuitive sense, it is difficult to justify,

because the true BCs are for the electron and hole individually. To test our assumption,

we calculated the CM energies numerically by solving the two-particle Schrödinger equation

with the correct impenetrable boundary conditions on the electron and hole individually.

Details of the calculation are in Appendix C. The numerically calculated wavefunctions

and energies were best matched to those obtained for a free particle with an effective mass

of the exciton which is confined in the 1D box of length Lcm = L − R . The existence
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of such a simple expression is probably connected with the approximately-equal effective

masses of the electrons and holes and their small separation in PbSe NRs. The first few

numerically-calculated energy levels are shown in Fig. 7, along with the analytic energies

Ecm = ~
2l2π2/(2M

1/2,1
1/2,1L

2
cm) for various confinement lengths Lcm . This modified CM length

works well for all rod sizes studied, as long as the NR aspect ratio is & 2 .
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FIG. 7. Numerically-calculated energies for the lowest few exciton states in a 4 x 20 nm PbSe NR

(black circles). The lines are the energies from the analytic model using two different confinement

lengths for the center of mass.

B. Oscillator strength of the interband optical transitions

The decrease of the electron-hole separation within a 1D exciton leads to a dramatic

increase of the optical transition strength. It was shown by Elliott & Loudon33 that the

oscillator strength of practically the entire spectrum of 1D excitons becomes concentrated

in the ground exciton state. The expression for the transition strength in PbSe NRs can

be obtained by combining the results derived for PbSe NCs24 and CdSe NRs7. The total

oscillator strength Ototal can be written as a product Ototal = O⊥O‖ , where the tranverse

oscillator strength is24

O⊥ =
2P 2

l

9m0~ω

∣
∣
∣
∣
∣
∣

∫ R

0

ρdρ

∫ 2π

0

dφ

[

Ψ
1/2,1
h

]†[
0 σz

σz 0

][

Ψ1/2,1
e

]
∣
∣
∣
∣
∣
∣

2

(25)
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with ~ω the total energy of the optical transition. We have neglected the second term

from Ref. [24], as it is negligible except for very small NRs, where the envelope function

approximation likely breaks down anyway. The oscillator strength of the 1D exciton7 is

O‖ = |ψ1D(z = 0)|2
∣
∣
∣
∣

∫ L

0

dZΨcm(Z)

∣
∣
∣
∣

2

(26)

where we normalize the 1D exciton wave function such that
∫ L

−L
dz

∫ L

0
dZ|ψ1D(z)Ψcm(Z)|2 =

1 .

The transverse oscillator strength provides the selection rule that there is no change in the

z-component of the angular momentum, ∆n = 0 , while the longitudinal component focuses

the oscillator strength into the ground exciton state. This is because optical transitions

are only allowed to the even states of the exciton CM motion with l = 1, 3, 5... , and the

oscillator strength decreases as 1/l2 . Even the second allowed transition will be 9 times

weaker than the lowest transition. This has practical implications for the optical absorption

spectra. Even though the density of allowed transitions increases dramatically with energy

in NRs, most of the oscillator strength is concentrated in the lowest-energy transition for

each pair of NR subbands. Thus, isolated peaks should still be observable in experimental

spectra.

VI. EXPERIMENT

A. Synthesis and characterization of colloidal PbSe nanorods

Although the synthesis of lead salt nanowires was reported several years ago36,37, the

fabrication of high quality lead-salt nanorods with small diameter has proved challenging.

PbSe NRs were synthesized with noble metals as seeds38, but the resulting NRs did not have

good optical spectra. Some high-quality NRs have been reported, but the syntheses were

too challenging for us to reproduce39–41. A simple synthesis for high-optical-quality PbSe

NRs was recently demonstrated42, and the properties of these NRs will be compared to the

theoretical results.

Following Ref. [42], the NR synthesis was carried out using standard Schlenk-line tech-

niques under dry nitrogen. Tris(diethylamino)phosphine (TDP, Aldrich, 97%), oleic acid

(OA, Aldrich, 90%), 1-octadecene (ODE, Aldrich, 90%), squalane (Aldrich, 99%), amor-
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phous selenium shots (Se, Aldrich, 99.999%), and lead(II) oxide (PbO, Aldrich, 99.9%) were

used as purchased without further purification. Anhydrous ethanol, chloroform, acetone,

hexane, and tetrachloroethylene (TCE) were purchased from various sources. To prepare

1.0 M stock solutions of TDPSe, 7.86 g of Se was dissolved in 100 mL of TDP.

Typically, 0.22 g of PbO was dissolved in 5 mL of squalane in the presence of 1 mL

OA. (Squalane can be replaced by ODE.) After drying under nitrogen at 150 C for 30 min,

the solution was heated to 170 C and 3 mL of a 1 M TDPSe solution in TDP was injected

under vigorous stirring. Once the reaction finished, the reaction mixture was cooled to room

temperature using a water bath. The crude solution was mixed with hexane and precipitated

by ethanol. The precipitated NRs were isolated by centrifugation (at 5000 rpm for 3 min)

and redispersed in chloroform or other organic solvents. Size-selective precipitation can be

carried out to obtain better monodispersity of NRs samples using chloroform/acetone or

other solvent/nonsolvent pairs.

The size of the synthesized NRs was determined from transmission electron microscopy.

In-plane powder X-ray diffraction shows that the NRs grow along the 〈100〉 direction42.

Absorption was measured on a Shimadzu UV-3101PC spectrophotometer at room temper-

ature. Emission spectra were recorded at room temperature with an infrared fluorimeter

equipped with a 200-mm focal length monochromator, a single mode fiber coupled laser

source (S1FC635PM, 635 nm, Thorlabs, Inc) as the excitation source, and an InGaAs

photodiode (New Focus Femtowatt model 2153). Fluorescence lifetime was measured us-

ing an InP/InGaAs PMT (Hamamatsu H10330A-75) with 120-fs excitation pulses from a

Ti:sapphire regenerative amplifier (Spectra-Physics Hurricane) with 1 kHz repetition rate.

NRs were dissolved in tetrachloroethylene (TCE) for all measurements to avoid spurious ab-

sorbance in the near-IR. Quantum yield measurements were performed using an integrating

sphere, with the method described in Ref. [43].

B. Absorption Spectra

First, we will highlight the qualitative differences between the absorption spectra of NRs

and spherical NCs. Figure 8 shows the absorption spectrum of 3.3 nm diameter x 12 nm

length PbSe NRs along with that of 4.4 nm diameter spherical NCs, chosen to have a nearly

identical first absorption peak. The spectrum of the NRs has fewer obvious features than
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the NC spectrum. The first peak in the NR spectrum has a broad high energy side, even

though its narrower low energy side is nearly identical to that of the NCs (inset of Fig. 8).

Both of these observations indicate the presence of more densely-spaced transitions in the

NR spectrum, which have the effect of smoothing out the peaks. Interestingly, the second

NC peak appears where there is a dip in the NR spectrum.

500 750 1000 1250 1500
0.00

0.25

0.50

0.75

1100 1300 1500
 NR
 NC

 

 

A
bs
or
ba

nc
e

Wavelength [nm]

(a)

 
 

 

1200 1500 1800 2100
0.0

0.5

1.0 (b)

 NR
 NC

 

 

Em
is

si
on

 [a
rb

. u
ni

ts
]

Wavelength [nm]

0 2 4 6 8 10

 

 

Time [ s]

FIG. 8. (a) Absorption spectra of PbSe NRs (black line, vertically offset for clarity) and spherical

PbSe NCs (red line) are compared. The inset shows detail of the first peak. (b) Emission spectra

and fluorescence decays measured at the emission peak (inset) of the same two samples.

The broadening of the NR absorption peak seen in Fig. 8 is connected with the dispersion

of NR diameter and length. Our best PbSe NR samples have around 5% size distribution

in radius, but a much larger 20% in length. This large length polydispersity will blur out

many of the NR transitions in an ensemble, except for those that are roughly independent of

length— specifically, the lowest energy exciton for each pair of NW subbands. Fortunately,

this is also the transition predicted to have the largest oscillator strength. As we have

shown above, the energies of the optical transitions of the ground exciton states practically

coincide with the energies between non-interacting electron and hole subbands, even though

their respective wave functions differ greatly. This greatly simplifies the interpretation of

the absorption spectra of NRs.

We performed second–derivative analysis on the absorption spectra to determine the

transition energies accurately. To avoid the problems inherent in this method44, only the

peaks in the second-derivative spectra that correspond to obviously-visible peaks in the

measured spectra were used. NRs produced by our first syntheses showed instability in
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solution and would slightly aggregate during the absorption measurement. This adds a

moderate scattering background, so only the absorption peak location is recorded for these

samples. NRs synthesized more recently are more stable, and at least four peaks can be

discerned, with an additional peak in the three samples with narrowest size distribution.

Fig. 9a has an example measured spectrum of a 3.9 nm diameter x 17 nm length PbSe

NR that shows all five peaks, and the locations of all measurable peaks from all samples

are shown in Fig. 9b. The measured peaks are plotted vs. D−3/2 following the similar

graph in Ref. [45]. This power of the diameter is chosen to make the trend linear over the

measured range, allowing rough extrapolation to bulk as D−3/2 → 0 . In this manner, the

peaks originating from the L-point and Σ -point are easily distinguished.
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FIG. 9. (a) Example absorption spectra of a 3.9 x 17 nm PbSe NR. Inset shows the same data,

but on a scale where the 5th peak is visible. (b) Peaks in 2nd derivative spectrum as a function of

NR diameter (symbols), calculated allowed transitions (grey lines), simple parabolic effective mass

calculation around the Σ -point (dashed grey line), and linear fits (colored dashed lines.)

Quantitative theoretical description of the size-dependent absorption spectra of PbSe

NRs shown in Fig. 9 requires a set of 6 room temperature energy band parameters for

this semiconductor: m±
t , m±

l , and P 2
t,l . The parameters extracted from low temperature

cyclotron resonance and interband magnetooptical experiments in bulk PbSe46 describe quite

well the average two-dimensional effective mass of electrons and holes at the bottom of the

conduction band and the top of the valence band, respectively. The fitting procedure that

gives this set is not sensitive, however, to the separation of 1/ml,t and the 2P 2
l,t/m

2
0Eg

terms, and describes well only the sum of these terms, because the all measurements are

21



conducted a the narrow energy range comparable with the PbSe energy gap. This procedure

is also not very sensitive to the anisotropy of the carrier energy spectra, because a magnetic

field averages out the 2D motion of electrons and holes. On the other hand, in order to

predict nanocrystal energy levels quantitatively, both the separation of components of the

effective masses and the band anisotropy are crucial. Finally, the energy band parameters

are expected to be temperature dependent. Thus, we conclude that parameters inferred

from cyclotron resonance and magneto-optical measurements might not describe the energy

spectra of NRs and NCs measured at room temperature.

In principle, spatial confinement of carriers in nanostructures provides a more-sensitive

way to determine the energy band parameters, due to the large modification of the energy

spectra of confined carriers. With this motivation, we used the previously-measured ab-

sorption spectra of PbSe NCs in Refs. [45, 47–51] and extracted room-temperature band

parameters using a global fitting procedure. Importantly, this new set of parameters not

only quantitatively describes the low-energy transitions of PbSe NCs, but may also help

resolve the long-standing controversy over the symmetry of the second peak in the NC ab-

sorption spectra (see Appendix D). These band parameters (Table VIB) are used in all

graphs presented in this work.

Name Ref. [46] Best Fit Aniso. ratio Ref. [46] Best Fit

m+
t /m0 0.29 0.59 m+

l /m
+
t 1.28 1.6

m−
t /m0 0.27 0.79 m−

l /m
−
t 3.53 1.6

2P 2
t /m0 3.6 (eV) 4.25 (eV) P 2

t /P
2
l 1.82 3.0

TABLE I. Energy band parameters that provide the best fits to the room temperature data from

PbSe NCs. The left columns show the transverse band components, while the right columns show

the ratio of transverse to longitudinal components.

The theoretical size dependence of the optical transitions in PbSe NRs is calculated within

our 4 band model and shown in Fig. 9b by solid lines. The lowest two transitions agree

well with the theory. The third predicted transition is not observed, possibly owing to its

proximity to other strong transitions in our NR samples. The third and fourth peaks are

strong transitions that do not appear to be associated with the L-point. Their energies

extrapolate back to the Σ -point energy. The third peak is fit well by the same parabolic
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band model used to model spherical PbSe NCs, and thus we assign this transition to the

lowest-energy excitonic state at the Σ point. This line was calculated for both spheres and

rods with me
Σ = mh

Σ = 0.45m0 and Eg(Σ) = 1.65 eV. Without more-detailed knowledge of

the band structure there, we cannot predict the excited states with any accuracy. Thus, the

identity of the fourth transition cannot be determined, but as the energies approach the same

1.65-eV bulk value, it is reasonable to tentatively attribute it to a higher-energy exciton from

the Σ point. Finally, the fifth peak was perhaps the strongest in the absorption spectra, but

showed no size dependence. We tentatively ascribe this to a metal-complex transition on the

surface of the nanocrystal based on its proximity to absorption peaks of Pb(II) complexes52.

The identities of these transitions are summarized in Table VIB.

Label Assigned Transitions

P1 1Σh
1/2 → 1Σe

1/2

P2 1Πh
3/2 → 1Πe

3/2 and 1Πh
1/2 → 1Πe

1/2

P3 Σ–point ground state

P4 Σ–point excited state (?)

P5 Surface metal complex mode

TABLE II. Transitions observed in the absorption spectra of PbSe NRs.

The fluoresence spectra and decays (Fig. 8b) are nearly identical for NCs and NRs, with

a slightly larger Stokes shift in the NRs along with a slightly broader peak. The ensemble

quantum yield of the nanorods is around 15%, around half that of the NCs. This might

indicate that the radiate lifetime of the rods is longer than the that of the NCs, but it is also

possible that the QY reflects an ensemble with 15% emitting and 85% non-emitting rods.

Two effects would be expected to modify the radiative lifetime in nanorods. First, be-

cause the radiative lifetime is inversely proportional to the oscillator strength, the increased

electron–hole correlation in NRs should decrease the lifetime compared to NCs. Second, the

effect of screening is reduced in NRs, which is believed to be the cause of the long lifetime

in PbSe NCs49. Approximating the NR as a dielectric prolate spheroid, the screening will

substantially decrease along the rod axis, while slightly increasing along the other two axes,

with an overall effect of a reduction in screening of the lifetime. Compared to a spherical

NC of the same diameter, the larger oscillator strength and the reduced screening should
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each produce about a factor of 3 reduction in lifetime in NRs with typical aspect ratios. To-

gether this amounts to almost an order of magnitude reduction, and should be measurable

even considering other sample–related uncertainties. However, the measured lifetime (Fig.

8b) is nearly identical in NCs and NRs. This discrepancy is not understood. It might be

explained by a dark ground exciton state that controls the photoluminescence decay in PbSe

NRs and NCs, with the same activation mechanism in both structures. To be thorough,

the nonradiative rate must be determined, and completing this along with exploring this

phenomenon is a topic of future work.

VII. DISCUSSION AND CONCLUSIONS

Our model of the electronic structure of lead–salt NRs is based on the 4 band k · p
Hamiltonian suggested in Ref. [27], using the standard boundary condition of a vanishing

envelope wave function at the NR surface. All calculations are conducted within a cylindrical

approximation. To use this model for description of various properties of NRs or NWs, one

needs to know a set of the 6 temperature-dependent band parameters that describe a specific

bulk lead–salt semiconductor. For the PbSe NRs studied in this paper, we extracted the

set of room-temperature parameters from analysis of the size-dependence of previously-

measured room temperature absorption spectra of spherical PbSe NCs.

The most significant conclusion of this work is that the fundamental excitations in PbSe

NRs are one-dimensional excitons under each pair of optically coupled electron–hole sub-

bands. The binding energy of the ground exciton state, which accumulates the most oscilla-

tor strength, increases with decreasing NR thickness and reaches 400meV in the narrowest

rods. Surprisingly, the large binding energy of the exciton is almost exactly compensated by

the self–interaction of electrons and holes with their own images, which makes the energies

of the optical transitions nearly independent of the solvent dielectric constant. Although the

finite length of NRs affects the spacing between excited exciton states, it has a negligible

effect on the energy of the exciton ground states.

With the set of PbSe band parameters extracted from spherical NC absorption spectra

(Table VIB), the model presented here describes the absorption spectra of PbSe NRs, and

potentially resolves some troublesome aspects of k · p theory of spherical PbSe NCs. The

energy of the optical transitions to the exciton ground states calculated within a cylindrical
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approximation match the two lowest-energy transitions observed experimentally. Although

the effect of anisotropy in important for description of the absorption in spherical PbSe NCs,

it is diminished in NRs (see Appendix A & D), and the energy of the first two transitions is

unaffected by it.

The absorption spectra of PbSe NRs have another remarkable feature. The size depen-

dence of the third and fourth absorption peaks is strong evidence that they originate from

the Σ point of the Brillouin zone. Similar states connected with the Σ point were ob-

served previously in the absorption spectra45 and in the hot carrier dynamics53 of spherical

PbSe NCs. These observations provide clear experimental evidence that even in the smallest

nanostructures, wave functions from distinct critical points (L and Σ , in this particular

case) are not mixed if both their corresponding conduction band minima and valence band

maxima are well-separated energetically. This provides strong justification for the applica-

bility of our multiband effective mass approximation in such small nanostructures. A large

energetic separation of L and Σ band edges is supported theoretically by recent ab ini-

tio calculations54, which for PbSe predict larger than 500 meV energy separation for these

extrema, in both the valence and conduction bands, in contradiction with similar earlier

calculations, which placed the separation in the valence band closer to 150meV55.

The predicted strong increase in electron–hole Coulomb interaction in PbSe NWs should

have major implications for other properties. This enhancement should increase the rate

of the nonradiative Auger recombination as well as the rate of the inverse process, impact

ionization. A high rate of impact ionization or efficient multiple exciton generation, combined

with good conductivity that might be expected in PbSe NWs, suggests that these structures

may be promising for photovoltaic applications.

To summarize, we have developed a theory that describes both the energy spectra of

individual electrons and holes and the absorption spectra of lead–salt NWs and NRs. Cal-

culations show that even though spatial and dielectric confinement dramatically increase

the exciton binding energy, the absorption spectra of PbSe NWs and NRs are practically

unaffected, which should lead to insensitivity of these spectra to the surrounding media. The

size dependence of lowest absorption peaks measured in PbSe NRs is very well described by

the developed theory. It should be straightforward to apply this model to PbS and PbTe

NRs.
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Appendix A: Effect of anisotropy on the nanowire energy spectra

The cylindrically symmetric Hamiltonian in Eq. (4) can be derived from the full Hamil-

tonian in Eq. (3) by transformation to the new coordinate system connected with NW

direction. The full Hamiltonian is defined with respect to a crystallographic direction of the

Brillouin zone, where the z–axis is pointed towards one of the L–points, and we will call

this coordinate system the primed system, {x′, y′, z′} . We need to express Eq. (3) in the

new coordinate system where the z–axis is directed along the rod axis, called the unprimed

system, {x, y, z} . To do this, we use a coordinate rotation, and define the x–axis such that

the rotation occurs in the x–z plane. In the rotation, vector quantities, such as p̂ or σ̂ are

transformed using the rotation matrix, p̂′ = R(θ)p̂ , with R defined as

R(θ) =








cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ








. (A1)

This transformation expresses the squared momenta in Eq. (3) as:

p̂′2x = cos2 θp̂2x − sin 2θp̂xp̂z + sin2 θp̂2z (A2)

p̂′2z = sin2 θp̂2x + sin 2θp̂xp̂z + cos2 θp̂2z . (A3)

and the diagonal and off-diagonal elements of the matrix of Hamiltonian in Eq. (3) in new

coordinate system as:

1

mt

(p̂′2x + p̂′2y ) +
1

ml

p̂′2z =

(
cos2 θ

mt

+
sin2 θ

ml

)

p̂2x +
1

mt

p̂2y +

+

(
sin2 θ

mt
+

cos2 θ

ml

)

p̂2z +

+ sin 2θ

(
1

ml

− 1

mt

)

p̂xp̂z (A4)

Ptσ
′
xp̂

′
x + Ptσ

′
yp̂

′
y + Plσ

′
zp̂

′
z = (Pt cos

2 θ + Pl sin
2 θ)σxp̂x + Ptσyp̂y +

+(Pt sin
2 θ + Pl cos

2 θ)σz p̂z +

+
1

2
sin 2θ(Pl − Pt)(σzp̂x + σxp̂z) (A5)

Notice that neither elements are cylindrically symmetric in the new coordinates. To en-

force this symmetry, we rewrite these expressions in a form that separates a cylindrically

symmetrical part, formally: aÔx + bÔy = (1/2)(a + b)(Ôx + Ôy) + (1/2)(a− b)(Ôx − Ôy) .
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The first term, which has cylindrical symmetry, is used in the zero-th order Hamiltonian,

and the second term creates the asymmetric perturbation. This procedure produces the

Hamiltonian in Eq. (4), along with the perturbation matrix

Ĥan =














1
2
Û
(

1
m−

l

− 1
m−

t

)

×

×
(
1
2
sin2 θ(p̂2x − p̂2y) + sin 2θp̂xp̂z

)

1
2m

(Pl − Pt)
{
sin2 θ(σ̂xp̂x − σ̂yp̂y)+

+ sin 2θ(σ̂zp̂x + σ̂xp̂z)
}

1
2m

(Pl − Pt)
{
sin2 θ(σ̂xp̂x − σ̂yp̂y)+

+ sin 2θ(σ̂zp̂x + σ̂xp̂z)
}

−1
2
Û
(

1
m+

l

− 1
m+

t

)

×

×
(
1
2
sin2 θ(p̂2x − p̂2y) + sin 2θp̂xp̂z

)














(A6)

We study the effect of anisotropy described by Eq. (A6) on the energy spectrum of electrons

and holes. Figure 10 compares the energy of the lowest electron levels in a 4 nm PbSe NW

calculated within the cylindrical approximation and with complete numerical inclusion of

the anisotropy. The anisotropy was taken into account by diagonalizing the matrix elements

of Han in the space of the highest 20 valence and lowest 20 conduction states (that is,

including the highest ten and lowest ten doubly degenerate electron and hole levels.) One

can see in Fig. 10 that the anisotropy in PbSe splits the nearly degenerate energy levels,

whose radial or angular quantum momentum numbers differ by one in radial or angular

quantum momentum numbers, while necessarily leaving the Kramer’s degeneracy unbroken.

The splitting should broaden the energy levels without an overall shift in the level position.

Appendix B: Calculations of the one dimensional Coulomb potential

Calculation of the one dimensional Coulomb potential in Eq. (19) and self interaction

energy in Eq. (18) can be greatly simplified by initial averaging over angular variables. For

the U1 term of Eq. (19) the angular integration results

〈U1〉(z) =
∫ R

0

dρeρe

∫ R

0

dρhρh|Ψe|2|Ψh|2V1(ρe, ρh, z) , (B1)

where

V1(ρe, ρh, z) = −4π
e2

κs
√
ρeρh

Q−1/2

(
z2 + ρ2e + ρ2h

2ρeρh

)

(B2)

and Qn is the Legendre function of the second kind. The two remaining radial integrals are

evaluated numerically.
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FIG. 10. Effect of the energy spectrum anisotrpy on the energy of the 1D subband bottom in a 4 nm

PbSe NW grown along the (a) 〈111〉 and (b) 〈100〉 crystal axes. The “approximate” calculations

are conducted within the cylindrical approximation, which gives Eq. (15) for the energy levels.

The “full” calculations are performed as described in the text. The energy levels are labeled by

the angle between the L-point and the rod growth axis. Note that the θ = 0 energy levels do not

require perturbation, as Han = 0 for that angle.

For the second term in Eq. (19), U2 , the angular integrals vanish unless m = 0 leaving

only this term from the sum. This results in the following expression for 〈U2〉(z) :

〈U2〉(z) = −8π
e2

κs

∫ ∞

0

du
(κs − κm)K0(Ru)K1(Ru) cos(uz)

κsI1(Ru)K0(Ru) + κmI0(Ru)K1(Ru)
×

×
(∫ R

0

dρe ρe|Ψe|2I0(uρe)
)

︸ ︷︷ ︸

ie(u)

(∫ R

0

dρh ρh|Ψh|2I0(uρh)
)

︸ ︷︷ ︸

ih(u)

. (B3)

To calculate the integrals ie and ih in Eq. (B3), we approximate the squared wavefunctions

as a short sum of the form |Ψe|2 =
∑N

n=1An(1−ρ2ne ) , with N ≈ 8 . Even with so few terms,

the maximum relative error is typically < 10−7 . This allows us to solve these two integrals

analytically:

ie(u) =
N∑

n=1

An

∫ R

0

dρe ρe(1− ρ2ne )I0(uρe)

=
N∑

n=1

An

(
RI1(u)

u
− R2+2n

1F2 (1 + n; 1, 2 + n;R2u2/4)

2 + 2n

)

, (B4)

where pFq is the generalized hypergeometric function. The remaining integral over u in

Eq. (B3) is performed numerically.
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Lastly, the two self interaction terms in Eq. (18), Ue and Uh , after angular integrations

are reduced to

〈Ue,h〉 =
2e2

κs

∞∑

m=0

∫ ∞

0

du

(∫ R

0

dρe,h ρe,h|Ψe,h|2I2m(uρe,h)
)

×

× (κs − κm)Km(Ru)(Km−1(Ru) +Km+1(Ru))(2− δm0)

κsKm(Ru)(Im−1(Ru) + Im+1(Ru)) + κmIm(Ru)(Km−1(Ru) +Km+1(Ru))
. (B5)

The two dimensional integrals in Eq. (B5) was taken numerically. It is summed over only

the first ≈ 20 values of m , as the sum converges rapidly.

Appendix C: Numerical calculation of the exciton binding in PbSe nanorods

Our analytic model makes the assumption that the 1D exciton is only weakly confined

along the NR axis. In this case the finite length of the NR affects only the exciton center of

mass motion. To verify this assumption, the 1D Hamiltonian was numerically diagonalized,

while treating both binding and confinement exactly. As an orthogonal basis for this diago-

nalization we used a sufficiently large set of electron and hole plane waves that satisfied the

single particle boundary conditions. The 1D exciton wavefunction in this basis set can be

written as:

Ψ1D =
Ne∑

ne=1

Nh∑

nh=1

Ane,nh

2

L
sin

(neπze
L

)

sin
(nhπzh

L

)

(C1)

where Ane,nh
are the numerical coefficients.

The kinetic energy is diagonal in this basis, and matrix elements of Eq. (21) can be eval-

uated analytically. Calculation time was dominated by evaluation of these matrix elements

and scaled as O(NeNh ). For Ne = Nh ≈ 30 , calculations were sufficiently converged for the

lowest few dozen states, and required roughly one minute of computation time on a desktop

computer.

Fig. 11 shows the square of 1D wavefunctions, |Ψ1D|2 , calculated both the numerically

and analytically as a function of ze and zh . For the lowest two exciton states |Ψ1D|2 shows

good agreement between the numerical model and the analytical calculation. This is because

the electron and hole are strongly localized around each other and do not feel the effects of

confinement at the edges of box. As a result, the wavefunction orients along the coordinates

associated with Coulomb binding, z and zcom , roughly along the graph diagonals. On the

other hand, by the 17th excited state, also shown in Fig. 11, the numerical and analytical
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calculations disagree greatly. This is because the higher kinetic energy of this state causes

the wavefunction to reach the edges of the box and feel confined. And, as a result, it begins

to orient along the box coordinates, ze and zh , associated with confinement. In general, our

analytic model shows good agreement for the lowest ≈ 10 states for each pair of nanowire

bands.
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FIG. 11. Comparison of the numerically and analytically calculated 1D exciton wavefunctions

|Ψ1D|2 . Each subplot has axes ze and zh ranging along the length of the nanorod from 0 to L .

The two lowest energy states and the 17th state are shown.

Appendix D: Choice of the room temperature band parameters

The absence of reliable room temperature energy band parameters for bulk PbSe has lead

to several problems in the quantitative description of spherical PbSe NC electronic prop-

erties within effective mass theory, and as a result, to some controversy on their electronic

structure45,55–58. As has been noted56,59, effective mass theory significantly overestimates the

energy gap in PbSe NCs (though not in PbS.) In addition, the nature of the 2nd optical tran-

sition is still a source of debate60–63, whether it is of symmetry type S-P or P-P. Considering
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the body of experimental evidence, the explanation put forward by Franceschetti62 seems to

offer the simplest explanation of this controversy, that the electron and hole P states are split

into P⊥ and P‖ states by the anisotropy of the bands, and the second transition is of type

P‖ -P‖ . These two problematic aspects of experimental spectra of PbSe NCs for effective

mass theory– overestimation of the bandgap and the symmetry of the 2nd transition– as

well as the observation of several optical transitions in a wide range of energies can be used

for extraction of a real set of the energy band parameters.

Although the extraction of the set of energy band parameters from room temperature

absorption spectra is possible, it is likely that many sets of parameters will equally well fit

the first few optical transitions. In order to increase the accuracy of the fit, we want to

somehow incorporate the energy band parameters in low temperature experiments in bulk

PbSe. So, the total band edge effective masses for electrons and holes at T = 4 K are held

constant at the values from experiment46. In addition, to limit the degrees of freedom in

the fit, the anisotropy of the far-band contributions to both the electron and hole are held

equal. That is, m+
l /m

+
t = m−

l /m
−
t , even though their individual values will differ. With

these constraints, a fit is performed using the body of literature data45,47–51 for the first

transition, and the data from Koole45 for the second and third transitions.

The final set of room temperature parameters are shown in Table VIB together with

the set of low temperature parameters reported for bulk PbSe in Ref. [46]. The transition

energies calculated using these parameters are shown in Fig. 12. The anisotropic effective

mass calculations were performed using the method outlined in Ref. [64] and the results

compared to the energies measured in Ref. [45], ignoring those points criticized in Ref. [44]

as possibly being 2nd derivative artifacts.
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FIG. 12. Calculations of the lowest electron levels in spherical PbSe NCs. (a) Splitting of the

P state induced by the fully anisotropic Hamiltonian in a 4 nm radius NC. Anisotropic states

are labeled by writing the state in the basis of isotropic states, and labeling it by the isotropic

state with largest coefficient. (b) The size dependence of the transition energies in spherical PbSe

NCs. Experimental data45 are shown by symbols. The solid lines show the size dependence of

optically allowed transitions calculated in a fully anisotropic effective mass model. The optically

allowed transitions occur between the states of the same symmetry but opposite parity, and we

label them by a symmetry type, which is common for both states. Open points indicate transitions

originating from the L-point in the Brillouin zone, while half-open points are suggested to be

from the Σ point as in Ref. [45]. The dashed line shows the size dependence of lowest confined

level connected with the Σ point of the Brillouin zone, calculated in a parabolic effective mass

approximation as explained in the text.
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