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Incoherent transport induced by a single static impurity in a Heisenberg chain
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The effect of a single static impurity on the many-body states and on the spin and thermal transport in the one-
dimensional anisotropic Heisenberg chain at finite temperatures is studied. Whereas the pure Heisenberg model
reveals Poisson level statistics and dissipationless transport due to integrability, we show using the numerical
approach that a single impurity induces Wigner-Dyson levelstatistics and at high enough temperature incoherent
transport within the chain, whereby the relaxation time andd.c. conductivity scale linearly with length.
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Transport in the one-dimensional (1D) quantum system
of interacting particles still offers several fundamentalthe-
oretical challenges. In the context of the electron transport
through barriers or weak links the role of repulsive electron-
electron interactions within the wire was shown to be cru-
cial [1, 2] since at low temperatureT → 0 the interaction
within Luttinger-liquid (LL) phenomenology renormalizesthe
transmission through the barrier to zero effectively cutting the
chain for transport [3]. Neglecting the effect of Umklapp
processes within the wire above the Kane-Fisher temperature
T ∗ the transmission through the barrier should become finite
[1, 2] indirectly confirmed in a numerical study of the 1D spin
model [4]. On the other hand, in the last decade it has become
increasingly evident that the LL low-energy description isnot
enough to establish transport properties, if they are dominated
by Umklapp processes. It has been shown [5, 6] that pure
1D integrable models of interacting fermions exhibit in spite
of Umklapp at anyT > 0 dissipationless (ballistic) transport
manifested, e.g., in a finite charge stiffnessD(T > 0) > 0.
On contrary, a generic system of interacting fermions would
exhibit dissipation in the wire and also finite d.c. transport co-
efficients, e.g., the d.c. conductivityσ(ω → 0) = σ0 < ∞.
The distinction is closely linked to the statistics of many-body
levels [7], which follow the Poisson level distribution forthe
integrable system and the Wigner-Dyson (WD) distribution
for the generic nonintegrable system [5]. Random disorder,
strong enough to overcome finite-size effects, in such models
generally leads to the WD statistics for nearest levels [8, 9],
while the d.c. transport seems to be normal (dissipative) at
T > 0 [10], in contrast to the Anderson-type localization per-
sisting atT = 0 [11].

Our goal is to understand within this context the effect of a
single static impurity in the 1D integrable system of interact-
ing particles. While of fundamental importance this question
is also directly relevant in connection with ongoing experi-
ments on novel quasi-1D materials where electronic proper-
ties of the pure system can be well described within the inte-
grable spin-1/2 Heisenberg model [12] with dilute impurities

introduced in a controlled manner and their influence studied,
e.g., on the thermal transport.

In the following we show on the example of the 1D spin
model with periodic boundary conditions that a single static
impurity can qualitatively change the level statistics to the WD
one, noticed also in the recent study of the onset of quantum
chaos [13] although the perturbation scales as1/L whereL is
the length of the system. At the same time, the impurity leads
to the vanishing of the spin stiffnessD at elevatedT > 0.
In such a situation, it is meaningful to discuss the decay of
the spin and energy current within the ring and related trans-
port rates1/τ which we show to be well defined and scale
as1/τ ∝ 1/L as expected for the homogeneous wire with a
single localized perturbed region.

We consider the 1D anisotropic Heisenberg model (AHM)
with a single-site static impurity field,

H =
∑

l

J(Sx
l+1S

x
l + Sy

l+1
Sy
l +∆Sz

l+1S
z
l ) + b0S

z
0 , (1)

whereSα, α = x, y, z are spin-1/2 operators,J is the mag-
netic exchange coupling (we use unitsJ = 1), ∆ the
anisotropy andb0 the local impurity field. Numerically we
study chain (ring) of lengthL with periodic boundary condi-
tions.

In the absence of the impurity the AHM, Eq. (1), is inte-
grable and as the consequence reveals the Poisson level dis-
tribution PP (s) = exp(−s) wheres = (En+1 − En)/∆0

(∆0 is the average level spacing) as well as the dissipation-
less transport [6]. Let us first consider the effect of finite
b0 on the level statistics. We investigate this question by
performing the (full) exact-diagonalization (ED) study offi-
nite size systems withL = 10 − 16. It should be pointed
that in this range the number of many-body states varies (in
the Sz

tot = 0 sector) in a wide rangeNst = 102 − 104

and the corresponding∆0 = 2.10−2 − 5.10−4. The gen-
eral conclusion is that finiteb0 > 0 induces WD distribu-
tion PWD(s) = (πs/2) exp(−πs2/4) following the random-
matrix theory (RMT) [7] in spite of the fact that the perturba-
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tion is only an1/L effect (the perturbationb0/2 relative to the
full energy span∆E ∼ LJ).

To be concrete we present here two standard tests for the
closeness of the RMT. The first one is parameterη [8] mea-
suring the normalized distance to the WD distribution,

η =

∫ s0

0

[P (s)− PWD(s)]ds/

∫ s0

0

[PP (s)− PWD(s)]ds,

(2)
whereP (s) is the actual level distribution ands0 = 0.473 is
chosen to be the intersection ofPP (s) andPWD(s) [8]. In or-
der to stay within the regime of homogeneous density of states
we analyze only one half of intermediate many-body states,
as relevant for the high-T properties discussed here. ED re-
sults for resultingη as a function ofb0 for chosen intermediate
∆ = 0.8 are presented for differentL. To avoid the effect of
higher degeneracy of levels atSz

tot = 0, b0 = 0 presented re-
sults in Fig. 1 are forSz

tot = 1. In the absence of impurity
(b0 = 0) we obtainη = 1 sinceP (s) = PP (s) due to the in-
tegrability of the pure AHM. The most important conclusion
is that rather weak impurityb0 ∼ 0.2 in largestL = 16 causes
a fast drop toη ∼ 0, i.e., toP (s) ∼ PWD(s), whereby the
threshold value ofb0 is decreasing withL so that for largest
L = 16 reachable with ED we getP (s) ∼ PWD(s) in the
range0.2 < b0 < 1.5. On the other side, it is quite remark-
able thatη starts to recover towardsη ∼ 1 again for large
b0 ≫ 1. This can be easily explained by noting that large
|b0| ≫ 1 effectively cut the ring and lead to the AHM with
open ends which is again an integrable model.
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Figure 1: Parameterη for the deviation from the WD level distribu-
tion vs. impurity fieldb0 for ∆ = 0.8 and variousL.

Even stronger probe of the level statistics is the correlation
∆3 measuring the level fluctuations beyond the nearest neigh-
bor levels [7],

∆3 =
1

2N
minA,B

∫ N

−N

[N (Ẽ)−AẼ −B]2dẼ, (3)

whereN (Ẽ) is the integrated density of states with̃E =
E/∆0 [18]. ∆3 should behave as∆3 ∼ N/15 for Poisson
distribution, and asymptotically as∆3 ∼ (lnN)/π2 within
the RMT [7]. In Fig. 2 we present results for∆3(N) for fixed

∆ = 0.8, b0 = 0.8 as obtained for differentL = 12 − 16.
A comparison with the result expected from the RMT shows
that∆3(N) approaches the latter very accurately in an inter-
val N < N∗(L) with N∗ strongly (exponentially) increasing
with L, while the deviation into a Poisson-like linear depen-
dence∆3 ∝ N appears forN > N∗(L). Such a generic
crossover has been observed also in other systems [15] and
one can discuss the relevance of the related crossover en-
ergy scaleǫ = N∗∆0. Fast increase ofN∗(L) one can un-
derstand by noting that the impurity perturbation beingL-
independent mixes up many-body levels [8] within the interval
ǫ whereby separation between many-body levels decreases as
∆0 ∝ exp(−L). We can estimateǫ ∼ b0/(4L) within the
XY (∆ = 0) model which gives right order of magnitude for
observedN∗ in Fig. 2. More detailed analysis in analogy to
other systems [8] is difficult due to the complicated nature of
states at intermediate∆.
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Figure 2: Level-fluctuation parameter∆3(N) for fixed ∆ =
0.8, b0 = 0.8 and different system lengthL. For comparison the
RMT result is presented (dotted line).

Closely related to the onset of the WD distribution by a
single impurity is the vanishing of theT > 0 coherent (bal-
listic) transport characteristic for integrable systems [5, 6].
The measure of the coherent component is for the spin trans-
port the spin stiffnessD(T ) (equivalent to the charge stiff-
ness for the related fermionic model). It can be defined via
the gauge phaseφ into the spin-flip terms in Eq. (1), as
exp(iφ)S+

l+1
S−

l + exp(−iφ)S−

l+1
S+

l . At finite T > 0 the
spin stiffness can be expressed as

D =
1

2L

∑

n

pn
∂2ǫn(φ)

∂φ2
∼

β

2L

∑

n

pn
(∂ǫn(φ)

∂φ

)2
, (4)

wherepn = exp(−βǫn)/Z with Z =
∑

n exp(−βǫn), and
the last relation becomes an equality provided that the sus-
ceptibility for persistent current vanishes (for finite systems
at large enoughT ). On the other hand,D still depends on
the valueφ where derivatives in Eq. (4) are taken. For the
XY model at∆ = 0 corresponding via the Wigner-Jordan
transformation to tight-binding noninteracting fermionswith
t = J/2 and a potential impurityǫ0 = b0/2 one can establish
the relation with the transmission through the barrier, as used
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also in connection with the evaluation of the 1D conductance
[17] atT = 0. For generalT > 0 one gets in the case of NI
fermions andL → ∞,

D =
β

2L

∑

k

fk(1− fk)(vk)
2gk. (5)

wherevk = 2t sink, fk is the Fermi function withµ = 0 for
half-filling (Sz

tot = 0) and

gk =
|tk|2 sin

2(Lφ)

1− |tk|2 cos2(Lφ)
, |tk|

2 =
4t2 sin2 k

4t2 sin2 k + ǫ20
. (6)

Numerically we recover the behaviorD(φ) as follows from
Eqs. (5,6) for arbitraryb0 as far as∆ → 0. For∆ > 0 the
dependence onφ remains qualitatively similar, although ir-
regular due to strong dependence onL. In the following we
calculateD(L) for fixedφ = π/(2L). Results for∆ > 0 are
nontrivial for anyT . Since results of full ED are best at high
T , we restrict ourselves here to the limitβ → 0. It has been
shown for the pure model thatD/β remains finite and nontriv-
ial in the thermodynamic limitL → ∞ due to integrability of
the model [6].

In Fig. 3 we show results forD/β vs. 1/L for chosen∆ =
0.8 and for four casesb0 = 0, 0.5, 1, 2. It is evident from
Fig. 3 thatb0 > 0 cases are qualitatively different from the
b0 = 0 whereD scales linearly in1/L towards a finiteD/β ∼
0.035. On the other hand,b0 > 0 induces an exponential-like
decay ofD → 0, at least for large enoughL > L∗ and not
too weakb0. This is closely related to the onset of the WD
distribution and the effective breaking of the integrability.
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Figure 3: High-T spin-stiffnessD/β vs. 1/L for fixed∆ = 0.8 and
differentb0.

Rapid (exponential) vanishing ofD(L → ∞) at T > 0 is
the indication that the transport is not ballistic and becomes
incoherent (resistive) beyond the characteristicL∗. In order
to test this directly we evaluate dynamical spin conductivity
σ(ω) as well as the related thermal conductivityκ(ω), defined
as

σ(ω) =
i(χ0

jj − χjj(ω))

ω+L
, κ(ω) =

iβ(χ0
jEjE

− χjEjE (ω))

ω+L
,

(7)

wherej andjE are spin and energy current, respectively, with
corresponding susceptibilities

χjj(ω) = i

∫

∞

0

dteiω
+t〈[j(t), j]〉, (8)

and analogous definition ofχjEjE (ω). Note that for ’normal’
transport one expectsχ0

jj = χjj(ω → 0). In a nondissipative
case, however,χ0

jj − χjj(ω → 0)) = 2LD > 0. For fur-
ther discussion it is convenient to introduce and analyze also
corresponding memory functionsM(ω) andN(ω), defined
respectively as [16]

σ(ω) =
i

L

χ0
jj

ω +M(ω)
, κ(ω) =

iβ

L

χ0
jEjE

ω +N(ω)
. (9)

The advantage of studyingκ(ω) is thatjE is a conserved
quantity in the pure AHM [6], henceN0(ω) = 0 and con-
sequentlyN(ω) 6= 0 appears only due tob0 6= 0. On
the other hand,j is not conserved andM(ω) = M0(ω) is
nontrivial even in the absence of impurities. Nevertheless,
M ′′

0 (ω = 0) = 0 at anyT as required to obtainD(T ) > 0.
In the following we evaluateσ(ω) andκ(ω) at T > 0 using
the microcanonical Lanczos method (MCLM) [14] to calcu-
late the dynamical susceptibilities, Eqs. (8,7), in systems with
L = 16 − 24. Typically,NL ∼ 2000 Lanczos steps are used
to obtain spectra with highω resolution, so that the additional
broadening is onlyδ = 0.01. In the following we present
merely results atβ → 0, which do not qualitatively change
with T down toT ∼ J . At least for largerL smoothσ(ω)
andκ(ω) then allow the evaluation ofM(ω) andN(ω) via
Eq. (9).
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Figure 4: a) High-T results for scaled thermal conductivityκ′/L vs.
Lω for ∆ = 0.5 andb0 = 0.5 as calculated for differentL = 16−
24. b) Extracted scaled memory functionLN ′′(ω). Perturbation-
theory result is also plotted (dashed curve). c)N ′′(ω)/b20 for ∆ =
0.5 and different impurity fieldsb0 = 0.3 − 0.5, obtained at fixed
L = 24.

Let us start with the analysis of (real part)κ′(ω), which re-
veals a Lorentzian (Drude) form for∆ = 0.5, b0 = 0.5 as
shown in Fig. 4a. Moreover, results show universal size scal-
ing asκ′(Lω)/L. Hence, correspondingN ′′(ω) also scales as
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1/L, so that the size-independent quantity isÑ(ω) = LN(ω)
being quite structureless forω < 1 as shown in Fig. 4b. It is
also evident from Fig. 4c thatN ′′(ω) ∝ b20 at least for weaker
b0 < 0.5. On the other hand, at largerb0 > 0.5N ′′(ω) obtains
a characteristic peak at lowω → 0 which strongly reduces the
d.c. valueκ(ω = 0). I.e., on entering the regimeb0 > 1 the
impurity starts to cut the ring for the d.c. transport.

The regular behavior ofN ′′(ω) for weakerb0 < 1 gives
support to the attempt to evaluate the memory function within
the perturbation approach [16] using the force-force correla-
tions,

Np(ω) =
1

ωχ0
jEjE

(χff (ω)−χ0
ff ), f = i[H, jE ], (10)

whereχff (ω) is the force-force dynamical susceptibility. Re-
sults forN ′′

p (ω)/L evaluated using eigen-states obtained by
the ED of the systemL = 14 are for comparison also pre-
sented in Fig. 4b. The correspondence is quite satisfactory.

0 5 10 15Lω
0

0.01

0.03
σ’(L ω)/L

L=16
L=20
L=24

0 0.1 0.5ω0

0.2

M’’( ω)

L=16
L=20
L=24

∆=0.5, b
0
=0.6

Figure 5: a) Scaled spin conductivityσ′/L vs. Lω for ∆ =
0.5, b0 = 0.6 for different L = 16 − 24, and b) corresponding
M ′′(ω).

Finally, we present in Fig. 5 also analogous scaledσ′/L vs.
Lω and correspondingM ′′(ω) for fixed ∆ = 0.5, b0 = 0.6
and differentL = 16 − 24, as obtained via the ED (L = 16)
and MCLM (L = 20, 24) atβ → 0. SinceM0(ω) is nontriv-
ial even forb0 = 0 one can discuss possible decomposition
M(ω) = M0(ω) + M̃(ω)/L. Results confirm that at low
ω < 0.2 σ(ω) reveals a Lorentzian withM ′′(ω → 0) scaling
as1/L, the only contribution in this regime coming from the
impurity. Moreover, we notice that for fixed∆ < 1 andb0
M ′′(0) andN ′′(0) are quite similar in value, e.g., by compar-
ing Fig. 4c and Fig. 5. This indicates that we are at∆ < 1
close to the validity of the Wiedemann-Franz law requiring an
unique transport relaxation rate.

It should be pointed out that obtained incoherent trans-
port is characterized with the relaxation timesτ and d.c.
conductivities scaling linearly withL, as expected for 1D
systems with a single perturbed region. Hence, the length
independent quantities areσ(0)/L = χ0

jj/(LM
′′(ω =

0)) = χ0
jj/M̃

′′(ω = 0) and the corresponding thermal one

κ(0)/L = βχ0
jEjE

/Ñ ′′(ω = 0).

In conclusion, we have shown that the transport in the con-
sidered anisotropic Heisenberg model on the ring with a single
static impurity is quite unique. Since both the spin (for∆ < 1)
and thermal conductivity at anyT > 0 are dissipationless in
the pure system, one can study directly the nontrivial effect
of a single impurity on the level statistics and transport inthe
many-body quantum system. We have shown that single static
impurity induces an incoherent transport with a well defined
current relaxation time which scales asτ ∝ L. This should be
contrasted with the case of noninteracting fermions in Eq. (5)
where a single impurity only reduces the stiffnessD but does
not lead to the current relaxation within the ring at anyT .
The fundamental difference seems to come from the Umk-
lapp processes which are revived by the impurity and lead to
the decoherence between successive scattering events on the
impurity. In this sense it is also plausible that for a finite but
low concentrationci of static impurities in a chain (as relevant
for experiments [12]) we expect that our results can be sim-
ply generalized as1/τ ∝ 1/L → ci, as evident also from the
lowest-order perturbation theory, Eq. (10).

Although we studied here the AHM model, results and con-
clusions could be plausibly generalized to 1D integrable chain
systems with periodic boundary conditions and a localized
perturbed region. In this paper we presented only results in
the high-T regime, still the phenomenon is expected to per-
sist as far as the Umklapp processes are effective, i.e., forT
above some characteristic Umklapp temperatureTU . We can
speculate that the LL phenomenology [1, 2] can become effec-
tive only forT ≪ TU , whereby there is another Kane-Fisher
scaleT ∗ which divides the regimes of cut chain forT < T ∗

and renormalized coherent transmission forT > T ∗. Fur-
ther studies are needed to establish these scales for relevant
impurities and models. In any case, such phenomena are ex-
pected to be relevant in connection with recent experiments
on thermal conductivity in spin chains where dilute impurities
are introduced [12].
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