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An equilibrium phase diagram for the shape of compressively strained free-hanging films is 
developed by total strain energy minimization. For small strain gradients Δε, the film 
wrinkles, while for sufficiently large Δε, a phase transition from wrinkling to bending occurs. 
We consider competing relaxation mechanisms for free-hanging films, which have rolled up 
into tube structures, and we provide an upper limit for the maximum achievable number of 
tube rotations. 
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A thin solid film, subject to compressive strain, can either bend [1-2] or wrinkle [3-5], if 

fixed at one end and free otherwise. Whether the film bends or wrinkles sensitively depends 

on the built-in strain gradient across the film thickness. Intuitively speaking, if the strain 

gradient is large, the film bends into a curved structure, whereas for a small or zero strain 

gradient the film forms wrinkles. Interestingly, the competing mechanisms of wrinkling and 

bending, as the strain gradient inside the film changes have not been quantified so far. This 

circumstance is even more surprising since a variety of fundamental investigations as well as 

applications based on bent [1-2,6] and wrinkled [3-5,7-8] films have been put forward. The 

roll-up of a strained film into a cylindrical geometry seems particularly appealing [9-10], 

since size, orientation and number of rotations of a micro- or nanotube become well-

controlled and predictable entities. These virtues have led to exciting perspectives both in 

fundamental research [11-15] and also with respect to applications [16-19].  
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In this Letter, we perform an energetic comparison between bent/rolled and wrinkled 

films, and we generate a quantitative a priori phase diagram for the formation of bent and 

wrinkled structures. Based on these two competing strain relaxation pathways, we are able to 

provide an upper fundamental limit for the number of film rotations as the free-hanging film 

progressively increases in length. 

Figure 1(a) shows a schematic illustration of a partially released bilayer film, consisting 

of two layers with thicknesses 1d  and 2d , which are subject to biaxial strain 1ε  and 2ε , 

respectively. The film is free-hanging over a distance h, and is in an unrelaxed strained state 

over the whole length L. Experimentally, the free-hanging film can be fabricated by 

selectively etching away a sacrificial layer (as indicated in the figure) [3,9-10], but other 

procedures to create free hanging films are also possible  [4]. The released portion of the film 

is free to elastically relax, constrained only by the fixed boundary where the film attaches to 

the substrate/sacrificial layer. The unreleased part of the film is still firmly bonded to the 

substrate/sacrificial layer. The layers are assumed to have equal isotropic linear elastic 

properties with Young’s modulus Y  and Poisson’s ratio ν . The average strain and strain 

gradient of the bilayer are defined as 1 1 2 2 1 2( ) /( )d d d dε ε ε= + +  and 2 1ε ε εΔ = −  respectively. 

The initial elastic energy (given per unit area) of the film is ( )2 2
0 1 1 2 2 (1 )E Y d dε ε ν= + − . 

We consider the initial stage of strain relaxation for the case 0εΔ >  in Fig. 1(b). The 

film bends and adapts a uniform inner radius R . The energy calculation is performed in a 

cylindrical coordinate system ( ),  ,  x t r  with the origin at the outer surface of the bent film in 

Fig. 1(b). We adopt the approach from Ref. [20]  to estimate the equilibrium radius and elastic 

energy of a film subject to a certain strain gradient.  Since the film is still firmly attached to 

the sacrificial layer, and we assume L R , there is no relaxation in the x direction [21] 
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(plane strain condition in x ). Therefore ,   1,2xi i iε ε= =  for layer no. 1 and no. 2, 

respectively. 

In the tangential direction, the strain can relax by bending and the final tangential strain 

can be written as ( )ti i bc r r Rε ε= + − − , where c  is a uniform strain and br  indicates the 

location of the neutral plane, where the bending strain component is equal to zero. Since the 

layers are thin, the stress through their thickness in the radial direction has to be zero ( 0rσ = ) 

at equilibrium [22], implying by Hooke’s law for the strain in the radial direction 

( ) (1 )ri ti xiε ν ε ε ν= − + − . From the condition of zero total bending force on the film we derive 

2 (1 ) 2br d δ= + , with 1 2d dδ = . 

The total elastic energy of the bent film bentE  is calculated by integrating the elastic strain 

energy density from the outer to the inner film surface. By minimizing the energy with respect 

to the remaining unknown parameters c and R, we obtain the equilibrium uniform strain 

1 2( ) (1 )eqc η δε ε δ= − + +  and the equilibrium tube radius 2 (6 )eqR dρ η εδ= Δ , where 

3(1 )ρ δ= +  and 1η ν= + . Subsequently, eqR  and eqc  are used to calculate the equilibrium 

minimum elastic energy of the rolled structure ( , )bent eq eqE R c . This value is normalized to 0E  

and will be later compared with the wrinkle energy.  

Throughout the article, we consider a typical bilayer consisting of 10 nm 0.1 0.9In Ga As  

with 1 0.71%ε = −  and 10 nm GaAs with 2 0%ε = , and equal 80 GPaY = , 0.31ν = . For this 

case, the equilibrium radius and minimum energy are 1.4 μmeqR ≈  and 00.43E , respectively. 

For the calculation of the elastic energy of the wrinkled structure, we extend a previous 

formulation of a single layer [5] to the bilayer film. We parameterize the vertical deflection of 

the wrinkle as ( , ) ( )cos( )x y Af y kxζ = , where A  is the maximum amplitude of the wrinkle at 

the free end [see Fig. 1(c)], 2 /k π λ=  is the wrinkle wavenumber in the x  direction ( λ  is 
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wavelength of the wrinkle) and [ ]( ) 1-cos( / ) 2f y y hπ= . The fixed boundary forces the left 

side of the wrinkle to be clamped, i.e. ( ,0) 0xζ = , , ( ,0) 0y xζ = , where the partial derivative is 

denoted by a comma, and this is satisfied naturally by our choice of ζ . The strain ( )i
αβε  and 

stress ( )i
αβσ  are defined according to the large deflection (Föppl–von Kármán) plate theory 

[22], where , ,x yα β = . The in-plane displacement xu  is approximated by modifying the 

result of the in-plane equilibrium for our shape [23], ( )[ ]28 ( ) sin(2 )xu k Af y kx= . The film is 

free to move in y , so we take yu yγ=  (neglecting an x dependence) with parameter γ , 

denoting the magnitude of relaxation in the y  direction. The total wrinkle elastic energy wE  

can be decoupled [22] into a stretching energy SE  and a bending energy BE  (modified for the 

bilayer system [24]). The wrinkle energy wE  is averaged over one wavelength, L λ= , and is 

numerically minimized with respect to A , λ  and γ . This minimum of the total energy is 

equivalent to the mechanical equilibrium within Föppl–von Kármán theory [22]. The 

interplay between the stretching and bending energies determines the equilibrium wrinkle 

periodicity and amplitude.  

The wrinkle energy as a function of wrinkle length for our structure is given in Fig. 1(d). 

Below a critical length [25], referred to as the “critical wrinkle length” 22.57cwh d ε≈ −  

[26], energy minimization provides only a trivial minimum [4,27] of the wrinkle energy with 

A = 0 and λ → ∞ . This corresponds to the “planar” relaxation in the y  direction only 

[dashed line in Fig. 1(d)]. For our typical structure, the obtained value of cwh  is about 450 nm 

and the planar energy 00.68E . Beyond cwh , wrinkling can occur with nonzero amplitude and 

energy lower than the planar value. For very large wrinkles, the normalized wrinkle energy 

0wE E  reaches an asymptotic value 00.60E . The amplitude and wavelength of wrinkles are 
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plotted in Fig. 1(e) and scale as 0.65 0.05~ h ±  in the range (1 100) μmh = − , similar to the 

previously reported scaling for the same structure [5] and slightly different from the 0.5h  

reported for the general wrinkling phenomena [28].  

The preferable shape of the free-hanging film of length h  is determined by comparing 

the normalized energy of the bent ( , )bent eq eqE R c  and wrinkle ( , , )wE A λ γ  shapes. For our 

typical structure, the energy of the wrinkle [ 00.60E to 00.68E , see Fig. 1(e)] is always larger 

than the energy of the bent structure ( 00.43E ).  

To extend our considerations, we systematically change 1 ε  and 2 ε  and calculate the 

favourable shapes as a function of h and strain gradient, as shown in the phase diagram, Fig. 

2. The strain gradient εΔ  and etching depth h  are varied, while we fix the average strain to 

the value of our typical structure ( 0.36%ε = − ). The boundary between these two shapes is 

shown as a solid line in Fig.2. For example, for 0.20%εΔ =  and 0.36%ε = − , bending will 

be favored only until h  is increased to 700 nm≈ . Beyond this length, the wrinkle becomes 

favorable geometry as it acquires lower energy than the bent structure. If we consider higher 

average strain, for example 1.0%ε = −  (dashed boundary in Fig. 2), the phase boundary curve 

moves upward and the wrinkling region is enlarged. 

We can use our model to estimate the maximum number of rotations maxN  for a film 

released from the substrate by progressive underetching [9-10]. Consider the tube, which has 

already rolled up over some rotations with non-interacting windings. The tube radius linearly 

increases with the number of rotations N  (continuous variable) as 1 2( )N eqR R N d d= + + . We 

consider an additional portion of the released layer of length H as outlined in Fig. 3(a). The 

film has two pathways to relax. Either the film continues to roll up with radius NR  [Fig. 3(b)] 

or forms wrinkles [Figs. 3(c) and (d)]. These two processes are energetically compared to 

calculate the maximum number of rotations. 
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When the film of length H is rolled onto the tube with outer radius eqR R> , the energy 

stored in the layer increases as the radius increases. For infinite radius the energy approaches 

the value of a planar relaxed film. The energy of a rolled up film as a function of its radius is 

given in the inset of Fig. 4. 

For the energy of the wrinkled film, the previous formulation needs to be slightly 

modified. The right wrinkle/tube boundary (TB) has to be smoothly linked to the tube, i.e. 

( , ) 0x Hζ = and , ( , ) 0y x Hζ = , see Fig. 3 (c). As before, the total wrinkle energy will be 

compared with the minimum elastic energy of the rolled up structure.  For this wrinkle shape, 

the critical wrinkling length is doubled, 2cw cwH h= . 

The maximum radius of the outer tube rotation maxNR R=  is reached when the wrinkle 

energy of the free standing film becomes lower than the roll-up energy (see typical energy 

comparison in the inset of Fig. 4). For this comparison we take 3 cwH H= , since for this 

length the strain energy is largely relaxed compared to the planar value (see Fig. 1 (d) for 

wrinkle with half size domain 3 cwh h= ).   

The maximum number of rotations is determined by the relation 

max max 1 2( ) ( )eqN R R d d= − + . For our typical structure we obtain max 510N ≈ , point B in Fig. 

4. For a broad range of strains, the maximum numbers of tube rotations are shown in Fig. 4. 

Rolled up films with less than one rotation are obtained for ε εΔ < − , otherwise maxN  

increases rapidly when the magnitude of average strain is decreased towards zero for non-zero 

εΔ . 

We note that (1) altering our assumption on the wrinkle shape (e.g. from trigonometric to 

polynomial function) and varying elastic constants within realistic values do not qualitatively 

change our results. (2) Our theory is valid for asymmetric bilayers as well, but the phase 

diagram and the maximum number of rotations will be quantitatively modified. (3) For tensile 
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average strain 0ε > , no physical minimum of wrinkling energy exists for our model, 

consistent with observations of wrinkles only for compressive strains near the fixed boundary 

[3-5,28]. (4) In typical experiments the layer is partially released by selectively etching away 

a sacrificial buffer layer [3,9-10]. If the amplitude of the wrinkle becomes too large, the film 

may touch the substrate. In this case our model does not apply, because the film-substrate 

interaction energies might be larger than the elastic energy relaxation through bending and/or 

wrinkling. The same applies for 0εΔ < , where the film rolls downwards towards the 

substrate surface [29].  

For the estimation of the maximum number of tube rotations, we assume non- or only 

weakly interacting windings. If the windings are tightly bonded together, the infinitesimally 

small incremental increase in H during roll-up does not allow a sufficient length for wrinkling 

and thus the number of rotations is not limited within the framework of our model. Both 

cases, tightly bonded [12, 18] and non- or weakly interacting windings [30], have been 

reported in the literature. The number of rotations might be influenced by certain process 

parameters such as finite fluid flow during underetching. In this way the maximum number of 

rotations might be increased if the fluid flow is applied along the roll-up direction. For short 

films, i.e. L R , wrinkling might not occur due to the full relaxation in this direction (plane 

stress) [20]. As a result, there is no limit of the number of rotations within the framework of 

our model. Considering H  much larger than 3 cwH  (which approaches the saturation wrinkle 

energy) will lead to a decrease of maxN  on the order of  10%. 

Systematic experimental data to explore the maximum number of tube rotations are 

missing. The maximum reported values maxN  for 0.33 0.67In Ga As GaAs  are 30-40 rotations 

[7,31], about one order of magnitude below our prediction max 250N ≈  for this system. This 

might be due to specific processing parameters present in experiments, for instance a 

misalignment of the rolling direction from the y  axis, an inhomogeneous etching front and 
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loose rotations [7]. Therefore, the maximum experimentally obtained number of rotations 

have always been lower than our theoretical estimate.  

The phase diagram  in Fig. 2 and the estimations of the number of tube rotations in Fig.4 

can be used as a predictive tool for the deliberate design of rolled up/wrinkled structures. Our 

theory is not restricted to any material and can be easily extended to multilayer systems. 

In conclusion, we have performed an energetic comparison between the bending and 

wrinkling of compressively strained free-hanging films, and we have drawn the phase 

diagram for the preferential shape of the film as a function of length, average strain and strain 

gradient. We have applied our theory to estimate the maximum number of tube rotations 

during a roll-up process. We are aware of the limitations of our model, which we have 

carefully discussed and taken into account for all interpretations. Our considerations provide 

the theoretical framework to fundamentally understand bending and wrinkling of free-hanging 

films attached to one fixed boundary. Since such layers have gained substantial relevance for 

applications, our work is of practical interest for many materials and material combinations as 

well as for different geometries and length scales. 
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FIGURE CAPTIONS 
 
FIG. 1. (Color online) Schematics of (a) free-hanging bilayer film, (b) bent film with inner 
radius R  and (c) wrinkled structure with deflection profile ( , )x yζ , amplitude A  and 
wavelength λ . (d) Wrinkle energy (solid line) and energy of planar relaxation (dashed line) 
as a function of h . (e) Wrinkle wavelength (solid line, left axis) and amplitude (dashed line, 
right axis) as function of wrinkle length h . Vertical dot-dashed line marks the critical wrinkle 
length cwh . 
 
FIG. 2. (Color online) Phase diagram of favorable film shapes based on the energetic 
comparison between bent and wrinkled structures. Solid curve shows the boundary between 
bent and wrinkled shapes for our typical structure. eqR  is shown for the bent structure and 
wavelength λ  for the wrinkled structure. Dashed curve shows the phase boundary curve for 

1.0%ε = − . 
 
FIG. 3. (Color online) Schematic illustration of the mechanism, which ceases the roll-up 
process. (a) A strip of length H can (b) roll onto the outer part of the tube or (c) wrinkle, 
depending on the final energy of the system. (d) Assumed 3D wrinkle profile between fixed 
boundary (left) and tube boundary (TB, right). 
 
FIG. 4. (Color online) Contour of the maximum number of tube rotations maxN  as a function 
of average strain and strain gradient for the considered wrinkle length 3 cwH H= . The inset 
shows a comparison between the strain energies of roll-up and wrinkling for 1.0%ε = −  and 

2.0%εΔ =  (point A in the diagram). Point B denotes our typical strain combination as 
specified in the text. The dashed line denotes typical strain combinations for bilayers, where 
only one layer is compressively strained initially. 
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