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Optical Anisotropic Metamaterials: Negative refraction and focusing
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We design 3D metallic nanowire media with different structures and numerically demonstrate they can be
homogeneous effective indefinite anisotropic media by showing their dispersion relations are hyperbolic. For
a finite slab, a nice fitting procedure is exploited to obtain the dispersion relations, from which we retrieve the
effective permittivities. The pseudo focusing for the real3D wire medium agrees very well with the homoge-
neous medium having the effective permittivity tensor of the wire medium. Studies also show that in the long
wavelength limit, the hyperbolic dispersion relation of the 3D wire medium can be valid even for evanescent
modes.

PACS numbers: 42.25.-p, 41.20.Jb, 42.30.-d, 78.20.Ci

I. INTRODUCTION

Recently, negative index materials (NIMs) and photonic
crystals (PCs) are receiving more and more attention be-
cause of their extraordinary optical properties such as
near field focusing, subwavelength imaging, and negative
refraction.1,2,3,4,5,6,7,8,9,10,11,12As first proposed, these NIMs
have the permittivity,ε, and the permeability,µ, simultane-
ously negative, which are achieved by overlapping electricand
magnetic resonances. But the double resonance scheme also
causes large resonance losses and technical difficulties inde-
sign and fabrication. In addition to negative index materials,
both theoretical and experimental studies show the properties
of negative refraction and subwavelength imaging can also
occur in some uniaxially anisotropic media, which can have
lower losses and be easier to fabricate.13,14,15,16,17,18,19,20,21,22,23

For a particular anisotropic medium, where the permittiv-
ity component (ε⊥) along the direction perpendicular to the
interface is negative, while all other permittivity and perme-
ability components are positive, it has a hyperbolic dispersion
relation as follows:

k2⊥
|ε‖| µ

−
k2‖

|ε⊥| µ
= ω2 (1)

where the definitions forε⊥, ε‖, k⊥ and k‖ are shown in
Fig. 1(b). Figure 1(a) schematically shows how negative re-
fraction works in this particular anisotropic medium. The
group velocity can be calculated byvg = ∇kω(k), which im-
plies that the direction of group velocity (energy flow) would
be normal to the equifrequency surface (EFS) and in the di-
rection whereω is increasing. The conservation ofk‖ indi-
cates two possible solutions in the medium, but the correct one
can be determined by causality — the refracted group velocity
should point away from the interface, as shown in Fig. 1(a).
From Fig. 1(a), we can also see that for an isotropic medium,
the circular equifrequency surface forces the refracted phase
and group velocities to lie in the same line — antiparallel for
a negative index medium, while parallel for a positive index
medium. For an anisotropic medium with a hyperbolic disper-
sion relation, they do not lie in the same line any more except
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FIG. 1: (Color online) (a) Top graph: Circular equifrequency sur-
faces (EFS) for vacuum and isotropic media. Bottom graph: Equifre-
quency surfaces for vacuum (circle) and negative anisotropic refrac-
tion media (hyperbolic relation). (b) The definitions fork⊥, k‖, ε⊥,
andε‖ used in our simulations.

for the case whenk‖ = 0. To be normal to the hyperbolic
curves and satisfy the requirement of pointing away from the
interface coming from the causality, the refracted group ve-
locity has to undergo a negative refraction, which causes the
expected focusing. (Note that the refracted phase velocityfor
an anisotropic medium still has a positive refraction.)

A lot of work has been done in anisotropic metamaterials,
both experimentally15,18 and theoretically.13,14,16,17,19,20,21,22,23

Liu and Zhang23 derived the hyperbolic dispersion only the-
oretically in the Maxwell-Garnett approximation. Although
they showed negative refraction and pseudo focusing in nu-
merical simulations, they did not obtain the actual dispersion
relation from the realistic simulated metamaterial nor didthey
demonstrate the effective medium behavior from realistic sim-
ulations. There is a need to demonstrate that the hyperbolic
dispersion survives all the way up to the evanescent waves,
which is essential for potential super-resolution. Silveirinha et
al.,16 apart from analytical calculations, also did not demon-
strate the hyperbolic dispersion of the simulated metamaterial.

http://arxiv.org/abs/0907.1112v1
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They only showed the near-field imaging (channeling), which
occurs for the special case of a very flat dispersion. Yao et al.18

did experimental work (negative refraction for small angles
only and no dispersion relation was obtained from the experi-
ments), and Wangberg et al.17 presented analytical work based
on the Maxwell-Garnett approximation. Most of the previous
theoretical and numerical work on anisotropic metamaterials
is done on homogeneous materials, where the hyperbolic dis-
persion relation given by Eq. (1) is used.

In this paper, we use realistic simulations for three-
dimensional (3D) wire media and metal-dielectric superlat-
tices to establish directly that the hyperbolic dispersionrela-
tion is valid up to evanescent modes in the long-wavelength
limit and then retrieve the effective permittivity. A fitting pro-
cedure is exploited to get the dispersion relation from the field
distributions obtained from full-wave numerical simulations
of realistic structures. The imaging for a homogeneous slab
with the effective permittivity shows very good agreement
with the realistic structure. (All simulations about this ho-
mogeneous effective anisotropic medium are done by comsol
multiphysics, an electromagnetic (EM) solver based on the fi-
nite element method.) We have three significant contributions
to the field of anisotropic metamaterials: (1) the numerically
obtained dispersion relations, (2) the demonstration of the ef-
fective medium behavior that works with evanescent incident
modes and (3) our unique method to obtain the dispersion re-
lations, different from the usual retrieval procedure based on
inverting the scattering amplitudes.

II. SUPERLATTICE OF METALLIC-AIR LAYERS

Before discussing our results on 3D wire media, simula-
tions are performed for a superlattice of metallic layers with
ε = −4 and air layers withε = 1 as shown in Fig. 1(b). These
simulations are done to check the applicability of our idea that
one can obtain negative refraction and focusing in anisotropic
media. Our simulation results show the existence of negative
refraction in Fig. 2(a) and pseudo-focusing in Fig. 2(c). The
focusing simulation is compared with the ray-tracing diagram
(Fig. 2(b)) and the imaging of a homogeneous anisotropic slab
with the effective permittivity extracted from the dispersion
relation of the metallic-air superlattice (Fig. 2(d)). Theef-
fective parameters forε‖ andε⊥ are obtained by extracting
k from the field distribution of a plane wave incidence inside
the slab and then fitting with the hyperbolic dispersion given
by Eq. (1). The details for obtaining the effective parameters
ε‖ andε⊥ will be discussed below. One can see the pseudo
focusing for the real metallic-air superlattice agrees very well
with the homogeneous medium.

III. OBTAINED NUMERICAL DISPERSION RELATIONS

To check if the wire medium constitutes our desired homo-
geneous effective anisotropic medium, it is straightforward to
obtain its numerical dispersion relation first. For this purpose,
we exploit a fitting procedure to extractk from the phase prop-

(a) (b)

(c) (d)

FIG. 2: (Color online) Material parameters of the metallic layers:
ε = −4, µ = 1; working frequencyf = 0.5 GHz; space period
of metallic layers is 0.06 m; width of metallic layers is 0.02m. (a)
The magnetic field distribution of the group negative refraction in the
metallic-air layers array slab. A Gaussian beam with the transverse
magnetic polarization and an incident angle of30

0 is incident on the
simulated metallic-air superlattice. The white line indicates the ray-
tracing result. (b) A ray-tracing diagram showing that the rays com-
ing from a line source are refocused by an anisotropic mediumslab
with the effective permittivityε tensor of our simulated metallic-air
layers array slab. (c) The magnetic field distribution of thepseudo fo-
cusing of our simulated metallic-plates array slab with a line source
placed 1.25 m from the interface, which launches a cylindrical trans-
verse magnetic polarized wave. The thickness and the width of the
metallic-air layers array slab are 2.4 m and 6 m, respectively. (d)
The magnetic field distribution of the pseudo focusing in a homoge-
neous anisotropic slab with the effective permittivity of our simulated
metallic-air layers array slab (ε‖ = 1.7293, ε⊥ = −0.7907).

agation. In the long wavelength limit, electromagnetic meta-
materials should behave like a homogeneous medium. When a
plane wave incidents on a homogeneous slab with an incident
angleθi, it forms a stationary wave inside the slab instead of a
traveling wave because of the reflections at the two interfaces.
Sincek⊥ represents the field variation in the perpendicular di-
rection, we can take a cross-section along this direction and
analytically obtain the field distribution in the cross-section
by considering the multireflections inside the slab as follows:

F (y) =
A

1− r2 e−2α de2 i k⊥ d

[

e−α (y−y0)ei [k⊥ (y−y0)+θ]

+r eα (y−y0−2d)e−i [k⊥ (y−y0−2d)−θ]

]

. (2)

Here y is the position in the perpendicular direction within
the cross section,F (y) is the field at the positiony, A and
θ are the field amplitude and the field phase, respectively, at
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the starting point of the cross-section in the perpendicular di-
rectiony = y0 (i.e., the location of the first interface of the
slab),α is the decay factor of the homogeneous slab,k⊥ is the
perpendicular component of the wave vectork, d is the thick-
ness of the slab, andr is the reflection coefficient at the two
interfaces.

By fitting the numerically obtained field distribution along
the perpendicular direction in a cross-section with the theo-
retical formulas above, we can obtain thek⊥ inside the wire
medium slab for an incident plane wave with an incident an-
gle, θi. For k‖, we can easily getk‖ = k0 sin θi from the
incident angleθi, sincek‖ is conserved across the interfaces,
wherek0 is the wavevector in the background. Consequently,
we can have the numerical dispersion relation of the wire
medium by obtainingk‖ andk⊥ for different incident angles.

The minimum mean square fit does, in effect, average the
field distribution on length scales small compared to the fitted
effective wavelength. So the effective parameters are obtained
for the averaged macroscopic field. The choice of the cross-
section for the fit is arbitrary, but the results are practically
independent on the location of the cross-section.

IV. 3D ANISOTROPIC WIRE MEDIUM

The first structure for the 3D anisotropic wire medium in
the optical region (Fig. 3 (a)) is a 3D gold-wire square lattice
with the wire radius,r = 16 nm, and the lattice constant,a =
70 nm, in vacuum. Figure 3 (b) shows that the group negative
refraction occurs when a plane wave with the wavelength,λ =
700 nm, and the transverse magnetic polarization, incidents
on our simulated slab with an incident angle of450, while the
phase velocity still undergoes a positive refraction. Pseudo
focusing can also be seen from Fig. 4, where the transverse
magnetic polarized wave with the wavelength,λ = 700 nm,
coming out from a line source, is focused inside the simulated
slab and then refocused on the other side of the slab.

When the geometric parameters, the wire radiusr = 16 nm,
and the lattice constanta = 70 nm, are much smaller than
the vacuum wavelength,λ = 700 nm, of the incident EM
wave, the 3D wire medium can be considered as a homo-
geneous effective medium.25,26,27 The numerical dispersion
relation of this 3D gold-wire square lattice medium is ob-
tained and shown in Fig. 5. The effective permittivities,
ε⊥ = −1.9082 + i 0.2391 andε‖ = 1.4455 + i 0.0044, are
obtained by fitting the numerical dispersion data into the hy-
perbolic dispersion relation (Eq. (1)). The fitted curve (dashed
line) shows that the fitting is pretty good and the simulated
metamaterial does have a hyperbolic dispersion relation.

We have also used the Maxwell-Garnett equations26,27 to
obtain the effectiveε⊥ andε‖ at λ = 700 nm for different
filling ratios for the square lattice of metallic wires. In Fig. 6,
we present the fitted results forε‖ andε⊥ for different radii,
while keeping the lattice constant unchanged. We use the fol-
lowing expressions forε‖ andε⊥ from the Maxwell-Garnett
theory:

ε‖ = εd

[

(1 + f)εm + (1− f)εd
(1− f)εm + (1 + f)εd

]

, (3)

(a)

(b)

FIG. 3: (Color online) (a) Schematic of 3D metallic wires embed-
ded in a dielectric matrix. (b) The magnetic field distribution for
the negative refraction in a 3D gold-wire square-lattice medium with
vacuum background and the wavelengthλ = 700 nm. The incident
plane wave has transverse magnetic polarization and an incident an-
gle of 450. The permittivityε for gold is taken from experimental
data24: ε = −15.5931 + i 1.2734 at λ = 700 nm. The radius, the
length of gold wires, and the lattice constant are16, 1532 and70 nm,
respectively. The white arrow indicates the direction of power flow.

ε⊥ = fεm + (1 − f)εd, (4)

wheref is the filling ratio of the metal, andεm andεd are
the permittivities of metal and dielectric, respectively.Notice
that the effective values ofε⊥ andε‖ agree reasonably well
with our fitting procedure. This is due to the effect that the
vacuum wavelength,λ = 700 nm, is much larger than the
lattice constant and the radius of the metallic wires. In other
cases, the effective parameters given by Eqs. (3) and (4) do
not agree with our fitting procedure.

For comparison, we replace this 3D gold-wire square lat-
tice medium slab with a homogeneous anisotropic slab with
the fitted effective parametersε‖ = 1.4455 + i 0.0044 and
ε⊥ = −1.9082+i 0.2391. (All other parameters are the same,
such as the thickness and the width of the slab, the source and
the distance between the source and the first interface, etc.)
The simulation results for the magnetic field distribution and
magnetic field intensity are shown in Fig. 7. One can see that
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FIG. 4: (Color online) The magnetic field distribution of thepseudo
focusing in a 3D gold-wire square-lattice medium with a linesource
placed884 nm away from the interface, which launches a cylindrical
transverse magnetic polarized wave at the wavelengthλ = 700 nm.
The permittivity of gold is the same as in Fig. 3. The background
is vacuum. The radius, length of gold wires, and the lattice constant
are16, 2732 and70 nm, respectively. The white arrow indicates the
direction of power flow.
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FIG. 6: (Color online) The effective permittivityε⊥ andε‖ calcu-
lated from Maxwell-Garnett equations (solid lines) and numerical
simulations (squares) for different wire radii. The simulated medium
is a 3D square lattice silver wire medium in vacuum with the lattice
constanta = 20 nm. The wavelength isλ = 700 nm. The permittiv-
ity of silver atλ = 700 nm isεsilver = −20.4373 + i 1.2863, taken
from experimental data.24

both of them have very good agreements between the homoge-
neous slab and the 3D wire medium. The excellent agreement
proves again that our simulated 3D gold-wire square-lattice
metamaterial indeed behaves as an effective medium, which
has a hyperbolic dispersion relation and our fitting procedure
works very well.

To be experimentally feasible, the second structure we
examine is a hexagonal-lattice structure composed of silver
wires in the alumina background. Figure 8 shows the mag-
netic field distributions along a cross-section perpendicular to
the magnetic field for two different incident angles (00 and
300). For the incident angleθ=300 case (Fig. 8(b)), one can
see that the group velocity (white arrow) undergoes a negative
refraction inside the simulated medium. A substantial decay
in the perpendicular direction for the magnetic field and the
power flow exists for both of these two different incident an-
gles (Figs. 8(a) and 8(b)), since the lossy metallic wires have
a very high filling ratio in this particular wire medium.

By the same fitting procedure, the numerical dispersion re-
lation for the 3D silver-wire hexagonal lattice medium can
also be obtained and is shown in Fig. 9(a). The lowest four
points are used to fit with a hyperbolic dispersion curve and
the effective permittivity tensor isε‖ = 5.3653 + i 0.0708
and ε⊥ = −2.9188 + i 0.4571. One can see the largek‖
points deviate from the fitted curve, even though the lowest
four points are fitted very well. This occurs because we have
a small wavelength/spatial period ratio of around 3.3 in alu-
mina, which causes the breakdown of the homogeneous ef-
fective medium approximation in the largek‖ region.

To extend the “good fitted” region to a largerk‖ range,
where the numerical dispersion points can fit well into a hy-
perbolic dispersion curve, we reduce the hexagonal-lattice
constant and the radius of silver wires to smaller valuesa =



5

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 7: (Color online) (a) The magnetic field distribution ofthe focusing simulation for the simulated 3D gold-wire square lattice anisotropic
medium slab, with the source884 nm away from the first interface. (b) Same as (a), but for a homogeneous anisotropic slab with the fitted
effective parametersε‖ = 1.4455 + i 0.0044 andε⊥ = −1.9082 + i 0.2391. (c) and (d) are the same as (a) and (b), respectively, but forthe
magnetic field intensity distribution. (e) – (h) are the sameas (a) – (d), respectively, except the source is442 nm away from the first interface.
All material parameters are the same as in Fig. 4.

30 nm andr = 12 nm, respectively, while keeping all other
parameters the same as before, so we can have a much higher
wavelength/spatial period ratio of around 13. The fitted nu-
merical dispersion relation is shown in Fig. 9(b). The low-
est ten points, which are propagating modes (i.e.,k‖ ≤ k0,
wherek0 =

√
εω/c and ε is the permittivity of alumina),

are used to fit with a hyperbolic dispersion curve. The ob-
tained effective permittivities areε‖ = 22.1505 + i 1.4693
and ε⊥ = −13.7714 + i 0.6882. If we use Eqs. (3) and
(4), the Maxwell-Garnett effective permittivities are given by
ε‖ = 25.8371 + i 2.0791 andε⊥ = −10.5614 + i 0.7466,
which do not agree well with our fitting parameters. Maxwell-
Garnet equations are an approximation, in particular, known
to fail completely for the usual wire metamaterials in the mi-
crowave regime. Here, we include the comparison of the ef-
fective parameters derived directly from the simulated field
distribution with those in the Maxwell-Garnet approximation
to show that for high frequency (low permittivity) and “thick”
wires the Maxwell-Garnet approximation becomes good and
can be used to guide design. (The reason for this is the dom-
ination of the electron mass over the magnetic effective mass

for the electrons geometrically confined to the wires at near
optical length scales and frequencies.) In Fig. 9(b), one can
also see that the numerical dispersion relation data from our
fitting procedure are fitted very well into a hyperbolic disper-
sion curve, even for those largek‖ points, wherek‖ > k0.
The latter are evanescent modes in air (and even in the alu-
mina background of the wire medium), which are converted
into propagating modes inside the slab and only attenuated by
the losses of the effective medium. These modes preserve the
information contained in the high spatial frequencies across
the anisotropic slab and are essential for super-resolution ap-
plications.

V. CONCLUSIONS

We present two anisotropic metamaterials that demonstrate
negative refraction and focusing. The first system is a super-
lattice of the metal-dielectric structure and the second system
is (3D) metallic wires embedded in a dielectric matrix. We
first obtain the numerical dispersion relation for the two cases
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(a) (b)

FIG. 8: (Color online) The magnetic field distribution in a 3Dsilver-
wire hexagonal lattice medium slab with the alumina background.
The incident plane wave has the transverse magnetic polarization and
the wavelength in vacuumλ = 700 nm. (a) Normal incidence. (b)
At an incident angle of300. The white arrow indicates the direction
of power flow. The hexagonal lattice constanta, the radiusr, and the
lengthl of silver wires are120 nm,30 nm and1700 nm, respectively.
The permittivities of silver and alumina at the wavelength in vacuum
λ = 700 nm areεsilver = −20.4373 + i 1.2863 andεAl2O3

= 3.1,
respectively, taken from experimental data.24

by simulating the eigenmodes of the realistic system. The hy-
perbolic dispersion relation is obeyed in both cases, wherethe
effective permittivities have opposite signs in the two propa-
gation directions. Our simulations of the realistic structures,
as well as the homogeneous simulations, show the negative
refraction for all incident angles and demonstrate the focus-
ing. The metallic nanowires can be valid for the evanescent
modes in the dielectric background by having a large wave-
length/spatial period ratio, which has important applications
in super-resolution.

In conclusion, we numerically demonstrate that a homoge-
neous effective indefinite anisotropic medium can be realized
by a 3D nanowire medium at the optical frequency region,
which can have a negative refraction and pseudo focusing. We
also present a nice fitting procedure by which we can obtain
the numerical dispersion relation of our 3D wire medium and
then retrieve its effective permittivity tensor. Meanwhile, we
demonstrate that the hyperbolic dispersion relation of the3D
nanowire medium can be valid for the evanescent modes in the
background by having a large wavelength/spatial period ratio

(i.e., in the long wavelength limit), which may have important
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FIG. 9: (Color online) The numerical dispersion (solid circles) and
the fitted dispersion curve (dashed line) of 3D silver-wire hexagonal-
lattice media in the alumina background. (a) The lattice constant
a = 120 nm and the radius of silver wiresr = 30 nm. (b) The lattice
constanta = 30 nm and the radius of silver wiresr = 12 nm. k‖ ≤
k0 corresponds to the propagating modes in the background, while
k‖ > k0 corresponds to the evanescent modes. All other parameters
are the same as in Fig. 8. Note that allk components are normalized
by k0, wherek0 =

√
εω/c andε is the permittivity of alumina.

applications in super-resolution.
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