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We theoretically investigate the spontaneous emission process of an optical, dipolar 

emitter in metal-dielectric-metal slab and slot waveguide structures. We find that both structures 

exhibit strong off-resonant emission enhancements due to the tight confinement of modes 

between two metallic plates. The large enhancement of surface plasmon-polariton excitation 

enables dipole emission to be preferentially coupled into plasmon waveguide modes. These 

structures find applications in creating nanoscale local light sources or in generating guided 

single plasmons in integrated optical circuits. 

 

Understanding the interactions between single emitters and surrounding electromagnetic 

fields has been of great importance for both fundamental studies and device applications. 

Coherent interactions between atoms and fields provide an ideal test bed for studying 

fundamental aspects of quantum mechanics [1,2], while the large enhancements of spontaneous 

emission (SE) in resonant cavities have enabled more efficient light emitting devices, drastic 

reductions in the threshold of lasers, and high efficiency single photon sources [3,4]. In addition 

to the many studies of sophisticated dielectric cavity and waveguide systems, there have been a 

number of investigations on SE enhancement near simple metallic structures such as metallic 

films [5,6] or nanoparticles [7,8]. These structures exploit the large density of states at the 

surface plasmon resonance frequency to achieve large emission enhancements. However, these 



resonant enhancements are limited by the narrow bandwidth and large metal losses around the 

surface plasmon resonance frequency. 

In this paper, we study the spontaneous emission of a single emitter in metal-dielectric-

metal (MDM) slab (2D) and slot (1D) waveguide structures (Fig. 1) that support bound surface 

plasmon-polariton (SPP) modes over extremely broad wavelength regions [9-11]. Both structures 

are shown to exhibit strong off-resonant emission enhancement due to the tight confinement of 

modes between two metallic plates, resulting in preferential coupling of the dipole emission into 

SPP waveguide modes. In off-resonant regions, propagation lengths of SPP modes become 

longer. Additionally, MDM structures can be reproducibly fabricated and integrated with other 

chip-scale components. Such structures can thus be useful for building efficient on-chip light 

sources for integrated optics. Coupling the emission of single emitters to a well-defined 

waveguide mode may be also useful for generating and guiding single plasmons (or single 

photons) in an optical circuit. 

A MDM slab (Fig. 1(a)) supports one fundamental TM mode (also called the gap SPP 

mode) for sufficiently small gap sizes (~ order of tens of nanometers) [9,10], making it close to 

an ideal 2-dimensional waveguide. Because the electric field inside the gap is primarily directed 

normal to the metal surfaces, we expect that only a dipole oscillating normal to the metal 

surfaces will strongly couple to this mode. The SE enhancement factor  of such a dipole in the 

gap can be obtained by considering the work done on the dipole by its own reflected field [12, 

13]: 

  (1) 

where the indexes 1,2,3 indicate the dielectric and two semi-infinite metal regions. The decay 

rate of a normal dipole ( ) is normalized to that in a uniform background dielectric medium 



( ). Eq. (1) is derived from a plane wave decomposition of the emitted waves and , 

 correspond to their normalized in-plane and out-of-plane wavevectors. The 

Fresnel reflection coefficients ( , ) are multiplied by the corresponding round-trip phase 

changes ( , ). The frequency-dependent dielectric constant of metal is obtained from the 

literature [15-17] and we assume internal quantum efficiency  for the emitter. 

Figure 2 shows the calculated SE enhancement factor as a function of the free-space 

wavelength for a dipole in the center of the gap, where the fields are exactly perpendicular to the 

metal surfaces. In addition to a resonant enhancement peak around 400 nm (which is close to 

surface plasmon resonance wavelength of silver), there is strong off-resonant enhancement 

which increases linearly with wavelength (Fig. 2(a)). For comparison, the SE enhancement factor 

for an emitter spaced by the same distance from a single metal surface is shown as well, which 

clearly lacks such off-resonant enhancement. We also observe that as the gap size decreases, 

both resonant and off-resonant enhancements increase rapidly (Fig. 2(b)). To identify what 

causes these enhancements, a plot of the decay rate density (which is the integrand of Eq. (1)) as 

a function of normalized in-plane wavevector is shown (inset of Fig. 2(c)). We find that decay 

rate density spectra for MDM slabs are dominated by single peaks with wavelength-dependent 

peak locations. By plotting the positions of these peaks along with the gap SPP mode dispersion 

curve, it can be seen that these peaks lie exactly on the curve (Fig. 2(c)). This shows that the SE 

of a dipole inside the MDM slab is dominated by gap SPP excitation. The decay rate density also 

has contributions from broad, large wavevector components, so-called ‘lossy surface waves’ 

(LSW) that originate from intrinsic metal losses [13,14]. By integrating the relevant wavevector 

regions, we can estimate the fraction of energy coupled into the gap SPP mode among three 

different decay channels: gap SPP, LSW, and the conventional TM waveguide mode. Fig. 2(d) 



shows that gap SPP excitation is the dominant decay channel in a MDM slab for a wide range of 

metal-emitter distances at the considered off-resonant wavelength (  = 800 nm). We also note 

that when the metal-emitter distance becomes larger than ~ 250 nm, the fraction of gap SPP 

excitation decreases due to higher-order TM waveguide modes (which are similar to 

conventional waveguide modes). This behavior is in stark contrast to that observed for an emitter 

near a single metal surface, which exhibits relatively stronger coupling to LSW and free space 

modes. 

To understand the physical origin of the behaviors observed in Fig. 2, we derive a simple 

analytical formula for SE enhancement for a dipole inside the gap of a MDM slab. From Fermi’s 

golden rule, the SE rate of an emitter is given by  where  is 

the coupling strength between the dipole and the electromagnetic field at the emitter position , 

and  is the density of states. Assuming the dipole  is oscillating normal to the metal 

surfaces, the coupling strength is given by , where 

 is a normalization factor. We define the effective mode 

volume as , where  is an arbitrary, in-plane quantization length and  is the 

effective mode length measured across the gap: 

. The density of states can be obtained 

by counting modes in a 2D space, and is given by  where and  

are the phase and group velocity, respectively. By normalizing the SE rate with that in a uniform 

background medium ( ), we arrive at the expression for the SE 

enhancement factor due to the gap SPP excitation: 



 (2) 

Figure 3 shows the calculated enhancement factor  as a function of wavelength. We 

find that Fermi’s golden rule estimation retrieves the result of the analytical solutions well. Near 

the surface plasmon resonance, and  rapidly decrease and thus  exhibits a peak. In the 

off-resonant region, the velocity reductions are small, but the normalized mode length  

decreases steadily with wavelengths due to the tight confinement of modes between the two 

metal plates, giving rise to substantial off-resonant enhancements. This is in contrast to a single 

metal surface which confines the mode tightly only near the surface plasmon resonance 

frequency. As the gap size is decreased, , , and  all decrease, thus giving larger 

enhancements. Finally, we find that this strong gap SPP excitation in MDM slab structures can 

enable it to be the main decay channel even down to very small metal-emitter distances, as 

shown in Fig. 2(d). Eq. (2) also explains the difference between real metal and ideal perfect 

electrical conductor (PEC). The plasmonic response of real metal reduces and , which 

results in larger enhancement than that of PEC MDM (dotted line in Fig. 2(a)). 

Strong SE enhancement can also be achieved with MDM slot structures which are more 

compatible with large scale integration. Recently, it was shown that slot structures (with critical 

dimensions on the order of tens of nanometers) support broadband and highly confined 

plasmonic modes – even into the long IR regime [11,18]. In order to quantify the attainable 

enhancement, we first obtain the eigenmodes of slot waveguides with COMSOL finite element 

simulations (Fig. 1(b)). We find that the mode is tightly confined around the slot and the electric 

field inside the gap is again primarily directed normal to the metal slot surface. Therefore, we 

expect that this slot waveguide structure can also support off-resonant enhancement for a dipole 



oriented normal to the metal surfaces. We derive a similar analytical formula for the SE 

enhancement factor in slot waveguides. The coupling strength is given by the same expression 

, but now we define the effective mode volume as  where  

the effective mode area is . We assume a 

1D density of states . From Fermi’s golden rule, we find the emission 

enhancement due to the slot mode excitation to be: 

  (3) 

From COMSOL finite element simulations, we solved for the group velocity and mode area of 

slot eigenmodes for three different metal film thicknesses (Fig. 4(b)) with a fixed gap size. The 

calculated enhancement factors (Fig. 4(a)) show that the simple slot structures exhibit strong off-

resonant enhancements due to a large mode area reduction. Additionally, we see that as the film 

gets thinner, the enhancement increases due to both group velocity and mode area reductions. 

This large enhancement of slot mode excitation brings up the possibility that slot mode excitation 

can be a dominant emission channel in a MDM slot over other decay channels such as free-space 

radiation, loss to LSW, and SPP excitation (propagating along separate metal plates). 

To verify our estimation, full-field 3D finite-difference time domain (FDTD) calculations 

were used, which include all decay pathways. The enhancement factor can be obtained by 

calculating the power dissipated by a dipole in the center of a MDM slot and in free-space: 

, where  [13]. First, as a validity check, the result of 3D 

FDTD calculations are compared to the analytic case of an infinite thickness slot (i.e. MDM 

slab) (Fig. 5(a)). The FDTD calculation retrieves the analytic results in both resonant and off-



resonant regions, although it is slightly overestimated, likely due to the finite space discretization 

of 2 nm used in the simulations. 3D FDTD calculations were performed for MDM slots of three 

different metal film thicknesses (Fig. 5(b)). From the simulated profile of the Poynting vector, it 

can be clearly seen that a bound mode is launched into the slot direction (inset of Fig. 5(b)). 

Strong emission enhancements are indeed observed at off-resonant wavelengths. Furthermore, 

the film thickness dependence of SE enhancement agrees with the previous estimation. As the 

enhancement values in Fig. 4(a) (due to the slot mode excitation) are only slightly smaller than 

those in Fig. 5(b) (including all decay pathways), we can infer that the slot mode excitation is the 

main decay channel in slot waveguides over a broad range of wavelengths. The fraction of 

energy coupled to the slot mode can be estimated more directly through 3D FDTD flux 

calculations. By computing the flux into the slot direction and normalizing it to the total power 

flux, the coupling efficiency to the slot mode can be determined 

( ) [19]. For L = 40 nm and t = 50 nm, we find the slot mode 

coupling efficiencies ( ) are ~ 80-90% at the considered off-resonant wavelengths. 

In the off-resonant regime, the electromagnetic field penetrates less into the metal and the 

propagation lengths of the plasmon modes in both MDM slab and slot structures rapidly increase 

with wavelength [9,10]. Consequently, the large off-resonant enhancement is a desirable feature 

for optical device applications involving SPP modes. Moreover, in the off-resonant regime, 

MDM structures confine the electromagnetic mode mainly in the dielectric region between the 

metal plates, enabling efficient conversion of the SPP mode to a conventional dielectric 

waveguide mode through proper coupler structures [20,21]. By combining these out-coupling 

structures with MDM waveguides, MDM structures can be used for on-chip, local light sources 

in highly integrated optical systems. 



Coupling the emission of single emitters to a slot waveguide enables efficient ways to 

generate and guide single plasmons on an integrated optical circuit, which can be also converted 

to single photons in free-space or in a dielectric waveguide [22,23]. MDM slots can be fabricated 

reproducibly with standard nanofabrication techniques (such as focused ion beam) and can be 

easily integrated with other components. The broadband nature of these structures makes spectral 

tuning unnecessary, thus removing stringent fabrication requirements to get reproducible 

emission enhancements and making it robust against fabrication imperfections. Additionally, the 

two separate metal plates of MDM structures can be used for electrical contacts and may enable 

tunable single photon emission or switching by applying electric fields to an emitter in the gap. 

Finally, MDM slot waveguides are also expected to be useful for studying the recently proposed 

nonlinear interactions of single photons via two-level [24] or three-level [25] atomic systems in a 

1D waveguide. 

In conclusion, we have shown that simple MDM waveguide structures can support strong, 

off-resonant emission enhancements over broad wavelength regimes. The resulting efficient 

coupling of emission to the plasmon mode makes MDM structures promising for both 

fundamental light-matter interaction studies and device applications. 
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Fig. 1 (color online).  Schematic of metal-dielectric-metal (a) slab and (b) slot waveguides and 

electric field profile (|E|) of their fundamental modes. Dotted arrows indicate electric field 

directions inside the gaps. In (a), two semi-infinite metal plates are separated by a dielectric 

region of width L. In (b), two thin metal plates of thickness t are separated by a distance L and 

embedded in a uniform dielectric. The metal is silver and the dielectric has . 

 

 

Fig. 2 (color online). Spontaneous emission enhancement factor as a function of free-space 

wavelength ( ) (a) for a MDM structure vs. a single metal-dielectric interface, and (b) for a 

MDM structure with different gap sizes. (c) Dispersion relation of the gap plasmon mode for L = 

30nm (blue), and the dispersion of a single silver surface (gray) and light line (dotted red). Inset: 



decay rate density as a function of normalized in-plane wavevector. (d) Fraction of dissipated 

energy to each decay path as a function of metal-emitter distance d at  = 800 nm. In all cases, 

the emitter is in the middle of the gap. In (a), the enhancement factor for a  PEC MDM is drawn 

with the dotted line. 

 

 

Fig. 3 (color online). (a) Emission enhancement factor for a MDM slab (due to the gap SPP 

excitation) as a function of . (b) Normalized group velocity (blue), phase velocity (dotted blue), 

and mode length (black) for L = 30 nm. 

 

 

Fig. 4 (color online). (a) Emission enhancement factor for a MDM slot (due to the slot mode 

excitation) as a function of  for different metal thicknesses, and L = 40 nm. (b) Normalized 

group velocity and mode area (black: t = 20 nm, blue: t = 50 nm, red: t = 100 nm). 

 



 

Fig. 5 (color online).  (a) Spontaneous emission enhancement factor for a MDM slab. 3D FDTD 

results are compared to the analytical solution. (b) Spontaneous emission enhancement factor for 

a MDM slot (calculated from 3D FDTD simulation for three different metal thicknesses, and L = 

40nm). Inset: Poynting vector profile ( ) calculated 600 nm away from the source dipole (for 

t = 50nm and = 1200 nm). 


