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We calculate the spatially resolved optical emission spectrum of a weakly interacting Bose gas of
excitons confined in a three dimensional potential trap due to interband transitions involving weak
direct and phonon mediated exciton-photon interactions. Applying the local density approxima-
tion, we show that for a non-condensed system the spatio-spectral lineshape of the direct process
reflects directly the shape of the potential. The existence of a Bose-Einstein condensate changes
the spectrum in a characteristic way so that it directly reflects the constant chemical potential of
the excitons and the renormalization of the quasiparticle excitation spectrum. Typical examples are
given for parameters of the lowest yellow excitons in Cu2O.
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The condensation of bosons into the system ground
state at sufficiently low temperature in thermal equilib-
rium is one of the manifestations of quantum nature of
matter [1]. To reach a sufficient density, the concept of
trapping the particles in a potential well has allowed the
realization of atomic Bose-Einstein condensates [2, 3].
Also for bosonic quasiparticles, like microcavity polari-
tons, this concept has been fruitful [4]. For excitons,
bound electron-hole-pair excitations in semiconductors,
which have been the first type of quasiparticles where
Bose-Einstein condensation (BEC) has been predicted
(for an overview see [5]), the use of potential traps has a
long history. Especially promising have been the exciton
states in the semiconductor cuprous oxide (Cu2O). Due
to their optically forbidden nature, long lifetime are ex-
pected and one should be able to trap a very large num-
ber of particles in quasi thermal equilibrium (see, e.g.,
[6, 7]). However, despite several experimental studies of
dense exciton states in this material [5, 6, 8, 9, 10], none
of these resulted in a clear demonstration of the existence
of a Bose condensed state of excitons. We will show in
this paper that a reason for these failures might be a
wrong assignment of the decay luminescence spectrum of
an exciton condensate, since all earlier papers used only
qualitative arguments where the condensate has been put
by hand into the spectrum, but a rigorous calculation of
the decay luminescence spectrum of excitons in a trap
under weak exciton-photon interaction has not been per-
formed. In this paper we will give a calculation based on
a mean field description of the exciton system, which not
only clarifies these issues but predicts significant changes
in the luminescence spectrum in the presence of a con-
densate. This will provide unique criteria for the onset
of BEC in an excitonic system.

In the theory of interacting Bose gases, several approx-
imations have been developed [11, 12], for a review see
[13]. The critical temperature for BEC can be roughly
approximated by that of a noninteracting system. Tak-
ing the confining potential to be that of a 3d harmonic

oscillator Vext = αr2, it is given by

kBTc0 = ~Ω0

(
N

ζ(3)

)1/3

(1)

with Ω0 =
√

2α/M being the oscillator frequency, N
the total number of particles in the trap, M the mass of
the particles, and ζ the Riemann zeta function. For an
exciton mass of M = 2.6me that represents the mass of
the paraexcitons in Cu2O [14] and typical α parameters
of exciton traps (α ' 0.05 µeV/µm2, see, e.g., [6]), this
results in ~Ω0 = 72 neV and for N = 1010 excitons in the
trap a critical temperature of 1.27 K is expected. For the
noninteracting system, in the condensate all particles are
in the ground state of the oscillator the size of which is
aosc =

√
~/MΩ0 = 0.74 µm. From this it was concluded

in previous investigations that the spatial shrinking of the
luminescence line is an indication of the onset of BEC
[5, 6]. However, for an interacting system this is not
the case. Here the condensate will form a cloud with
radius R0 =

√
15 (NaS/aosc)

1/5 where aS is the s-wave
scattering length [13], which for large N can be much
larger than aosc. Assuming again N = 1010 particles,
a temperature of T = 0.5 K, and a scattering length of
2.8aB [15], the size of the cloud is R0 = 39 µm, much
larger than the size of the oscillator ground state and
also the de Broglie wavelength λB =

√
2π~2/(MkBT )

which at T = 0.5 K is 65 nm.
Since R0 � aosc � λB , we can apply the local density

or semiclassical approximation (LDA) [13]. Here all ther-
modynamic quantities are function of the spatial coordi-
nate. Furthermore, for temperatures not too close to Tc,
the Thomas-Fermi approximation [13] where the kinetic
energy of the particles in the condensate is neglected,
represents a rather good description of the condensate
because the thickness of the layer where it breaks down
δ =

(
a4

osc/R0

)1/3 [13] is only δ = 0.15 µm. Therefore, the
luminescence spectrum will be derived under these two
approximations in the following.
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It is by now well established that, at densities far below
the Mott density, excitons can be described as a weakly
interacting Bose gas [16, 17, 18]. The interaction can be
parametrized by a scattering length aS of the order of
the Bohr radius, its magnitude depending on the details
of the spin structure of the exciton states.

We confine the excitons with an external potential
Vext(r), which for simplicity will be assumed to be that
of a 3d harmonic oscillator Vext = αr2. The statistical
theory of such a weakly interacting system with interac-
tion energy U0 = 4πaS~2/M in a potential trap is well
established for the atomic case [11, 12, 13] and we will
shortly review these results, only. In the standard mean-
field theory, one has to solve the Gross-Pitaevski (GP)
equation which reads for T = 0

− ~2

2M
∆Ψ(r) + V (r)Ψ(r) +U0|Ψ(r)|2Ψ(r) = µΨ(r) (2)

to obtain the wave function of the condensate Ψ(r) and
the condensate density nc(r) = |Ψ(r)|2 for a given chem-
ical potential µ.

The linear response and thus the luminescence spec-
trum is represented by the Hartree-Fock-Bogoliubov
equations which we use in the Popov approximation
(HFBP), which is valid also at temperatures around Tc.

As discussed earlier, we can apply the local density
or semiclassical approximation (LDA). Here the densi-
ties of the condensate nc(r) and of the thermal excitons
in excited states nT (r) and the Bogoliubov amplitudes
are local functions u(p, r), v(p, r) that solve the coupled
equations(
L(p, r) U0nc(r)
−U0nc(r) −L(p, r)

)(
u(p, r)
v(p, r)

)
= ε(p, r)

(
u(p, r)
v(p, r)

)
(3)

with

L(p, r) = p2/2M + Vext(r)− µ+ 2U0n(r) (4)

and the renormalized energies of the excited states

ε(p, r) =
[
(L(p, r))2 − (U0nc(r))2

]1/2
. (5)

n = nc + nT is the total density. The Bogoliubov ampli-
tudes u and v are given by the usual relations

u(p, r)2 =
1
2

((L(p, r)/ε(p, r) + 1) , (6a)

v(p, r)2 =
1
2

((L(p, r)/ε(p, r)− 1) . (6b)

The density of the excitons in thermally excited states
can be found by integrating over the excited states

nT (r) =
∫
d3p
8π3

[
L(p, r)
ε(p, r)

(
nB(p, r) +

1
2

)
− 1

2

]
(7)

×Θ(ε(p, r)2)

where the Bose function is given by

nB(p, r) =
1

exp[ε(p, r)/kBT ]− 1
(8)

and Θ is the Heaviside function which is equal to one
when the argument is positive and zero otherwise. For
temperatures not too close to Tc, the thickness of the sur-
face of the BEC cloud is much smaller than the radius
δ � R0. Then one can neglect the kinetic energy term
in Eq. (2) and the system can by be described quite ac-
curately in the Thomas-Fermi approximation. Then the
density of the condensate is given by [12]

nc(r) =
µ− Vext(r)− 2U0nT

U0
Θ(µ− Vext(r)− 2U0nT ) .

(9)
For a given chemical potential, Eqs. (7) and (9) allow

a self-consistent solution for all the relevant quantities.
The total number of particles N is then found by inte-
grating the total density over the volume of the trap.

Finally, it should be noted that if the temperature
is too high to allow for a condensate, the HFBP ap-
proximation goes over smoothly into the description of
a weakly interacting Bose gas with a chemical potential
µ = µideal + 2U0nT [12]. In Fig. 1 typical results for the
density profiles obtained by this procedure are shown for
the case of a normal system above Tc (left) and with a
condensate present (right). The calculation shows that
the diameter of the cloud is somewhat smaller than pre-
dicted by the simple approximation given above (18 µm
vs. 24.5 µm).
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FIG. 1: Density (full and dashed lines) and renormalized
quasiparticle energy (dotted line) for N = 1 · 109 excitons in
the trap. T = 1 K (left) and T = 0.5 K (right). Parameters
are: α = 0.06 µeV/µm2, U0 = 0.75 neV/µm3.

Excitonic systems have one distinct property compared
to other Bose gases in that they decay by emitting pho-
tons under energy and momentum conservation. This
can proceed either directly, whereby momentum conser-
vation requires that only excitons with the same momen-
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tum as the emitted photons are involved, or with as-
sistance of momentum supplying phonons such that all
exciton states can participate in the optical emission [21].
The latter process has been considered already for a ho-
mogeneous Bose gas of interacting excitons by several
authors [19, 20]. Here it was shown, that the lumines-
cence spectrum is determined by the excitonic spectral
function A(k, ω)

I(ω′) ∝ 2π|S(k = 0)|2δ(~ω′ − µ)nc (10)

+
∑
k 6=0

|S(k)|2nB(~ω′ − µ)A(k, ~ω′ − µ)

with S(k) representing the exciton-photon coupling and
nB being the usual Bose function (8). In the case of
phonon-assisted transitions, we have ω′ = ω − ωgX −
ωphonon with ~ωgX being the excitonic band gap of the
semiconductor. S(k) can be assumed to be k indepen-
dent. The first term in Eq. (10) gives rise to a δ shaped
luminescence line at the position of the chemical poten-
tial of the system, the strength of which is determined
by the coupling function at k = 0 and the condensate
density.

The case of the 3d bulk state with direct exciton-
photon coupling can be treated in the same way with
ω′ = ω−ωgX and S(k) = S0δ(k−k0). k0 is the wavevec-
tor of the intersection of photon and exciton dispersion.
Its modulus is given by k0 = ωgXn/c, where n is the re-
fraction index and c is the vacuum velocity of light. Here
we see already a remarkable difference between direct and
phonon-assisted luminescence processes: due to the form
of S(k), the condensate itself will not be detectable by
the direct luminescence process!

A first principle calculation of the decay luminescence
spectrum in a trap is a challenging task (see, e.g., [17]
for the case of a 2d potential trap). Here we proceed in a
much simpler way by noting that the optical wavelength
of the emission (in case of Cu2O about 200 nm) is much
smaller than the size of the exciton cloud with diameter
2R0. Therefore, one can apply a local approximation also
for the spectral function, which then becomes that of the
homogeneous case [19] but now in addition a function of
r:

A(r,k, ω) = (11)
2π
[
u(k, r)2δ(~ω − ε(k, r))− v(k, r)2δ(~ω + ε(k, r))

]
.

Here ε(k, r) are the renormalized energies (5). This
means that in Eq. (10) the frequency ω′ is determined
by the local exciton energy ~ω′loc = ~ω − ~ωgX − Vext(r)
while µ is the local chemical potential µloc = µ−Vext(r).
Obviously, the external potential cancels in the argument
of I(ω′), which depends only on the global chemical po-
tential of the system, as it should. The lineshape of the
luminescence spectrum is determined by the renormal-
ized energies of the excited states of the system, but now
evaluated at each point in the trap.

While for the phonon-assisted process, Eq. (11) gives
rise to a smooth spectrum [19], the direct process behaves
differently. Emission will come only from the states with
wavevector k0. The intensity, therefore, reflects only the
occupation of this state, but the spectral position of the
line at µ + ε(k0, r) directly gives the renormalization of
the quasiparticle energy dispersion due to the conden-
sate. Furthermore, due to the pole of the δ-function at
~ω′ = µ − ε(k, r) in the condensate (v 6= 0) emission
occurs also at the low energy side of the chemical poten-
tial. Both effects provide unique and sensitive footprints
of the onset of BEC.

We now apply the foregoing results to study the behav-
ior of the luminescence line in the case of a weak direct
exciton-photon interaction with parameters adjusted to
the case of the lowest exciton state in Cu2O. Made up
from both positive parity and doubly degenerate valence
and conduction bands, the four exciton states split in a
triply degenerate orthoexciton and in a single paraexci-
ton, which is the energetically lowest exciton state, split
off by 12 meV from the ortho states due to electron-hole
exchange [5]. While the latter are optically weakly al-
lowed (quadrupole transition, oscillator strength 3 · 10−9

[22]), the paraexciton as a pure spin triplet state is forbid-
den in all orders. Its intrinsic decay is only possible via
an odd parity optical phonon with Γ−5 symmetry, from
which we expect a very long lifetime of these exciton
states [14] and thus an almost true equilibrium BEC of
3d excitons.

In a strain trap, the paraexciton becomes weakly al-
lowed due to mixing with higher lying exciton states, the
oscillator strength remains quite small so that the theory
given above is applicable. The weak variation of the tran-
sition probability with strain across the trap will be ne-
glected. In the typical experimental situation, one images
a small stripe of width ∆x elongated along the z direction
centered in the center of the trap onto the entrance slit
of a spectrograph. Integrating over the y-direction per-
pendicular to z we obtain a spatially resolved spectrum
I(z, ω). In order to compare with any real experimental
situation, one has to convolute the spectra with the finite
resolution of the spectrograph. For this we take a slit
function of supergaussian shape s(x) ∝ exp(−(x/∆)4)
with FWHM 1.825∆ = 75 µeV.

There are three parameters that influence the behav-
ior of the excitons: trap potential constant α, interaction
strength U0 and mass M . For the model calculations we
assumed the following parameters M = 2.6me, α = 0.06
µeV/µm2 and U0 = 0.75 neV µm3. In Fig. 2 we have
plotted a series of spatially resolved spectra for a range
of exciton numbers and temperatures. While the upper
row shows the variation with temperature at constant
N = 109, the lower series demonstrates the influence of
N at a temperature of T = 0.5 K. While at T > Tc or
equivalently N < Nc, the lineshape follows strictly the
parabolic shape of the potential well, as one expects for
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FIG. 2: Luminescence spectra of the direct luminescence process. Upper row with constant particle number N = 1 · 109 and at
constant temperature (T = 0.5 K) with increasing particle numbers in the trap (lower row).

a normal gas, below Tc the spectrum changes drastically.
The low energy side becomes almost flat. For very high
particle number a weak shoulder develops at the low en-
ergy side, which represents the anomalous luminescence
via the negative pole due to the condensate. In contrast
to the case of a noninteracting system, the spatial width
of the spectrum may become even larger than the ther-
mal width (compare, e.g., spectra for N = 3 · 109 and
N = 1010). The quantitative behavior, of course, will
depend on the fine details of the shape of the potential
trap, but the qualitative features will be the same. Thus,
these drastic changes in the luminescence spectrum can
be considered as a unique footprint of the Bose-Einstein
condensation of excitons in a potential trap.

Finally, we ask whether an experimental realization
seems to be possible with the present knowledge of the
exciton properties in Cu2O. Previous experiments with
excitons in Cu2O [6, 7, 10] have shown that, under quasi-
cw excitation with an absorbed laser power of 50 mW, 2 ·
109 excitons can be put into a trap but with an excitonic
temperature of about 2.5 K which certainly is not enough
for a BEC. Extrapolating the data, one should either
increase the pump power to a value of 10 W or reduce
the temperature of the exciton system below 0.75 K. Both
strategies seem to be possible by present day technology.

We have shown that the luminescence spectrum of the
direct recombination luminescence of excitons in a po-
tential trap changes in a unique way if a condensate of
excitons is present. This change is independent of the
details of the excitonic systems and reflects directly the
renormalization of the quasiparticle energies due to the
interaction of the excitons.
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