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Abstract. A near-field scanning optical microscope is used to locally induce photocurrent 

in a graphene transistor with high spatial resolution. By analyzing the spatially resolved 

photo-response, we find that in the n-type conduction regime a p-n-p structure forms 

along the graphene device due to the doping of the graphene by the metal contacts. The 

modification of the electronic structure is not limited only underneath the metal 

electrodes, but extends 0.2–0.3 µm into the graphene channel. The asymmetric 

conduction behavior of electrons and holes that is commonly observed in graphene 

transistors is discussed in light of the potential profiles obtained from this photocurrent 

imaging approach. Furthermore, we show that photocurrent imaging can be used to probe 

single- / multi-layer graphene interfaces. 
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I.  INTRODUCTION 

Graphene, a single layer of graphite, is considered a promising material for use in 

future nanoelectronic devices [1]. The demonstration of current modulation by an electric 

field effect in graphene [2], followed by the recent demonstration of fast graphene 

transistors [3], has triggered extensive interest on the electrical properties and 

applications of this new material. Particularly, the unusual gate voltage dependence of the 

electrical conductivity (anomalous non-zero minimal conductivity [4-6] and differences 

in the conductances of electrons and holes [7-10]) is at the center of current interest. Most 

experiments to date probe the global response of a graphene transistor, i.e., they yield 

properties (for example the electrical conductance) averaged over the whole device. 

Similarly, in most simulations the graphene channel is treated as being homogeneous. 

Recent experimental work [10-12], however, has provided evidence that charge 

inhomogeneity induced by the metal contacts might have a much stronger impact on the 

electrical transfer characteristics of graphene transistors than previously believed. To gain 

better understanding of the role of the contacts in graphene transistors, local 

characterization of the functioning devices using scanning probe techniques is clearly 

necessary. Scanning photocurrent (PC) microscopy has proven a useful tool for studying 

potential profiles in carbon nanotubes transistors [13-15], and recently also in graphene 

[16,17]. The resolution of a classical optical microscope, however, is restricted by 

diffraction to about half of the optical wavelength (~λ/2). An understanding of the photo-

response, and hence potential profiles, on a smaller length-scale is desirable. 

In this publication we report high-resolution PC imaging using near-field 

scanning optical microscopy (NSOM). NSOM overcomes the far-field resolution limit by 
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bringing a light source of sub-wavelength size into close proximity (<<λ) to the sample 

surface. The resolution of the image is limited by the size of the probe aperture and not 

by the wavelength λ of the light [18]. By analyzing the spatial variation of the PC in the 

vicinity of the metal contacts, we show that charge-transfer doping occurs underneath the 

contact metals and adjacent regions in the graphene channel, giving rise to asymmetric 

conduction characteristics for electrons and holes. In a complementary experiment, we 

also demonstrate charge transfer and photocurrent generation at single- / multi-layer 

graphene interfaces. 

 

II.   SAMPLE DESCRIPTION AND EXPERIMENTAL SETUP 

The back-gated graphene transistors used in this study were prepared by 

mechanical exfoliation of Kish graphite using an adhesive tape and subsequent deposition 

of the flakes on a highly p+-doped Si wafer, on which a 300 nm thick SiO2 layer was 

grown by dry oxidation. Single layers of graphene were first identified visually using an 

optical microscope and further confirmed by Raman spectroscopy [19]. Source and drain 

Ti/Pd/Au (0.5/15/5 nm) electrodes were then deposited by electron-beam lithography, 

electron-beam evaporation of the metals, and lift-off. In a second lithography step, wide 

and thick Ti/Au (5/200 nm) bonding pads were patterned. The sample was then mounted 

in a ceramic chip carrier and wire bonds were made between the die and the package. In 

the as-prepared samples, the minimum conductance occurs at a back gate voltage of ~100 

V. The samples were therefore annealed for several hours in an ultrahigh-vacuum 

chamber at 400 K. This procedure removes most of the doping adsorbates and water from 

the sample surface and shifts the Dirac point voltage close to 0 V. After taking out the 
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samples from the vacuum chamber we typically observe that the Dirac point shifts back 

to 20-40 V, where it stays stable during the entire measurement process. 

 A commercial NSOM was adapted to carry out local PC measurements on the 

graphene devices. Fig. 1 shows the experimental setup and sample structure. Optical 

excitation is provided by a chopped (~1 kHz) Ar ion laser (λ = 514.5 nm). The laser light 

source is coupled into a metal-coated tapered optical fiber probe with a 100-nm aperture. 

The aperture locally illuminates the sample surface and the induced PC is recorded with a 

lock-in amplifier as the NSOM probe tip is scanned across the graphene transistor. The 

distance between the fiber tip and the sample is maintained at ~20 nm by applying a non-

optical normal-force feedback technique. Taking into account the penetration of the light 

into the metal cladding of the NSOM probe and additional widening of the beam 

diameter by the tip-sample separation, we estimate an upper limit of the spatial resolution 

of ~150 nm. A topographic atomic force microscopy (AFM) image is acquired 

simultaneously with the PC image, allowing correlation of structural and PC properties at 

the same positions on the graphene transistor. 

 

III.   PHOTOCURRENT   NEAR   THE   METAL / GRAPHENE   INTERFACE 

On the left in Fig. 2, we show a scanning electron microscopy (SEM) image of 

one of our graphene devices, together with the electrical setup. PC measurements were 

performed under short-circuit conditions. The device exhibits the typical V-shaped 

conductance versus gate bias with a minimum at  = 40 V, indicating a natural p-

doping of the graphene (probably caused by trapped charge in the gate oxide). A mobility 

µ of approximately 0.1 m

Dirac
GV

2/Vs was extracted. 
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On the right in Fig. 2 we show a sequence of PC images of the device, taken at 

different gate biases VG between -60 and 100 V. From the topographic AFM image we 

are able to precisely determine the edges of the source and drain contacts (shown as 

dashed lines). The measurement at VG = -60 V displays strong PC (Iph) with opposite 

polarities at the interfaces between graphene and the source and drain electrodes, 

respectively. As we increase the gate voltage, the PC gradually decreases, switches 

polarity, and increases again at larger positive voltages. By positioning the NSOM tip 

close to one of the contacts and sweeping the gate voltage, we determined the exact value 

of VG at which the sign of PC reverses:  ~ 20 V. The presence of the strong PC spots 

close to the contact electrodes is due to the existence of local electric fields near the 

metal/graphene interfaces. For illumination in the middle of the device, the absence of a 

strong electric field will not separate the photo-excited electron-hole pairs and they will 

recombine rather efficiently. The overall trend of these findings is in line with what we 

have observed in far-field scanning PC measurements [17]. The high spatial resolution of 

the near-field technique, however, sheds light on various aspects of PC generation in 

graphene transistors that have not been revealed in previous work. Apart from the 

opposite polarity, the most striking differences between the p-type conduction regime and 

the n-type regime are (i) the spatial position of the PC maxima and (ii) the PC 

contribution from the metal contacts. 

flat
GV

In order to extract quantitative information from the images, we plot in Figs. 3(a) 

and (b) the PC profiles at VG = -60 V and 100 V, respectively. The arrows in Fig. 2 mark 

the positions along which the profiles were taken. From Fig. 3(a) it is obvious that the PC 

at VG = -60 V is made up of two contributions. A strong and narrow response at the 
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electrodes, that decays on a length scale of about 0.2 µm within the graphene sheet, and a 

much broader contribution from the contacts. At VG = 100 V [Fig. 3(b)], the PC has not 

only flipped its polarity, but has also moved ~0.28 µm away from the contacts, and has 

broadened to ~0.36 µm (full width at half maximum - FWHM). For another sample we 

obtain similar values [~0.22 µm and ~0.29 µm (FWHM), respectively].  PC from the 

metal contacts is now strongly suppressed. 

Iph is a direct measure of the local potential gradient in the ~150 nm wide 

excitation region. In contrast to traditional semiconductors, the current resulting from 

carrier diffusion can be neglected in graphene because of the short lifetime τ  of photo-

excited carriers. Relaxation times τ of typically 0.1-2 ps have been reported [20, 21]. 

With these values and the mobility µ from above we estimate diffusion lengths 

 (  is the thermal voltage – 26 mV at room temperature) of ~15-70 nm, 

i.e. smaller than our excitation region [22]. A possible complication of the near-field PC 

imaging technique compared to traditional far-field microscopy is the presence of the 

metallized NSOM probe in close proximity to the graphene which could influence the 

potential in the transistor channel (and thus the PC generation) due to screening of the 

gate field. In order to minimize this impact we do not electrically ground the metal 

cladding of the NSOM tip, instead we let it float. Furthermore, we benefit from the fact 

that the graphene flake itself is a conductor that effectively shields the field produced by 

the gate. 

2/1)( µτtD VL = tV

The behavior of the PC discussed above can then be understood within a simple 

model that treats bending of the graphene bands as a result of charge transfer between the 
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graphene sheet and the metal electrodes. Metals in contact with graphene pin the Fermi 

level below the electrodes and hence create a potential step within the graphene sheet 

[23]. As we will show, in our devices, the Pd contact introduces p-doping of the graphene 

underneath the electrodes. Thus, depending on the gate bias VG, a p-p junction or a p-n 

junction forms in the vicinity of the electrode/graphene interface. In Figs. 4(a) and (b) we 

show band diagrams of the graphene transistor in the p-type conduction regime and the n-

type regime, respectively. Since the PC is proportional to the potential gradient at the 

excitation position, we extract the band diagrams by numerical integration of the PC 

profiles. The energetic offset of the graphene bands with respect to the Fermi level is 

determined based on the following considerations: At zero applied gate bias (VG = 0) we 

observe a weak Iph that is directed away from the source and drain electrodes, i.e., photo-

excited electrons drift to the nearby electrode and holes toward the bulk of graphene. 

Since the minimum conductance for this device occurs at  = 40 V, we may draw 

the band profile at V

Dirac
GV

G = 0 V as shown in Fig. 4(a) (dashed line). From a simple capacitor 

model we obtain an expression for the energetic difference between the Fermi level and 

the band edge in the bulk graphene channel as a function of applied gate bias [24]: 

Dirac
GGF VVvE −=∆ παh , where α = 7.2 × 1010 cm-2V-1 and  = 5.52 eVÅ. With this 

equation we obtain  ~ 0.17 eV. The direction of the current flow requires the 

constant potential offset 

Fvh

)0( =∆ GVE

φ∆  to be smaller than the potential in the center of the device: 

)0( =∆<∆ GVEφ . As the gate voltage is decreased to negative voltages, E∆  increases, 

whereas φ∆  stays pinned at the contacts. The band bending at the contacts hence 

becomes steeper and Iph becomes stronger (solid line). When a positive gate voltage is 

 7



applied the band first becomes flat, and eventually, the main body of the graphene 

becomes n-type when the band edge moves below the Fermi level [see Fig. 4(b)]. At flat-

band condition (  ~ 20 V) almost no PC is observed. This allows us to estimate the 

potential step at the graphene/electrode interface: 

flat
GV

|| Dirac
G

flat
GF VVv −=∆ παφ h ~ 0.12 

eV. Because the contact region stays p-type even at positive gate biases, a p-n junction 

forms close to the electrode/graphene interface. Locally excited electron-hole pairs are 

separated in the strong electric field and contribute to PC. The most striking feature of 

Fig. 4(b) is that charge-transfer doping occurs not only underneath the electrodes, but 

extends hundreds of nanometers into adjacent regions in the graphene channel. 

Within our model, we can also understand the PC response from the metal 

contacts. Carriers that are thermally excited in the metal contribute to the PC only if there 

exists an electric field at the electrode/graphene interface. This is obviously the case at 

negative gate voltages where the maximum of the electric field occurs right at the 

interface. Due to the direction of the field, only holes contribute to the current. At 

positive voltages, however, because of electrostatics, there is no significant band bending 

at the interface. Carriers have to diffuse through the field-free region before being 

separated by the strong electric field at the p-n junction. Given the rather short carrier 

diffusion length compared to the distance between the metal electrode and the p-n 

junction, most carriers recombine before they can reach the junction, resulting in 

suppressed PC. In addition to the strong response from the electrodes, we observe a 

weaker photo-response from the bulk of graphene. The existence of local electric fields is 

attributed to charged impurities in the substrate and residues of photoresist (PMMA) that 
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cause random spatial variations of the local potential (electron-hole puddles) [25]. Note 

that this contribution is only observed in the vicinity of the Dirac point, whereas it 

vanishes at high negative and positive VG. At high extrinsic carrier densities n in 

graphene, the comparably small number of charged impurities introduces only small 

quantitative corrections. At low carrier densities, however, due to the low density-of-

states, a small spatial variation of the local carrier concentration causes a strong variation 

of the local potential. 

The contact doping discussed above causes an asymmetry between the p-n-p type 

conduction regime ( ) and the p-p-p type regime ( ) that is also 

reflected in electrical transport measurements [10,11]. The resistance that is associated 

with a p-n junction is larger than that of an equivalent p-p junction. This can easily be 

understood within a diffusive carrier transport model, where the resistance is simply 

obtained by integrating the local resistivity along the length of the junction [26, 27]. In 

the p-n case, the graphene band edge crosses the Fermi level and the carrier concentration 

in the junction hence approaches zero. This gives rise to an excess resistance with respect 

to the p-p case, where the Fermi level lies deep in the valence band. In the ballistic 

transport regime, the resistance of a p-n junction stems from the selective transmission of 

carriers, which only allows for the passage of particles that approach the junction in an 

almost perpendicular direction [28, 29]. The theory for ballistic propagation of carriers in 

a potential similar to that reported in Fig. 4(b) can be found in Ref. 30. Fogler et al. have 

introduced a dimensionless parameter  (  is the slope of the density profile at 

the Fermi level;  is related to the mobility by 

Dirac
GG VV < Dirac

GG VV >

2/3' −= innβ 'n

in )/( heni µ= , where e is the elementary 
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charge and h is Planck’s constant) that separates the diffusive ( 1<<β ) from the ballistic 

( 1>>β ) transport regime [31]. When calculating β for our samples, we typically obtain 

values close to 1. Our samples are therefore in an intermediate regime, where the total 

resistance has diffusive and ballistic contributions. A detailed calculation is beyond the 

scope of this work and we refer the interested reader to the appropriate literature [30-32]. 

Experimentally, in our samples we do indeed observe the asymmetric conduction 

behavior for electrons and holes predicted in the previous paragraph. Following Ref. 10, 

we quantify this asymmetry by calculating the odd part of the device resistance 

, where . We obtain a positive value 

which is consistent with our model [33]. For large 

2/)]()([ GGodd VRVRR ∆−−∆= Dirac
GGG VVV −=∆

GV∆ , the normalized resistance 

 approaches a constant value of ~0.25 kΩ µm, independent of device length L. 

This is a clear indication that  is a contact resistance, rather than a resistance that is 

associated with different conductivities of electrons and holes in the graphene sheet [7]. 

In addition, our devices are approximately 10 times shorter than those in Ref. 7. The 

impact of the metal contacts on the conductance asymmetry is hence expected to 

dominate over the impact from the relatively short bulk graphene channel. 

WRodd ⋅

oddR

 

IV. PHOTOCURRENT   NEAR   SINGLE- / MULTI-LAYER   GRAPHENE 

INTERFACE 

As discussed above, the charge transfer between the metal electrodes and the 

graphene sheet causes band bending near the metal/graphene interface. Band bending 

does also occur when a single layer of graphene is brought into contact with multi-layer 
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graphene. Fig. 5 (a) shows the SEM image of a device that consists of a single-layer 

graphene (SLG) sheet (region “2”) sandwiched between two sheets of multi-layer 

graphene (MLG) (regions “1” and “3”). The number of layers in the three regions was 

determined by Raman spectroscopy [19] and it was confirmed that region “2” is SLG, 

whereas regions “1” and “3” consist of two or possibly three layers.  

 In Fig. 5 (b) we show the PC image of the device recorded without applying a 

gate bias. In Fig. 5 (c) we plot the PC profile along the channel of the device. The dotted 

vertical lines represent the spatial positions of the metal electrodes and SLG / MLG 

interfaces, respectively. Apart from the strong and narrow PC in the vicinity of the 

metallic contact electrodes, we observe a weaker photoresponse with opposite polarities 

at the interfaces between SLG and MLG. The direction of the local electric field points 

from the SLG to the MLG sheet, as drawn schematically in Fig 5 (b). Upon local 

illumination, photo-generated carriers get separated and produce a PC in direction of the 

field. At present, we can only speculate on what causes the potential gradient at the 

interface between the two materials. It can, for example, be due to charge transfer 

between the different regions of the device. The SLG and BLG work functions can be 

tuned by applying a gate voltage, but also depend on surfaces dipoles imposed by 

adsorbates on top of the graphene surface and on the electronic structure of the material 

itself. As the two materials are brought into contact, the Fermi levels line up. As a result 

two charge layers are set up at the interface and an electric field is established. From the 

experimentally observed current flow direction from SLG to MLG one would conclude, 

that under experimental conditions similar to ours (SiO2 substrate, ambient environment, 

hole-doping at zero gate bias), the measured work function of the multi-layer graphene is 
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higher than that of the single layer. Other explanations, though, are possible, such as 

dipoles that are associated with the edges of the MLG [34]. Irrespective of what causes 

the electric field at the interface, our observation clearly demonstrates that a 

heterogeneous surface topography results in potential fluctuations and hence reduced 

carrier mobility in graphene. 

 

CONCLUSIONS 

We have studied the locally induced PC in graphene transistors by near-field 

optical excitation. We have shown that metal contacts have a strong impact on the 

electronic structure of the graphene channel and that this modification extends hundreds 

of nanometers away from the contacts. We have found that in the n-type conduction 

regime a p-n-p structure forms along the graphene channel due to Fermi level pinning in 

the graphene below the Ti/Pd contact electrodes. The existence of a p-n junction in the p-

type conduction regimes gives rise to an excess resistance with respect to the n-type 

regime, resulting in an asymmetric conduction behavior for electrons and holes. Studies 

of interfaces between SLG and MLG have shown that a potential gradient occurs across 

the interface. The near-field PC spectroscopy method used here hence provides a 

powerful tool for the study of graphene-based electronic and optoelectronic devices. 
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Figure captions 

 

Figure 1. (Color online) Schematic illustration of the experimental setup and sample 

structure. 

 

Figure 2. (Color) The left picture shows the SEM image of a graphene transistor and the 

electrical setup for PC measurements. On the right we show seven PC images taken at 

gate biases between -60 and +100 V. The dashed lines indicate the edges of the source 

and drain electrodes. The two scale bars on the bottom of the very right image are both 1 

µm long. 

 

Figure 3. (Color online) PC profiles at (a) VG = -60 V and (b) VG = 100 V along the 

arrows in Fig. 2. The dashed lines indicate the edges of the source and drain electrodes.  

 

Figure 4. (Color online) (a) Band diagrams at VG = 0 V (dashed line) and VG = -60 V 

(solid line), obtained by numerical integration of the PC profiles in Fig. 3. ∆φ describes 

the pinning of the Fermi level. Arrows indicate the flow of electrons and holes. (b) Band 

diagram at VG = 100 V, obtained by numerical integration of the PC profile in Fig. 3. It 

shows the formation of a p-n-p structure. The distance d between the PC peaks is smaller 

than the device length L. There is no PC contribution from the contacts because the 

electric field at the electrode/graphene interface is nearly zero. 
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Figure 5. (Color) (a) SEM image of the device. Region “2” consists of single-layer 

graphene, regions “1” and “3” are multi-layer. (b) PC image recorded in the p-type 

conduction regime. The black dashed lines indicate the edges of the source and drain 

electrodes. The white dotted lines mark the interfaces between SLG and MLG. (c) PC 

profile along the channel of the device. The red line indicates the PC that is generated at 

the graphene interfaces. 
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