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Theory of thermopower in 2D graphene
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Motivated by recent experiments [1, 2, 3] we calculate the thermopower of graphene incorporating
the energy dependence of various transport scattering times. We find that scattering by screened
charged impurities gives a reasonable explanation for the measured thermopower. The calculated
thermopower behaves as 1/

√
n at high densities, but saturates at low densities. We also find that

the thermopower scales with normalized temperature T/TF and does not depend on the impurity
densities, but strongly depends on the fine structure constant rs and the location of the impurities.
We discuss the deviation from the Mott formula in graphene thermopower, and use an effective
medium theory to calculate thermopower at low carrier density regimes where electron-hole puddles
dominate.

PACS numbers: 81.05.Uw; 73.61.Ey, 73.50.Jt, 71.30.+h

Thermopower has been used as a powerful tool to
probe transport mechanisms in metals and semiconduc-
tors. Often the measurement of resistivity (or conduc-
tivity) is inadequate in distinguishing among different
scattering mechanisms and the thermopower can then
be used as a sensitive probe of transport properties since
it provides complementary information to resistivity. In
this Letter we develop a theory for the thermopower of
graphene with a goal toward elucidating the comparative
importance of various scattering mechanisms in graphene
transport properties.
Recently, the thermoelectric properties of graphene

have attracted experimental attention [1, 2, 3, 4]. Exper-
imentally [1, 2, 3] the expected change of sign in the ther-
mopower is found across the charge neutral point as the
majority carriers change from electrons to holes. Away
from the charge neutral region the density dependence
of thermopower behaves as 1/

√
n, and exhibits a linear

temperature dependence in agreement with the semiclas-
sical Mott formula [5]. As the temperature increases, a
deviation from Mott formula is reported[1, 2]. Existing
theoretical works on graphene thermopower either use
an impurity band model or consider the low tempera-
ture Mott limit [6]. In this paper we present a calcula-
tion of the thermopower of graphene taking into account
the energy dependent scattering time for various scatter-
ing mechanisms. Understanding thermopower requires a
thorough knowledge of the details of energy dependence
of transport scattering times [7, 8, 9]. In metals the Mott
formula is widely used because the Fermi temperature is
very high (i.e. T ≪ TF ) and the scattering time is es-
sentially energy independent leading to a simple linear-in
temperature form for thermopower which is proportional
to the energy derivative of the conductivity evaluated at
the Fermi energy. Mott formula, derived mathematically
through the Sommerfeld expansion, is only valid at very
low temperatures, T/TF ≪ 1.
We show that scattering by random charged impurity

centers, which is the main scattering mechanism limit-

ing graphene conductivity,[10] also dominates its ther-
mopower. We show that the temperature dependent
screening effects [11] must be included in the theory
to get quantitative agreement with existing experimen-
tal data. We find the effects of short-range scattering
and phonons to be negligible in experimental tempera-
ture range (T < 300K), allowing us to ignore phonon
drag contribution. We also find that the calculated
thermopower scales with T/TF and manifests no impu-
rity density (ni) dependence, but depends strongly on
the impurity location and the dielectric constant of the
substrate (or equivalently the fine structure constant of
graphene). The experimentally observed asymmetry be-
tween electron and hole thermopower is explained by the
asymmetry in the charged impurity configuration in the
presence of the gate voltage. We explain the experi-
mentally observed sign change near charge neutral point
(Dirac point) with a simple two component model, which
we explicitly verify using an effective medium theory cal-
culation taking into account the inhomogeneous puddle
formation. [10]
The ratio of the measured voltage to the temperature

gradient applied across the sample is known as the See-
beck coefficient (or the thermopower) and is given by
Q = ∇V/∇T , where ∇V is the potential difference and
∇T the temperature difference between two points of the
sample [7]. In linear response approximation for the elec-
trical current density, j, and thermal current density, jQ,
we have: j = L11E+L12(−∇T ), jQ = L21E+L22(−∇T ),
where Lij is defined in terms of the I(α), i.e., L11 = I(0),
L12 = − 1

eT
I(1), L21 = − 1

e
I(1), and L22 = 1

e2T
I(2). Here,

I(α) is given by

I(α) = e2g
∑

k

τ(ǫk)vkvk [ǫk − µ]
α

(

−∂f0
k

∂ǫk

)

=

∫

dε (ε− µ)
α

(

−∂f0(ε)

∂ε

)

σ(ε), (1)

where f0
k
is the equilibrium Fermi distribution function,
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τ the relaxation time, and µ the chemical potential, g =
gsgv is the total degeneracy (gs = 2, gv = 2 being the
spin and valley degeneracies, respectively), and σ(ε) is
the energy dependent conductivity of graphene given by
σ(ε) = e2v2FD(ε)τ(ε)/2, where vF is the Fermi velocity
and D(ε) = g|ε|/(2π~2v2F ) the density of states. From

the definition of the thermopower we have Q = L12

L11 , and,
σ = L11.
Before we calculate the details of the thermopower for

different scattering mechanisms we first consider the low
temperature and high temperature behavior of Q(T ). At
low temperatures (T ≪ TF , where TF = EF /kB) we can
express I(α) as

I(α) =
1

4βα

∫

∞

−∞

dx
xα

tanh2(x/2)

[

σ(µ) +
x

β

∂σ(ε)

∂ε

∣

∣

∣

∣

ε=µ

]

(2)
where β = 1/kBT . Thus we have the well-known Mott
formula [5] of thermopower at low temperatures, i.e.

Q = −π2

3e

T

σ(µ)

∂σ(ε)

∂ε

∣

∣

∣

∣

ε=µ

. (3)

If the energy dependence of the relaxation time is unim-
portant the sign of the thermopower is determined by
whether the carriers are electrons or holes. Assuming
the energy dependent scattering time to be τ ∝ εm we
have the thermopower at low temperatures

Q = −π2

3e

kBT

TF

(m+ 1). (4)

We note that in general the exponent ‘m’ has weak tem-
perature and density dependence since τ behaves only as
an effective power law in energy. Eq. (4) indicates that
the thermopower can change sign if m < −1. At high
temperatures (T ≫ TF ) we can express the I(α) with an
energy dependent scattering time τ = τ0ε

m as

I(α) ≈ Eα
F

(

T

TF

)α+m+1 [

1− 1

2α+m

]

Γ(α+m+2)ζ(α+m+1),

(5)
where Γ(z) and ζ(z) are the gamma function and Rie-
mann’s zeta function, respectively, from which we find:

Q ≈ kB
e

(m+ 2)

2

(2m+1 − 1)

(2m − 1)

ζ(m+ 2)

ζ(m+ 1)
. (6)

At high temperatures Q in graphene approaches a limit-
ing value. In Fig. 1 we show the calculated graphene ther-
mopower for different scattering exponents m (τ ∝ εm)
as a function of T/TF . As shown in Fig. 1 the dashed
lines representing Mott formula agree with the full cal-
culations for T . 0.2TF . In addition the calculated ther-
mopower scales as a function of the normalized temper-
ature (T/TF ).
Now we calculate the thermopower in the presence of

various physical scattering mechanisms. For both neutral
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FIG. 1: Hole thermopower for different energy dependent
scattering times, τ ∝ εm. For m < −1 the low tempera-
ture thermopower becomes negative. Dashed lines show the
Mott formula for the corresponding scattering times. Electron
results are the same with an overall negative sign.

white noise short-range disorder and acoustic phonon [12]
scattering we can express the scattering time as τ(ǫ) =
τ1/ǫ, and we have

I(0) = σ1
1

1 + e−βµ
, (7)

I(1) = σ1

[

kBT ln[1 + e−βµ] +
µ

1 + eβµ

]

. (8)

Then the thermopower becomes

Q = −1

e

[µ

T
e−βµ +O(e−βµ)

]

. (9)

The thermopower contributions from both neutral scat-
terers and acoustic phonons are exponentially suppressed
in the low temperature limit, and can be ignored. For un-
screened charged impurities we have very simple energy
dependent scattering time [11] τ(ǫ) = τ0ǫ. Then we have
the following integrals for t ≪ 1

I(0) = σ0

[

1 +O(e−βµ)
]

, (10)

I(1) = σ0EF

[

2π2

3
t2 +O(e−βµ)

]

, (11)

leading to the thermopower

Q = −2π2

3e

k2BT

EF

[

1 +O(e−βµ)
]

. (12)

The linear relation of thermopower with temperature (or
Mott formula) holds to relatively high temperatures in
graphene for unscreened Coulomb impurities.
As has been demonstrated theoretically and experi-

mentally the dominant transport mechanism in graphene
is the screened Coulomb scattering from charged impu-
rities. The result of Eq. (12) for unscreened Coulomb
scattering is much higher than the thermopower observed
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in experiments [1, 2, 3] and cannot explain the behavior
of Q close to the Dirac point. An accurate quantita-
tive agreement between theory and experiment can only
be achieved by taking into account the screening of the
charged impurities and the strong spatial inhomogene-
ity that these impurities induce close to the Dirac point.
For the screened charged impurity scattering, the energy
dependent scattering time τ(εk) is given [10]

1

τ(ǫk)
=

πni

~

∫

d2k′

(2π)2

∣

∣

∣

∣

vi(q)

ǫ(q, T )

∣

∣

∣

∣

2

δ (ǫk − ǫk′)

×(1− cos θ)(1 + cos θ), (13)

where θ is the scattering angle, vi(q) =
2πe2 exp(−qd)/(κq) is the Fourier transform of the
2D Coulomb potential in an effective background lattice
dielectric constant κ and d is the location of charged
impurity measured from graphene surface. In Eq. (13),
ε(q) ≡ ε(q, T ) is the 2D finite temperature static
RPA dielectric (screening) function appropriate for
graphene[11], given by ε(q, T ) = 1 + vc(q)Π(q, T ), where
Π(q, T ) is the graphene irreducible finite-temperature
polarizability function and vc(q) is the Coulomb inter-
action. There is an important direct T dependence of
thermopower, not captured in the Mott formula, arising
from the temperature dependent screening. [11] The
temperature dependent conductivity due to screening
effects decreases quadratically at low temperatures [11].
This mechanism produces a thermopower quadratic
in temperature rather than linear as in the simple
Mott formula. Thus we predict a nonlinear quadratic
temperature correction in the graphene thermopower
compared with the linear Mott formula.
In Fig. 2(a) we show the calculated thermopower of

holes in graphene due to different scattering mecha-
nisms. The thermopower due to screened charged impu-
rity is about half of that due to the unscreened charged
impurity, and increases in a concave manner due to
temperature and energy dependent screening. On the
other hand, the thermopower due to neutral scatter-
ers is exponentially suppressed in the low temperature
regime. Fig. 2(b) shows the calculated thermopower for
the screened charged impurity scattering as a function
of density for different temperatures. As we expect the
density dependence shows 1/

√
n behavior at high den-

sities. But this power law behavior breaks down and
saturates at low densities. The saturation value (Qs)
does not depend on temperature. The theoretical Qs is
just a function of interaction (fine structure) parameter
rs = e2/κ~vF and the location of impurities d. In Fig. 2
(c) and (d) we show the rs and d dependence of the ther-
mopower. In general the thermopower increases when the
substrate dielectric constant (κ) increases or the charged
impurities move away. Thus, we predict that the ther-
mopower of suspended graphene will decrease compared
with the thermopower of graphene on a substrate for the
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FIG. 2: (a) Q as a function of temperature for different scat-
tering mechanisms. Solid, dashed, and dot-dashed line rep-
resent unscreened Coulomb, screened Coulomb, and neutral
scatterers, respectively. (b) Q for the screened charged impu-
rity scattering as a function of density for different tempera-
tures. (c) Q for different rs = 0.1, 0.85, 2.2 with d = 0 and
(d) for different d = 0, 5, 10 Å with rs = 0.85. In (e) and (f),
Q in the presence of screened charged impurities for different
densities is shown. In (e) we use parameters corresponding to
graphene on SiO2 with mobility µ = 104 cm2/Vs, and in (f)
to suspended graphene with mobility µ = 2× 105 cm2/Vs.

same densities because of the reduction of the dielectric
constant. In Fig 2 (e) and (f) we show the calculated
thermopower for systems with different mobilities due
to screened charged impurity scattering for graphene on
SiO2 substrate and for suspended graphene.

In recent experiments [1, 2, 3] it has been observed
that close to the Dirac point Q does not follow the
1/

√
n scaling predicted by the Mott formula. The rea-

son for this deviation is that close to the Dirac point
the quenched disorder induces strong density fluctuations
that break up the density landscape in electron-hole pud-
dles [10, 13, 14, 15]. To account for the main features of
the thermopower close to the Dirac point we can use a
simple two component model near to the charge neu-
tral regime in which the electron density, ne and the
hole density nh depend on the doping n according to
the phenomenological equations: ne = (nrms + n)/2,
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nh = (nrms − n)/2 for |n| ≤ nrms, where nrms is the
root mean square of the density fluctuations. We assume
nrms ∼ ni [10, 14]. In the two component model the ther-
mopower becomes Q = (L12

e + L12
h )/(L11

e + L11
h ) so that,

for unscreened charged impurities, we find:

Q = −k2B
e

2π2

3

T

vF
√
π

[√
ne −

√
nh

ne + nh

]

. (14)

Thus, if there is an equal number of electrons and holes
the thermopower goes to zero, and the overall sign is
decided by the majority carriers. We find that the ther-
mopower due to the screened charge impurities shows
the same behavior as shown by the dashed line in Fig. 3.
In order to explicitly verify the electron-hole puddle pic-
ture near the charge neutral point we use the effective
medium theory, EMT for graphene [15]. The density pro-
file close to the Dirac point is quantitatively described by
the Thomas-Fermi-Dirac (TFD) theory [14]. Using the
TFD results the transport properties of graphene close
to the Dirac point can be accurately calculated using the
EMT. Denoting by angle brackets disordered averaged
quantities, for the diagonal transport coefficients from
the EMT in 2D we have that the effective medium coef-
ficients, Lii

eff , are implicitly given by the equation [16]:

〈

Lii(r) − Lii
eff

Lii(r) + Lii
eff

〉

= 0. (15)

Adapting to 2D thermopower the results presented in
[17], the effective medium off-diagonal coefficient L12 is
given by:

L12
eff = −2L11

effL
22
eff

〈

L12(r)

(L11(r) + L11
eff)(L

22(r) + L22
eff)

〉

×
〈

L11(r)L22
eff + L11

effL
22(r) + L11

effL
22
eff − L11(r)L22(r)

(L11(r) + L11
eff)(L

22(r) + L22
eff)

〉−1

(16)

As shown in [15] for the local values of Lij we can use
Lij(n(r)) and then using Eqs. (15), (16) and the proba-
bility distribution given by the TFD theory we can cal-
culate the EMT transport coefficients, and in particular
the effective medium thermopower Qeff = L12

eff/L
11
eff for

graphene at, and away from, the Dirac point. The re-
sults for Q as a function of n at T = 300 K for rs = 0.8,
d = 1 nm and ni = 1012cm−2 are shown by the solid
lines in Fig. 3; in blue (red) are the results obtained with
(without) the effect of the exchange term on the density
distribution. we note that the two-component model is
excellent in describing the main features of the realistic
EMT Q(n) close to the Dirac point.
In conclusion we have developed a complete theory for

the diffusive thermopower of 2D graphene. Quantitative
agreement between our theory and existing graphene ex-
perimental thermopower data is a strong indication that
the dominant carrier scattering mechanism operational in
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FIG. 3: Q due to the screened charge impurities as a func-
tion of density close to the Dirac point for T = 300 K,
ni = 1012cm−2, rs = 0.8 and d = 1 nm, obtained using
the two-component model and the EMT with and without
exchange energy.

2D graphene monolayers is screened Coulomb scattering
by random charged impurities located in the graphene
environment. At high densities the Mott formula applies
well to the measured thermopower because of the high
Fermi temperature, but it fails in low density limit. We
explain the sign change of the thermopower in the low
density regime by using both a two component model
and a realistic effective medium theory, that correctly
describes transport in the presence of the strong carrier
density inhomogeneities, that characterize the graphene
density landscape close to the Dirac point. We make a
number of specific predictions for graphene thermopower
(e.g. nonlinearity in temperature, existence of a satura-
tion thermopower at low densities, nontrivial dependence
on the background dielectric constant and on the impu-
rity location), which should be tested experimentally in
order to conclusively settle the issue of dominant carrier
scattering mechanism in graphene.
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