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We study the effect of the edge disorder on the conductance of the graphene nanoribbons (GNRs).
We find that only very modest edge disorder is sufficient to induce the conduction energy gap in
the otherwise metallic GNRs and to lift any difference in the conductance between nanoribbons
of different edge geometry. We relate the formation of the conduction gap to the pronounced edge
disorder induced Anderson-type localization which leads to the strongly enhanced density of states at
the edges, formation of surface-like states and to blocking of conductive paths through the ribbons.
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Introduction. The discovery of single layer graphene
sheets@] has generated both surprise and interest over
the past few years. Surprise because pure two-
dimensional sheets were for a long time thought to
be thermodynamically unstableﬂz]. Interest because
graphene shows some extraordinary properties. Its
charge carriers mimic relativistic particles and can be
described by the Dirac equationﬂ, 3, @] Furthermore it
has shown a high mobility both at room temperature and
at a high degree of dopingﬂﬂ]. The latter makes graphene
nano ribbons (GNRs) a strong candidate for building
blocks in future electronic devicesﬂa, B] However, one
problem GNR-electronics faces is the absence of the en-
ergy gap which makes it difficult to control electronic and
transport properties of the graphene-based devices. This
problem can be addressed by making sufficiently narrow
GNR:s and thereby augment the energy gap. The tight-
binding calculations (or solutions of the Dirac’s equation
based on them) indicate that the width of the gap de-
pends sensitively on the geometry of edges and the width
of the nanoribbons|g, [9].

The fundamental question of band gap engineering in
graphene nanoribbons has been recently addressed in sev-
eral experimental studiesﬂ, , ] whose results have
been strikingly different from the expectations based on
the models for ideal GNRs. In particular, the conduc-
tance of the GNR did not exhibit the metallic behav-
ior expected for the ideal zigzag ribbons. Moreover,
the experiment did not show any difference between the
armchair and zigzag GNRs. It is clear that the edges
and the confinement are responsible for these observa-
tions, but no consensus has been reached yet on the
origin of this remarkable behavior. The factors that
might lead to this behavior include scattering on rough
boundariesﬂ, , , , , ], imperfections on the
atomic scale[d], impurity scattering[16], electron interac-
tion and/or modification of the electronic structure due

to the edge eﬁectsﬂﬂ, ], and even the Coulomb block-
ade eﬁects@]. It should be stressed however that be-
cause of computation limitations most of the reported
theoretical studies such as the calculations of the mo-
bility edgeﬂﬁ], conductance calculations addressing the
effect of the edge disorderﬂﬁ, , ], as well as the DFT-
based electronic structure calculations[17, [1§] (predicting
the gap opening in otherwise semiconducting ribbons)
are performed for narrow GNRs where the widths are far
from the range of widths of nanoribbons studied exper-
imentally (such as those of Refll(). Because any edge
effect is far stronger for a narrow ribbon it is not always
clear how modeling in narrow ribbons and experiments
in wide ribbons relate to each other.

In this paper we present a systematic study of the con-
ductance of realistic edge-disordered GNRs whose dimen-
sions are similar to those studied experimentallyﬂ, ,
]. Our calculations are in excellent qualitative agree-
ment with all the finding reported by Han et al. HE] We
find that only very modest edge disorder is needed to in-
duce the energy gap in the otherwise metallic GNRs and
to lift any difference in the conductance between nanorib-
bons of different edge geometry. We relate the formation
of the conduction gap to the pronounced Anderson-type
localization which is induced by edge disorder and leads
to the strongly enhanced density of states at the edges
and to blocking of the conductive channels through the
ribbons.

Model. We describe graphene nanoribbons by the stan-
dard tight-binding Hamiltonian on a honeycomb lattice,

H= Z Veata, — Ztr,r/a;rar', (1)

rr!

where V. is the external potential at the site  and ¢, ,» =
2.7 €V is the overlap integral between neighboring sites
r and r’. The summation of 7 runs over the entire GNR
lattice while " is restricted to the sites next to r. We
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calculate the conductance of the GNRs on the basis of
the standard Landauer formalism. The GNR is divided
into a central region with the edge disorder of the length
L the width W and connected to two semi-infinite leads
(represented by ideal ribbons of the same width W) from
which electrons are injected. On the edge of the GNR
we model atoms missing from the lattice by setting the
appropriate hopping elements ¢, ,» to zero. For the case
of the armchair GNRs sites are removed in the outermost
(edge) row with the probability p (see inset in Fig. [ for
illustration). For the case of the zigzag GNRs (which are
less sensitive to edge disorder), one more site (next to
the already missing one on the edge) is removed in the
next row with the probability p’. Note that a particular
choice of disorder on the edge is not very important, see
Fig. Bl below and the related discussion. As graphene
is known to have few crystal defects in generalﬂa] we do
not remove sites inside the GNRs. We also disregard the
effect of capturing of H-atoms by the dangling bonds at
the edge which is shown to be of a minor importance for
the ribbons wider than a few nanometers.[17, [1§].

The conductance is calculated on the
basis  of the Landauer  formula, G =
—262/hdeT(E)w,where frp is the Fermi-
Dirac function. To compute the transmission coefficient
T(E) we rely on our recent implementation of the
recursive Green’s function technique for GNRs ﬂﬁ]
In contrast to other existing implementations, this
method does not require self-consistent calculations of
the surface Greens function, which makes it far more
efficient in comparison to other methods and allows
studying GNRs of realistic dimensions.

Results and Discussion. Figure [I] shows the conduc-
tance of the armchair GNRs of varying lengths (L =
24,500, 1000nm) and widths (W = 24,50, 74nm) for two
representative edge disorders p = 5% and 30%. The rib-
bon widths are nominally identical to those studied by
Han et al.[10] (where the length was L ~ 1um). Fig-
ure [II (a) shows the conductance of the shortest and the
most narrow ribbon, 24 x 24nm. Although no clear en-
ergy gap is present, the conductance is strongly affected
at all degrees of disorder in comparison to the case of
ideal GNRs. In wider ribbons of the same length, Fig.
[(b),(c), the conductance increases more steeply which is
a direct consequence of increase of the number of prop-
agating modes in the GNR of larger width. For longer
ribbons, L 2 0.2um, the energy gap comparable to the
energy interval for the lowest propagating mode opens up
in the conductance. Outside the energy gap the conduc-
tance is significantly damped compared to the ribbons
without disorder. Notably, the energy gap in the vicin-
ity of the Dirac point, and the conductance outside the
Dirac point are practically saturated for the edge disorder
as low as p = 2 — 5% and they change linearly as L in-
creases. Qualitatively the same conductance (not shown
here) is obtained for the zigzag GNRs with the disorder
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FIG. 1: (color online) (a)-(i) Conductance through armchair-
GNR with edge disorder and length/width as indicated in the
figure. The top inset illustrates the disordered edge with p =
5%. (j) Average conductance in the energy interval —0.061¢ <
E < —0.049t versus ribbon width for L = 1um armchair
GNRs with p=5% and 30%. (k) E,., versus ribbon width
for the same armchair GNRs as in (j). The solid lines in
(j), (k) represent a fit as described in the text. We define
the energy gap Egap as the interval where G < 1073 x 2e%/h
(which is consistent with the corresponding definition in ‘j])
Temperature 7' = 0.

strength p = 30%, p’ = 50%.

In order to shed a light on the origin of the conduc-
tion gap we study the local density of states (LDOS)
in the GNRs. Figure 2 (a) shows the LDOS in an in-
finite ribbon (with leads) of the width of W = 24 nm
and the length of the disordered region L = 150 nm (de-
fect concentration p = 1%) for the energy E = —0.02¢.
[For the shown disorder configuration and concentration,
the transmission of the GNR is 7" =~ 0.1, which means
that there is a conductive path that allows electron to
pass through the ribbon from the left to the right lead].
The LDOS shows the Anderson-type localization with a
strongly enhanced intensity near the defects at the rib-
bon edges (note the logarithmic scale of the plots!). A
closer zoom demonstrates that in the direct vicinity of
the defects the magnitude of the LDOS exceeds its value
in the leads by ~ 5 — 6 orders of magnitude (see inset on
the top). The overall pattern of the LDOS shows hills
(large LDOS) and canyons (low LDOS) whose locations
are clearly correlated with the position of the disorders at
the edges. With further increase of the edge disorder con-
centration, a surface-like state with the enhanced density
forms over the entire edge of the ribbon. When the edge



FIG. 2: (color online) The local density of states in a represen-
tative part of the edge-disordered region of infinite armchair
nanoribbon (with leads) [note the logarithmic scale!]. The to-
tal width of the disordered region L = 150nm, F = —0.02¢.
The defect concentration (a) p = 1% (b) and (¢) p = 5%.
(a),(b) W = 24nm; (c) W = 74nm.

disorder concentration increases the canyons deepen and
widen and get extended over the whole width of the rib-
bon blocking the conductive pathes. This is illustrated
in Fig. @I (b) for a ribbon with the defect concentration
p = 5% (transmission T ~ 107° x 2¢2/h ) where such a
canyon (dark blue area) is clearly seen.

When the width of the ribbon increases the strong en-
hancement of the LDOS near the edges remains practi-
cally unaffected. This is illustrated in Fig. [2(c), showing
a wider ribbon of W = 74 nm with p = 5%. However
the disorder induced LDOS variations do not any longer
extend over the entire width of the ribbon leaving a wide
transmission path for electrons open. This explains the
absence of the conduction gap in the wider ribbons. Note
that calculated transmission in this case is T ~ 2.5 (with
5 propagating states in the leads).

Let us now compare quantitatively the results of our
modelling to the corresponding experimental data of Han
et al. @] The measured conductance has been shown to

scale linearly with the GNR width, G = UW_LWO ,with
o~ 1.7 mS and W° = 15 nm. Our fit gives the same
linear dependence with close values of 0 ~ 5.2 mS and
WY ~ 27 nm, see Fig. 3(j). The experimental energy
gap is shown to scale as Eyq, (W) = %= with a = 0.2
eVnm and W* = 16 nm. Our fit gives the linear scal-
ing with o = 2.1 eVnm and W* = 11 nm (Fig. 3(k)).
The experimentally extracted width W* ~ W° was inter-
preted as an inactive edge width of GNR. The width of

the disorder region in our calculation is just one atomic
row such that nominally inactive edge width is just a
fraction of a nanometer. However, as shown above, the
disorder-induced localization leads to the strong enhance-
ment of the electron density in the surface-like states not
participating in the transport. Their width on each side
of the ribbon is [;,. ~ 5 — 10 nm which is consistent with
calculated values of W* W% ~ 2[;,.. We therefore spec-
ulate that both W* and WY can indeed be interpreted
as inactive edges, whose width is however determined by
the extent of the disorder induced localized surface-type
states.

Our value for the energy gap is about of factor of ~ 10
larger than the experimentally extracted one. One of
the reasons for this difference can be attributed to the
phase breaking effects that would suppress localization
of electrons. Recent experiments indicate that the phase
coherence length in graphene /g ~ 3 — 5um@0.25K and
~ 1pm@1K. It is therefore reasonably to expect that in
the measurements of Han et al. (performed at T > 1.7K)
ly is smaller than the device length (L ~ 1 pm), such
that the inelastic processes may play an important role
in formation/suppression of the gap. In real ribbons the
energy gap in the conductance might be due both to
modification of the electronic structure caused by edges
(as the DFT calculations show([17, [1§]) as well as due
to Anderson-type localization as discussed above. The
later is expected to depend on the coherent length (and
thus to be temperature sensitive when Iy < L), whereas
the former is practically not affected by the tempera-
ture. Thus, experimental study of the conduction gap in
the mK range (i.e. exploring the transitions between the
regimes [y > L and l, < L) might shed more light on
the origin of the gap. Another factor that might strongly
affect the gap formation is the electron interaction. In-
deed, because the LDOS is enhanced by many orders of
magnitude near the edge imperfections, it is reasonable
to expect that the Hartree potential would contribute sig-
nificantly to the total confining potential and thus affect
the conduction gap. We therefore hope that our results
will motivate further studies of electron interaction and
phase breaking effects in realistic GNRs.

All the results presented above correspond to zero tem-
perature. We also performed calculations in the tem-
perature range 0-200K which, as expected, show gradual
suppression of the gap as temperature raises. The energy
broadening at 200K is roughly the same as the energy gap
for the 24nm-wide ribbon and hence at this temperature
the gap disappears due to the temperature averaging.

In real samples fabricated by etching techniques a vari-
ation of the ribbon width near the edges is expected to
be much larger in comparison to the model used above,
of the order of at least several nanometersﬂ, ] Figure
shows the conductance of the armchair GNR with the
boundary modelled as a superposition of Lorentzians (see
inset for illustration of a typical edge). We focus on the
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FIG. 3: (color online) Conductance for a W = 24nm wide
armchair GNR with extended edge disorder as shown in the
inset; L = 1um. The legend indicates the minimum width of
the ribbon. Each transmission curve is averaged over a set
of edge contour configuration with the same minimum width.
Red solid curve is averaged transmission for a ribbon with
impurities in the outermost row only. Temperature 7" = 0.

lpm long and 24nm wide armchair GNR with the edge
of the narrowest constriction of 18nm and 22nm. For
the ribbons with the largest width variation the over-
all conductance is somehow suppressed and the energy
gap increases. However, even though the conductance is
apparently more strongly affected for the ribbons with
larger width variation, the conductance of the GNRs for
different models of a disordered edge is qualitatively very
similar. We therefore expect that the utilized model of
the imperfect edge (with missing atoms in the outermost
row) already captures all the essential physics of realistic
GNRs.

It is important to stress that in the striking contrast to
the GNRs, the Anderson-type localization near the edges
is absent in conventional heterostructure semiconductor
wires because their edges are smooth on an atomic scale.
It should be also noted that the strong enhancement of
the LDOS near defects at the edges and formation of the
surface-like state for sufficiently high disorder concentra-
tion can be detected with the help of STM [24].

Recently an alternative explanation of the energy gap
in GNR:s based on the assumption of the Coulomb block-
aded (CB) transport regime in GNR has been suggested
by Sols et al. @] While we do not challenge their the-
ory as such, our findings indicate that bare presence of
a slightly disordered edge (much weaker that it would
be required for the CB regime) is already sufficient to
explain the gap formation.

Finally, we also performed conductance calculations
studying the effect of charged impurities which is be-
lieved to be the main mechanism of scattering in the bulk
graphene, ] We model them by adding randomly

the onsite potential V; = ﬁ |, where €, = 5 and

ee =1.42A is the carbon-carbon atom distance. For real-
istic impurity densities n ~ 1x10'%m? and strength V; ~

4

0.3eV ﬂﬁ, @] we find that the conductance remains prac-
tically unaffected, which rules out the charged impurities
as the origin of the energy gap formation in the GNR.

Conclusion. We study the effect of the edge disorder
on the conductance on the GNRs and find that even a
very modest defect concentration causes a strong An-
derson type localization at the edges giving rise to the
conduction gap in accordance to recent experiments.
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