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The structural phase transitions and the fundamental band gaps of MgxZn1−xO alloys are inves-
tigated by detailed first-principles calculations in the entire range of Mg concentrations x, applying
a multiple-scattering theoretical approach (Korringa-Kohn-Rostoker method). Disordered alloys
are treated within the coherent potential approximation (CPA). The calculations for various crystal
phases have given rise to a phase diagram in good agreement with experiments and other theoretical
approaches. The phase transition from the wurtzite to the rock-salt structure is predicted at the Mg
concentration of x = 0.33, which is close to the experimental value of 0.33 − 0.40. The size of the
fundamental band gap, typically underestimated by the local density approximation, is considerably
improved by the self-interaction correction. The increase of the gap upon alloying ZnO with Mg
corroborates experimental trends. Our findings are relevant for applications in optical, electrical,
and in particular in magnetoelectric devices.

PACS numbers: 61.50.Ks,81.30.Hd

I. INTRODUCTION

In recent years, much effort has been devoted to re-
search on ZnO, inspired mostly by its attractive proper-
ties for optoelectronic applications.1 This interest arises
from specific properties, e. g. a large piezoelectric coeffi-
cient, photoconductivity, and transparency in the visible
and infrared wavelength regimes. The range of applica-
tions of this semiconductor can be considerably extended
by alloying. Prominent dopants are Co and in particu-
lar Mg, on which we focus in this work. An increase
of the Mg concentration can transform the crystal lattice
from the wurtzite structure (WZ) of ZnO to the rock-salt
structure (RS) of MgO. Accompanied by this structural
phase transition is a substantial increase of the funda-
mental band gap. The latter can be tuned from 3.35 eV
to 7.7 eV.1,2 In view of a possible band-gap engineering,
MgxZn1−xO alloys may also be considered as suitable
insulating spacers in magnetoelectronic devices, in par-
ticular in magnetic tunnel junctions.

According to the equilibrium phase diagram,3,4 the
solid solution of MgxZn1−xO is of eutectic type at nor-
mal conditions. It is characterized by an extensive sol-
ubility of zincite in MgO (up to 33mol%) and by a re-
stricted solubility of MgO in ZnO (4mol%). The solu-
bility depends strongly on experimental conditions and
can be considerably increased at high temperatures and
high pressures.5,6 Non-equilibrium growth processes, like
pulsed laser deposition (PLD)7,8,9,10,11 and molecular
beam epitaxial methods12,13,14,15, allow to grow high-
quality MgxZn1−xO thin films for a large range of con-
centrations x. For RS-MgxZn1−xO, produced by PLD,

a maximum solubility has been reported for x = 0.5.9,16

When increasing the Zn concentration, the RS and the
WZ phases separate, and MgxZn1−xO exhibits a WZ

structure for x < 0.4.17 The solubility limit and the
phase formation in MgxZn1−xO are strongly influenced
by experimental conditions and by the substrate on which
the MgxZn1−xO film is grown. In general, alloying of
ZnO and MgO proceeds by substituting Mg atoms by Zn
atoms in the cubic RS structure and vice versa in the
hexagonal WZ structure.

The composition and the crystalline structure affect di-
rectly the electronic properties of MgxZn1−xO. Numer-
ous absorption and photoluminescence spectroscopy ex-
periments show that the fundamental band gap depends
differently on the Zn concentration in the RS and WZ

phases.18,19 The width of the band gap increases most
linearly with Mg concentration for both the RS and the
WZ phase, but the slope in cubic MgxZn1−xO is about
twice as large as in the hexagonal structure.20 This ex-
perimental finding clearly indicates that MgxZn1−xO is
a promising candidate for band-gap engineering. For
instance in a magnetic tunnel junction, electrons that
are transmitted from one electrode to the other have to
pass the nonconducting spacer.21 The transmission prob-
ability decays with spacer thickness and with the width
of the spacer’s fundamental band gap.22,23 As a conse-
quence, the spin-dependent conductance, i. e. the tunnel
magnetoresistance, could be tuned by varying the fun-
damental band gap. Further, the magnetoresistance de-
pends essentially on the properties of the ferromagnet-
insulator interface, as was shown for Fe/MgO/Fe tunnel
junctions.24,25 Hence, detailed knowledge of its geometric
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structure is necessary, and our theoretical investigation
of the bulk structural phases can be regarded as one step
towards that goal.

In addition to the extensive experimental work, there
exist many detailed theoretical studies of both ZnO and
MgO. Among them are Refs. 26,27,28,29,30,31,32,33,34,
35,36, using a variety of ab initio computational methods.
There are, however, not many studies of MgxZn1−xO
alloys, possibly due to the complex interplay of their
electronic and geometric structures. Recently, thermo-
dynamical stability and ordering tendencies of the al-
loys have been carefully investigated using the cluster-
expansion method.37 Based on the parameterization of
total energies for various alloy configurations, the lat-
ter allows to study accurately structural properties, in-
cluding short-range order (SRO) effects.38,39 It is found
that the RS ↔ WZ transition occurs at x ≈ 0.33, which
is consistent with experiment (x = 0.33, Ref. 7; simi-
lar results were obtained by a pseudopotential method
using supercells40). The cluster expansion method was
also used by Seko et al. for investigating phase tran-
sitions, including vibrational effects through lattice dy-
namics calculations.41 The authors demonstrate that the
transition pressure decreases with increasing Mg content,
which is explained as follows. Below the solubility limit
of MgO in ZnO, the RS phase is energetically preferred
to the WZ phase in MgO. Above the solubility limit, the
configurational entropy increases by the transition from
a mixed WZ-ZnO/RS-MgO to a RS single phase.

A brief critical review of previous theoretical ab ini-

tio investigations has shown that: (i) In ZnO, the en-
ergy levels of the localized Zn-3d electrons are found rel-
atively high and thus close to the valence bands, result-
ing in strong hybridization with O-2p states. Since these
hybridization effects have to be correctly taken into ac-
count, the all-electron methods are preferred to the pseu-
dopotential methods in which localized electrons are ne-
glected. (ii) Because the Zn-3d electrons are localized,
they are not well described within the local spin den-
sity approximation (LSDA) to density functional theory
(DFT). To treat these electronic states adequately, one
has to go beyond the LSDA, for example by applying
the self-interaction correction (SIC) to the LSDA. (iii)
Previous studies often focused on the WZ and RS struc-
tures of the ordered alloys (i. e. x = 0 or 1). A detailed
investigation of the complete transition path (with con-
tinuous variation of x) is still missing. For the latter it is
inevitable to treat disordered alloys, for example within
the coherent potential approximation.

In the present paper, we report on a systematic first-
principles study of structural and electronic proper-
ties of ordered and disordered MgxZn1−xO alloys us-
ing an all-electron full-charge density Korringa-Kohn-
Rostoker (KKR) method.42,43 Alloying of MgO and ZnO
is described within CPA,44 as formulated in multiple-
scattering theory (KKR-CPA).45 One objective of this
investigation is to describe accurately the structural
phase transition from the WZ to the RS structure in

MgxZn1−xO, by continuously increasing the Mg concen-
tration. The second objective addresses the formation of
the fundamental band gap in MgxZn1−xO. It is further
shown how the hybridization between Zn-3d and O-2p
states affects the width of the band gap, by comparing
results obtained within the LSDA with those obtained by
applying the self-interaction correction.46,47 The validity
of the present approach, especially the use of the CPA, is
discussed by comparing our results with those of previ-
ous studies.37,40,41 In summary, our study addresses im-
portant issues in MgxZn1−xO alloys which, with respect
to magnetic tunnel junctions, might also be relevant for
magnetoelectronics.
The paper is organized as follows. The model of

the transition path from the WZ to the RS structure
is sketched in Section II. Details of the computational
approach are presented in Section III. Results are dis-
cussed in Section IV. By comparing our results for the
ordered alloys with those of other theoretical work and
with experiment, the validity of our approach has been
established. Our main results for the disordered alloys
are discussed in Section V. In Section VI, the formation
and evolution of the fundamental band gap as a func-
tion of Mg and Zn contents in the system is analyzed.
Concluding remarks close the paper in Section VII.

II. MODELING THE STRUCTURAL WZ ↔ RS

PHASE TRANSITION

To investigate structural phase transitions in
MgxZn1−xO, a transition path suggested for the
continuous structural WZ ↔ RS transformation in GaN
was adopted.31 This path has been already successfully
applied in studies of structural deformations in MgO32

and in ZnO.48 The structural transition is described
as a homogenous strain deformation from the WZ to
the RS phase by passing an intermediate hexagonal
structure (HX, refered to as h-MgO in Ref. 31). This
hexagonal structure can as well occur in epitaxial
systems due to the reduction of the interlayer distance,
which was recently observed for thin ZnO films.49,50

A similar scheme is the Bain’s path for the transition
from the face-centered-cubic to the body-centered-cubic
structure.51

In the first step on the transition path (WZ ↔ HX),
the internal parameter u is linearly increased while simul-
taneously decreasing the c/a ratio (Fig. 1). At u = 1/2 the
space group changes from P63mc to P63/mmc. In the
second step (HX ↔ RS), the lattice is compressed uni-
axially along the [101̄0] direction and simultaneously c/a
is decreased further. The WZ phase is characterized by
a = b, c/a =

√

8/3, v = 1/3 and u = 3/8, whereas the HX

phase has a = b, c/a = 1.2, v = 1/3, and u = 1/2. For the
RS phase, a = b = c and v = u = 1/2. For details, see
Ref. 32.
To perform total-energy minimizations (see Sec-

tion III), the appropriate unit cell of an orthorhombic
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FIG. 1: (Color) Structural phases in MgxZn1−xO. The
wurtzite structure (a: WZ, left column), the intermediate
hexagonal structure (b: HX, central column), and the rock-
salt structure (c: RS; right column) are shown in top view
(top row) and in side view (central row). The hexahedral
chemical units are depicted in the bottom row. The lattice
parameters a, b, and c for the common space group Cmc21 are
indicated. The xy-plane of unit cells for P63mc, P63/mmc,
and Fm3̄m space groups for WZ, HX, and RS respectively are
displayed in the top row in magenta. u describes the internal
displacement of cations sites (red, dark spheres) with respect
to the central planes of the polyhedra. For u = 1/2, metal
sites lie within the central planes which are spanned by the
oxygen sites (yellow, bright spheres).

lattice with space group Cmc21 was used (Fig. 1). The
latter is a common subgroup of all three phases.52 In our
calculations, the parameter v, specifying the relative po-
sitions of the subsublattices,32 and the ratio b/a (defined
in Fig. 1) are fixed by the geometry of a particular phase.
The parameter u, which is the internal vertical displace-
ment of the cation atoms in the oxygen plane, and the
c/a ratio were obtained by the total energy minimization
for the pure compounds (i. e., WZ-ZnO and RS-MgO)
within LSDA. They are kept fixed at these values for
MgxZn1−xO alloys for all concentrations x.

III. COMPUTATIONAL DETAILS

The electronic and geometric structures of
MgxZn1−xO alloys are obtained within density-
functional theory. The local density approximation
and its self-interaction correction (see below) are
implemented in a multiple-scattering approach (the
Korringa-Kohn-Rostoker method, KKR).53 Disordered
alloys are described within the coherent potential
approximation (CPA).54

For closed-packed systems, for example transition met-
als, the crystal potential is commonly approximated as a

sum over the so-called ‘muffin-tin potentials’55 (that is,
spherically symmetric potentials centered at each lattice
site, while in the interstitial region the potential is con-
stant). For open systems, this approximation results in
a relatively poor description of the electronic structure.
It has turned out that the usual trick of inserting the so-
called ‘empty spheres’ into the interstitial region is not
sufficient for MgO and ZnO, in particular in view of the
high degree of accuracy needed in the evaluation of total
energies. Obviously, the latter is inevitable for a reli-
able description of structural phase transitions. Conse-
quently, a full-charge density approximation was applied.
Here, the total energy is estimated from the non-spherical
charge density and the full potential. All radial integrals
are calculated using the unit cell geometry; the single-site
problem is still solved with a spherical potential averaged
within a Voronoi cell. The accuracy of this approach is
as good as that of a full-potential method but is not as
time-consuming. The validity of the full charge-density
approximation was checked by comparison with results
of the corresponding KKR full-potential calculations for
the ordered WZ-ZnO and RS-MgO compounds.

The disordered MgxZn1−xO can be viewed as a substi-
tutional binary alloy in which the metal sublattice (Zn,
Mg) is subject to chemical disorder. The oxygen sublat-
tice remains unaffected. Hence, the coherent potential
approximation (CPA) is an obvious choice for describing
MgxZn1−xO at an arbitrary concentration x. Within the
CPA, Mg and Zn impurities are embedded into an effec-
tive coherent potential medium which is determined self-
consistently.53,54 Since the KKR-CPA is a single-site ap-
proximation, it does not allow to investigate the influence
of chemical short-range order on the electronic properties
(SRO can be taken into account by the cluster CPA,56

the locally self-consistent Green function method57 or the
non-local CPA approach58). However, for many alloys
the single-site CPA provides a reasonable description of
the electronic structure.59 For MgxZn1−xO, the valid-
ity of the KKR-CPA was established through a direct
comparison with KKR supercell calculations (which in-
clude SRO effects) for x = 0.25, 0.50, and 0.75. The
major structural and electronic properties, such as the
equilibrium lattice constants, bulk moduli, equilibrium
pressures, and fundamental band gaps, are reproducible
within both the KKR-CPA and the supercell approach.
Hence we conclude that SRO effects cannot be ruled out
but they are of minor importance for the issues addressed
in this work. A detailed investigation of SRO effects is
beyond the scope of the present work.

Although the Mg-2p electron states lie comparably
deeply in energy (about 2Rydberg below the valence
bands), they have been treated as valence states. It is
found that the hybridization of the associated electronic
states with the valence states is important for an accu-
rate determination of total energies, especially for the
evaluation of both the c/a ratio and the parameter u in
the WZ structure. The same procedure was applied in an
earlier all-electron study of MgO, using a full-potential
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linearized muffin-tin orbital (FP-LMTO) method.32

Since the Zn-3d states are energetically close to the
O-2p states, they have to be considered as valence elec-
trons as well. It is well-known that the hybridization
of the localized Zn-3d electrons with the O-2p electrons
is crucial for an accurate investigation of the band-gap
formation in ZnO.60 Being strongly localized, the Zn-3d
states are not adequately described within the local den-
sity approximation. The LSDA contains the (unphysical)
self-interaction of an electron with itself (see e. g. Refs. 47
and 61), an effect whose importance increases with the
degree of electron localization. As a consequence of the
self-interaction, the energy levels of the localized elec-
trons obtained within the LSDA lie too high and their
hybridization with the O-2p states is too strong. The
calculated fundamental band gap in ZnO is therefore con-
siderably too small as compared to experiment.

An improved description of localized electrons is
achieved by the self-interaction correction46,47 in which
the unphysical self-interaction is removed from the LSDA
exchange-correlation functional. In this approach, SIC
is applied to various configurations of localized electron
states, and the configuration with the lowest total energy
defines the ground state energy and configuration. The
SIC-LSD approach, being based on a variational princi-
ple, is parameter free and treats on equal footing both
itinerant and localized electrons. When no localized elec-
trons are present in the system, then the SIC-LSDA to-
tal energy is equivalent to the LSDA total energy. Thus
the LSDA energy functional is a local minimum of the
SIC-LSDA functional. For ZnO in both the RS and the
WZ phase it is found that all 3d-electrons have to be
SI-corrected. Since the Zn-3d states have semi-core char-
acter, application of the SIC leads to a uniform increase
of the binding energies of these states, to a decrease of
the total energy, and to an increased fundamental band
gap in ZnO. Because other electronic states were treated
within the LSDA, we label this calculations SIC-LSDA
for short.

To check whether SIC affects only the fundamental
band gap or also structural properties, we have compared
results of a SIC-LSDA calculation for ZnO with those of
an LSDA calculation, based on the same computer code.
It has been shown that structural properties calculated
within both LSDA and SIC-LSDA are very close, whereas
the band gap obtained within SIC-LSDA has been sub-
stantially larger than in the LSDA case. This finding has
been further verified for disordered MgxZn1−xO alloys at
selected concentrations. As a result, in order to save com-
putational costs, only LSDA has been used for the studies
of the structural properties. In contrast, here, the funda-
mental band gap has been investigated at the respective
equilibrium lattice constants within SIC-LSDA. For both
the LSDA and SIC-LSDA calculations the Perdew-Wang
exchange-correlation functional has been applied.62

The equilibrium volumes, bulk moduli, pressures, and
enthalpies have been calculated for zero temperature
from the total energy fitted to the Murnaghan equa-

tion of state.63 Lattice vibrations, finite-temperature ef-
fects, and relativistic corrections have not been consid-
ered. The angular momentum cut-offs lmax have been
chosen as 3 for the Green function expansion and 6 for
both the charge-density and the potential representation.
The convergence with lmax and with normalization of
the Green function was significantly improved by use of
Lloyd’s formula in this work.64,65 The concentration, x,
of Mg impurities in ZnO has been varied in steps of 5%.

IV. STRUCTURAL PROPERTIES OF

ORDERED ZnO AND MgO IN RS AND WZ

PHASES

Due to the large number of structural parameters, a
complete structure optimization of MgxZn1−xO alloys is
an involved task. Apart from these parameters, the alloy
composition x is an additional degree of freedom which
complicates the problem further. Therefore, the number
of parameters to be optimized has been reduced by con-
centrating on volume changes in the WZ, HX, and RS

structures upon variation of x (see Section II).
To our knowledge, the KKR method was not used be-

fore for optimizing WZ and HX structures. Hence ex-
tensive calculations for pure ZnO and MgO have been
required to determine both the optimum u and c/a. In
accomplishing this, the procedure suggested in Ref. 32
has been followed. Since the calculation of lattice relax-
ations from forces is rather complicated and not suffi-
ciently accurate within the KKR method, we have cal-
culated the total energies consecutively varying three pa-
rameters: the lattice constants a, the c/a and the internal
parameter u. The total energy has been calculated at a
given u for a sufficiently dense mesh of lattice constants
and then fitted to the Murnaghan equation of state. The
initial value of the parameter u has been taken from the
experiment for a particular structure and then succes-
sively varied as long as the absolute total energy min-
imum has not been reached. To establish the validity
of the present KKR approach for structure optimization,
our results have been compared with those of other first-
principles calculations. We note that our calculations
for both ZnO and MgO in various structures have been
carried out for the same unit cell on the same level of
approximation.
The adequacy of the present approach is evidenced by

the agreement with experimental data and the results of
other theoretical approaches (see Tables I and II). It is
found that our results agree with those obtained by the
other all-electron methods, as opposed to the pseudo-
potential methods. In particular, the parameters ob-
tained in this work compare well with those reported by
Limpijumnong and coworkers.32,48 This agreement might
be attributed to the fact that both studies follow the
same optimization scheme (as suggested in Refs. 32 and
48) and that the Zn-3d as well as the Mg-2p electrons
have been treated as valence electrons.
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TABLE I: Properties of ZnO in the wurtzite (WZ), the hexagonal (HX), and the rock-salt (RS) phase. Equilibrium volumes
V0, c/a ratios, internal parameters u, and bulk moduli B0 are compiled for theoretical (present work displayed in bold) and for
experimental works. PPW, LCAO, and FP-LMTO are short for pseudo-potential plane waves, linear combination of atomic
orbitals, and full-potential linearized muffin-tin orbital, respectively.

Phase Theory Experiment

WZ V0 (Å3) 22.80a, 22.83, 22.87b, 22.91c, 22.93d, 23.4ef, 23.62g, 23.78e 23.80 hi

c/a 1.590g, 1.602, 1.605e, 1.607c, 1.608f , 1.610a, 1.614b, 1.617d 1.602hi

u 0.379b, 0.380agf, 0.381c 0.382hi

B0(GPa) 154, 154e, 155c, 157f, 160g, 162abd 143h, 183i

HX V0 (Å3) 22.12
c/a 1.200

B0(GPa) 165

RS V0 (Å3) 18.70a, 18.76c, 18.87d, 18.88, 18.98b, 19.08g , 19.45e 19.48i, 19.60h

B0(GPa) 200e, 201, 203c, 206b, 210a, 211d, 219g 202i, 228h

aRef. 48: PPW.
bRef. 30: LCAO.
cRef. 36: LCAO.
dRef. 41: PPW.
eRef. 40: PPW.
fRef. 66: FP-LMTO.
gRef. 67: FP-LMTO.
hRef. 27.
iRef. 68.

TABLE II: As Table I, but for MgO. Missing references are given in Table I.

Phase Theory Experiment

WZ V0 (Å3) 22.50j ,, 22.53e, 23.15f , 23.20
c/a 1.550e , 1.610, 1.620j, 1.633f

u 0.380, 0.380 j

B0(GPa) 121, 131e, 137j

HX V0 (Å3) 20.90j , 21.71
c/a 1.200, 1.200j

B0(GPa) 135, 148j

RS V0 (Å3) 17.54e , 17.80j , 17.96d, 18.03b, 18.19, 18.65k 18.67l , 18.75m

B0(GPa) 167, 170e, 172k, 174d, 178j, 186b 169n, 172o

jRef. 32: FP-LMTO.
kRef. 33: FP-KKR.
lRef. 69.

mRef. 70.
nRef. 71.
oRef. 72.

As for the structural properties, we find agreement con-
cerning the volume ratios of the different phases and the
equilibrium pressures at the phase transitions (see Ta-
bles III and IV). For ZnO there is only the WZ ↔ RS

phase transition while for MgO there are two transitions,
namely RS ↔ HX and RS ↔ WZ. In particular for ZnO,
our theoretical results compare well with experimental
ones (see Table III). For MgO we find agreement with
other theoretical estimations too (Table IV). However,
the equilibrium pressure for the RS-HX phase transition
might be an exception. The apparent disagreement with
the result reported in Ref. 32 may be related to the insta-
bilities of the WZ and the HX structures (Figs. 2 and 3a).
Moreover, due to the negative pressure these phases can-
not be realized experimentally, hence ruling out a clar-

TABLE III: Structural phase transition in ZnO. Given are the
volume ratio and the equilibrium pressure at the WZ ↔ RS

phase transition. References as in Table I. Present work
displayed in bold.

Theory Experiment

VWZ/VRS 1.20b, 1.21, 1.22cde, 1.24g 1.21i, 1.22h

PWZ↔RS (GPa) 3.9c, 6.6c, 8.0g, 8.2a, 8.6, 8.7c 8.7h, 9.1i

ifying comparison of theory with experiment. In favor
of our work, we would like to mention that the present
calculations reproduce well c/a and u. One might spec-
ulate that earlier implementations of multiple-scattering
theory failed to optimize these structural parameters in
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TABLE IV: As Table III, but for MgO. For MgO there are
two transitions, RS ↔ HX and RS ↔ WZ. Experimental data
are not available. References as in Table II. Present work
displayed in bold.

Theory

VHX/VRS 1.17j, 1.19
PRS↔HX (GPa) −16.2j, −8.5

VWZ/VRS 1.24, 1.26j, 1.28e

PRS↔WZ (GPa) −11.1, −8.4j

any open structure due to the slow angular momentum
convergence of the Green function (see Section III; the
convergence is significantly improved by using Lloyd’s
formula).73

In summary, the agreement of our results for the or-
dered alloys with those of other theoretical investigations
and experiments indicates that the present approach is as
reliable and accurate as any other state-of-the-art meth-
ods.

V. STRUCTURAL PROPERTIES OF

DISORDERED MgxZn1−xO ALLOYS

Having established that our results for ordered ZnO
and MgO are consistent with the structural properties
obtained by other theoretical methods and by experi-
ments, we now turn to the discussion of results for dis-
ordered MgxZn1−xO alloys. To reduce the number of
parameters to be optimized, both c/a and u were fixed
respectively to 1.6 and 0.38 in the WZ structure and to
1.2 and 0.5 in the HX structure. This approximation is
justified by the weak dependence of both c/a and u on the
atomic species (Mg or Zn; cf. Tables I and II). Conse-
quently, the structure (the actual phase), Mg concentra-
tion x, and unit cell volume remain to be varied. The
results of the total-energy calculations involving these
three variables are discussed below. The results of the
total energy calculations are comprised in the formation
enthalpy (at T=0)

∆Hα(MgxZn1−xO) = Eα(MgxZn1−xO)

−xERS(MgO)− (1− x)EWZ(ZnO)
(1)

of a structure α of MgxZn1−xO, relative to the most sta-
ble forms of ZnO (WZ) and MgO (RS) compounds.37

The formation enthalpy is positive throughout, as
seen in Fig. 2, in agreement with previous theoretical
studies.37,41 There are two global minima (i. e. the most
stable phases; black, dark regions), for pure ZnO in WZ

(x = 0) and pure MgO in RS phase (x = 1). This finding
implies a tendency towards phase separation if the inte-
gration of different constituents into the medium cannot
be maintained.37

In the following, five special cases are discussed in more
detail, namely x = 0.0, 0.33, 0.52, 0.71, and 1.0.
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FIG. 2: (Color) Formation enthalpy of MgxZn1−xO alloys
versus equilibrium volume and Zn concentration, depicted as
color scale [cf. eq. (1)]. Straight bold lines mark separations
between the phases (WZ, HX, and RS).

With low Mg concentration, the WZ phase is favorable
in any case (Fig. 3a). The pressure needed for a WZ ↔
RS transition is positive and increases monotonously
(Fig. 4).

For x < 0.33 the total energy of the HX structure is
larger than for the RS and the WZ phases, implying that
an intermediate HX phase cannot be established (Fig. 2).
Consequently, a direct WZ ↔ RS transition is possible at
positive pressure. At x = 0.33 (Figs. 3b and 5) this
phase transition can take place at zero pressure. This
finding is consistent with the theoretical work of Sanati
and coworkers37 and is also observed experimentally in
ZnO-MgO heterostructures.7

At x = 0.71 the WZ ↔ HX and the HX ↔ RS transi-
tions occur at the same pressure (Fig. 4). This is evident
from Fig. 3c because all total energy curves can be con-
nected by a single tangent. We note that for x = 0.52
the WZ ↔ HX transition is possible at zero pressure, and
the corresponding total energies relative to RS phase are
identical (see Fig. 5).

For pure MgO (x = 1.0; Fig. 3d), the RS structure
exhibits the global minimum at a volume of 18.19 Å3

which is about 2% less than the experimental value (see
Table II). By applying a negative pressure (i. e. by in-
creasing the volume along the tangent) the RS phase is
transformed into the HX structure, in agreement with the
work of Limpijumnong and coworkers.32

According to the phase diagram (Fig. 2), the HX phase
is an intermediate phase between the WZ and RS struc-
ture for 0.33 ≤ x ≤ 1.00. Although the HX ↔ RS transi-
tion pressure increases with Mg content, it remains neg-
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FIG. 3: (Color online) Relative total energies of MgxZn1−xO
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(blue dotted line) structures at four different concentrations:
(a) x = 0.0 (pure ZnO), (b) x = 0.33, (c) x = 0.71, and (d)
x = 1.0 (pure MgO). Total energies in cases (a) are taken
relative to the WZ phase at x = 0.0 and, in (b), (c), and
(d), relative to the Mg phase at x = 1.0. Red arrows show
experimental values of volume (see Tables I and II)
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ative in the whole range of concentrations (Fig. 4).

VI. BAND GAP IN MgxZn1−xO ALLOYS

Since MgxZn1−xO alloys arouse great interest as band
gap-engineering materials, in this section we study the
evolution of their fundamental band gap as a function of
the Zn and Mg contents. We restrict our consideration to
the RS and WZ phases, as only these appear interesting
from the experimental point of view.

Band gap formation can be correctly described only
within a many-body theory which takes properly into
account the electron-hole excitations. However, the
GW approximation74, probably the most popular first-
principles many-body approach for calculating excitation
energies, is too expensive for studying alloys with arbi-
trary concentrations and also having constituents with lo-
calized electrons. Therefore, for this study we have used
only the LSDA and SIC-LSDA approaches. The calcu-
lated band gaps have been estimated from the density of
states (DOS), band structure and Bloch spectral func-
tion, corresponding to the theoretical equilibrium lattice
structure of a given chemical composition.

Using LSDA for RS-MgO we obtain a band gap of
5.15 eV, which is 67% of the experimental value (7.7 eV).
For the pure WZ-ZnO, LSDA gives the band gap of
0.8 eV, which is only 23% of the experimental value
of 3.35 eV. In MgO, the difference between the calcu-
lated and experimental values originates mostly from the
fact that the electron-hole excitations are neglected in
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LSDA, which can be corrected effectively with the GW
approximation.75 For ZnO the problem is more com-
plex, as in addition to the neglect of the electron-hole
excitations, the localized nature of Zn 3d electrons is
not adequately represented within LSDA. This failure of
LSDA is largerly related to the inherent unphysical self-
interaction. The latter affects the band gap by placing
the localized 3d electrons of Zn at too low binding ener-
gies, thus leading to their strong hybridization with the
O-2p states. In LSDA the Zn-3d states are about 3 eV
too high with respect to the experimental value of about
7.5 eV–8.5 eV76,77 (see the DOS of ZnO in Fig. 6). In the
RS and WZ phases, the 3d states are placed at slightly
different energies, and in the RS the corresponding band
width is larger due to the more closed-packed crystal en-
vironment. The strong pd-hybridization dramatically re-
duces the band gap, which can be improved only slightly
within the GW approximation, if based on the LSDA
Green’s function.60 It is the aim of our future studies to
use the SIC-LSDA band structure of ZnO for the sub-
sequent GW calculation. The SIC-LSDA band gap we
have calculated is 2.42 eV for WZ-ZnO and 2.96 eV for
RS-ZnO. Thus, the SIC-LSDA band gap for the WZ-ZnO
constitutes 69% of the experimental value of 3.35 eV.
This tells us that SIC-LSDA is at least as good for the
pure ZnO, as LSDA is for the pure MgO. The reason be-
ing, that SIC-LSDA describes both itinerant and local-
ized electrons on equal footing. Of course, in MgO the
band gap is constituted by the sp electrons which are itin-
erant and thus unaffected by the spurious self-interaction,
while in ZnO the 3d electrons of Zn play a defining role
in establishing the band gap. The SIC-LSDA approach,
by removing the unphysical self-interaction of all 10 Zn
d electrons, describes them much more adequately than
LSDA. What happens as a result of SIC is that all the
d-states of Zn move to higher binding energies and the
Zn-derived bands become narrower thereby reducing the
pd-hybridization and increasing the band gap, as seen
in Fig. 6. The structural properties of MgxZn1−xO are
believed to be little affected by this uniform shift down-
wards in energy of the d-states, leading mostly to a uni-
form lowering of the total energy.

Being an effective one-electron ground state theory,
SIC-LSDA does not provide a quasi-particle spectrum to
compare with spectroscopies. Missing the crucial screen-
ing/relaxation effects (self-energy), it predicts the 3d Zn
electrons at too high binding energies, as opposed to
LSDA where they come out too low (Fig. 6). One can
implement a simple fix to correct for the screening ef-
fects in SIC-LSDA, based on the Slater’s transition state
theory.78,79 Following the concept of the latter, we cal-
culate the SIC-LSDA-based removal energies of localized
electrons as an average of the calculated SIC-LSDA and
LSDA d-state expectation values

εTSA =
1

2
(< d|HLSDA + VSIC |d > + < d|HLSDA|d >) .

(2)
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FIG. 6: (Color) Density of states (DOS) of ZnO in the RS (a)
and the WZ (b) phase obtained with the LSDA (black solid
lines), the SIC-LSDA (red dashed lines) and SIC-TSA (blue
dash-dotted lines) approaches. Insets show the behaviour of
the DOS and fundamental band gap close to the Fermi level.
The energy is given relative the Fermi level.
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the RS and WZ phases versus Mg content, calculated within
LSDA and SIC-LSDA (line styles as indicated).

Effectively, the above equation states that only half of
the SIC potential should be applied at the stage of cal-
culating the density of states, after the self-consistency
has been achieved. We refer to Eq. 2 as the transition
state approximation (TSA) and show the resulting DOS
of ZnO in Fig. 6. We can see that Zn d-states, calculated
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TABLE V: The band gap Eg for MgO (RS), ZnO(WZ) and
the bowing parameter for MgxZn1−xO alloys.

LSDA TSA SIC-LSDA Experiment
Band gap [eV]

RS-MgO 5.15 7.70
WZ-ZnO 0.80 1.74 2.42 3.35

Bowing parameter [eV]
RS 1.90 0.91 0.59 0.70± 0.218

WZ 4.88 4.05 3.65 3.60± 0.619

using TSA, appear at lower binding energies, as com-
pared to the strict SIC-LSDA result. Consequently, the
TSA-binding energies of Zn d states are in better agree-
ment with experimental values of 7.5 eV–8.5 eV76,77. The
effective hybridization of Zn d-states with the oxygen p-
states is stronger as in the SIC-LSDA case, which leads to
a reduction of the band gap to 2.32 eV and 1.74 eV (52%
of the experimental value) in RS and WZ phases, respec-
tively.
In MgxZn1−xO alloys the size of the band gap depends

on the concentration of Mg impurities, as seen in Fig. 7
and Table V. While at the Mg rich end the LSDA band
gaps are closer to experiment, at the other end the SIC-
LSDA band gaps are more adequate. As for the TSA
results, they fall mostly in between the LSDA and SIC-
LSDA band gaps, especially for small Mg concentrations,
where the hybridization of the O 2p bands with the Zn
3d states is of great significance (see Fig. 7). The be-
haviour of the band gap as a function of Mg concentration
is also different between the various approaches. While
the LSDA curves are rather parabolic, the SIC-LSDA
and TSA band gaps seem to change almost linearly with
concentration, thus following more closely experimental
results18,19. This is mostly due to the fact that the actual
magnitudes of the band gaps change slower with concen-
tration in SIC-LSDA and TSA than in LSDA. The reason
being that the larger Zn content, the more inadequate
LSDA is and the smaller the resulting band gaps.
Although, both LSDA and SIC-LSDA underestimate

the size of the band gap, Eg, its dependence on the Mg
concentration, x, can be compared with experimental re-
sults. One way of doing it is to estimate the so-called
bowing parameter, b, appearing in the commonly used
definition of the fundamental band gap dependence on
the composition x, namely

Eg(x) = xEg(MgO) + (1 − x)Eg(ZnO)− bx(1− x),

where the bowing parameter is given by

b = 2Eg(MgO) + 2Eg(ZnO)− 4Eg(Zn0.50Mg0.50O). (3)

Thus to evaluate the bowing parameter one needs to
know the band gaps of the pure MgO(RS) and ZnO(WZ),
as well as their alloy with the concentration x = 0.5.
According to our total energy calculations the

MgxZn1−xO at x = 0.5 occurs in the RS phase which

is in agreement with the experiment of Chen et al..18

However, the crystal structure of MgxZn1−xO thin film
alloys depends strongly on the growth method. In vari-
ance to Ref. 18, the MgxZn1−xO films with x ≤ 0.53,
prepared with the PLD procedure, were found to have
the WZ structure. Therefore, for direct comparison with
the experiments we have used Mg0.50Zn0.50O in both RS

and WZ phases. The resulting calculated bowing param-
eters for MgxZn1−xO alloys are presented in Table V. We
can see that the LSDA systematically overestimates the
bowing parameter for both structures, while the straight
SIC-LSDA agrees very well with experiments. The TSA
results fall in between the LSDA and SIC-LSDA values.
Summarizing this section, we have to say that despite

rather good agreement of our SIC-LSD bowing parameter
with experiments, to be truly predictive, one would need
a more robust method like a combination of SIC andGW .
This way we could also predict the correct magnitudes of
the band gaps and enter the serious business of band gap
engineering.

VII. CONCLUSIONS AND OUTLOOK

Structural phase transitions and the fundamental
band gaps of MgxZn1−xO alloys have been investigated
by detailed first-principles calculations. The multiple-
scattering theoretical approach used here (Korringa-
Kohn-Rostoker method) allows to treat disordered al-
loys within the coherent potential approximation, that
is MgxZn1−xO alloys with arbitrary Zn concentration
x, with an accuracy as good as in other first-principles
methods. The importance of treating localized states of
ZnO appropriately within the framework of the local-
density approximation to density-functional theory is es-
tablished, thereby confirming the usefulness of the self-
interaction correction.
The delicate interplay of geometry and electronic

structure is not only of importance for bulk systems, as
shown in this work. In nanotechnology, interfaces and
surfaces play an essential role. Therefore, a correct de-
scription of disordered alloys and their electronic struc-
ture, in particular at the Fermi energy, is necessary for
predicting material properties, besides confirming and
explaining experimental results. However, to be fully
predictive regarding the properties of such systems as
MgxZn1−xO alloys, of importance for device applications,
one needs a first-principles approach like a combination
of GW with SIC-LSDA.
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