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In spectroscopy, it is conventional to treat pulses much stronger than the linewidth as delta-
functions. In NMR, this assumption leads to the prediction that π pulses do not refocus the dipolar
coupling. However, NMR spin echo measurements in dipolar solids defy these conventional expec-
tations when more than one π pulse is used. Observed effects include a long tail in the CPMG echo
train for short delays between π pulses, an even-odd asymmetry in the echo amplitudes for long
delays, an unusual fingerprint pattern for intermediate delays, and a strong sensitivity to π-pulse
phase. Experiments that set limits on possible extrinsic causes for the phenomena are reported.
We find that the action of the system’s internal Hamiltonian during any real pulse is sufficient to
cause the effects. Exact numerical calculations, combined with average Hamiltonian theory, iden-
tify novel terms that are sensitive to parameters such as pulse phase, dipolar coupling, and system
size. Visualization of the entire density matrix shows a unique flow of quantum coherence from
non-observable to observable channels when applying repeated π pulses.

PACS numbers: 03.65.Yz, 03.67.Lx, 76.20.+q, 76.60.Lz

I. INTRODUCTION

Pulse action is crucial for many fields of study such
as nuclear magnetic resonance (NMR), electron spin res-
onance (ESR), magnetic resonance imaging (MRI), and
quantum information processing (QIP). In these fields,
approximating a real pulse as a delta-function with infi-
nite amplitude and infinitesimal duration is a common
practice when the pulses are much stronger than the
spectral width of the system under study.1,2,3,4,5,6 Delta-
function π pulses, in particular, play a key role in bang-
bang control,7 an important technique designed to isolate
qubits from their environments.8,9,10,11,12

In real experiments, all pulses are finite in amplitude
and have nonzero duration. Nevertheless, for pulse se-
quences with a large number of π/2 pulses,13,14 such
as in NMR line-narrowing sequences,3,5,15,16,17,18,19 us-
ing the delta-function pulse approximation yields qual-
itatively correct predictions. Furthermore, a more rig-
orous analysis that includes finite pulse effects only in-
troduces relatively small quantitative corrections.3 For
this reason, reports20,21,22,23,24,25 of finite pulse effects in
dipolar solids including 29Si in silicon, 13C in C60, 89Y in
Y2O3, and electrons in Si:P are surprising. In all of these
studies, multiple high-powered π pulses much stronger
than both the spread of Zeeman energies and the dipolar
coupling were used, yet the delta-function pulse approx-
imation failed to predict the observed behavior.

Using exact numerical calculations and average Hamil-
tonian analysis, we show that the action of time-
dependent terms during a non-zero duration π pulse is
sufficient to cause many surprising effects, in qualitative
agreement with experiment. Unfortunately, the compli-
cations and limitations of our theoretical approaches pre-
vent us from providing a quantitative explanation of the
experimental results, as we will explain below. We hope
that an improved theory and new experiments will close
the gap and enable a quantitative test of the model.
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FIG. 1: (Color online) Two NMR experiments to measure T2

of 29Si in a crushed powder of Silicon doped with Phosphorous
(3.94 × 1019 P/cm3). Hahn echo peaks (dots) are generated
with a single π pulse. The CPMG echo train (lines) is gener-
ated with multiple π pulses spaced with delay 2τ = 592 µs.
Normalization is set by the initial magnetization after the 90X
pulse. Data taken at room temperature in a 12 Tesla field.

We initially set out to measure the transverse
spin relaxation time T2 for both 31P and 29Si in
silicon26,27,28,29,30 doped with phosphorous, motivated by
proposals to use spins in semiconductors for quantum
computation.31,32,33,34,35,36 In doing so, we discovered a
startling discrepancy between two standard methods of
measuring T2 using the NMR spin echo.1

The first method is the Hahn echo, where a single π
pulse is used to partially refocus magnetization.37 (HE)

HE : 90X−τ−180Y −τ−echo

The pulses are represented as their intended rotation an-
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gle with their phase as subscripts. For this sequence,
each Hahn echo [Fig. 1(dots)] is generated with a differ-
ent time delay τ .

The second method is the Carr-Purcell-Meiboom-Gill
(CPMG) echo train38,39

CPMG : 90X−τ−{180Y −τ−echo−τ}n

where the block in brackets is repeated n times for the
nth echo. Note that CPMG is identical to HE for n = 1.
In contrast to the series of Hahn echo experiments, the
CPMG echo train [Fig. 1(lines)] should give T2 in a single
experiment.

As Fig. 1 shows, the T2 inferred from the echo decay
is strikingly different depending on how it is measured.
Admittedly, two different experiments that give two dif-
ferent results is not uncommon in NMR. In fact, in liquid
state NMR, the CPMG echo train is expected to persist
after the Hahn echoes have decayed to zero. In the liquid
state, spins can diffuse to different locations in a static
inhomogeneous magnetic field.1,6,38 This diffusion leads
to a time-dependent fluctuation in the local field for in-
dividual spins, which spoils the echo formation at long
τ . By rapidly pulsing a liquid spin system, it is possible
to render these diffusive dynamics quasi-static. In this
case, the coherence from one echo to the next is main-
tained by resetting the start of the precession at each
echo. As a consequence, the CPMG echo train can ap-
proach the natural diffusion-free T2 limit. In contrast, the
Hahn echo experiment with only one refocussing pulse
can decay faster due to diffusion. However, in the solids
studied here, the lack of diffusion makes the local field
time-independent so the Hahn echoes and CPMG echo
train are expected to agree, at least for delta-function π
pulses.

The expected behavior of the CPMG sequence can
be modeled using the density matrix ρ(t), which repre-
sents the full quantum state of the system.1,4 The time-
evolution of the density matrix is expressed as

ρ(t) = {VPV}n ρ(0)
{
V−1P−1V−1

}n
, (1)

where n is the number of π pulses applied. The total
evolution time t = n×(2τ+tp) depends on τ , the duration
of the free evolution period under V, and tp, the duration
of the pulse period under P. The form of the unitary
operators P and V are not yet specified, so while Eq. (1)
is complete, it is not yet very useful.

Section II outlines methods of calculating the evolution
of ρ(t) using the delta-function pulse approximation for
P and the Zeeman and dipolar Hamiltonians for V. Using
these approximations, the Hahn echoes and the CPMG
echo train decay identically.

Section III summarizes experiments where multiple π
pulse sequences grossly deviate from the expectations of
section II. In addition to the discrepancy shown in Fig. 1,
observed effects include an even-odd asymmetry between
the heights of even-numbered echoes and odd-numbered
echoes when τ becomes large, a repeating fingerprint in

subsets of the CPMG echo train for intermediate τ , and
a sensitivity of the echo train to π pulse phase.

Section IV details many experiments that explore ex-
trinsic effects in the pulse quality and the total system
Hamiltonian. Specifically, we sought to understand our
real pulse P as it differs from the idealized delta-function
pulse. Studies include analysis of the nutation exper-
iment, tests of rf field inhomogeneity, measurement of
pulse transients, dependence of effects on pulse strength,
and improvements through composite pulses. Addition-
ally, we looked for contributions to the free-evolution
V besides the dipolar coupling and Zeeman interaction
by studying non-equilibrium effects, temperature effects,
different systems of spin-1/2 nuclei, a single crystal, and
magic angle spinning.

Section V presents a series of numerical simulations
using a simplified model based on the constraints im-
posed by the experiments of section IV. These calcula-
tions qualitatively reproduce the long-lived coherence in
CPMG and the sensitivity on π pulse phase. In order
to get these results with N = 6 spins, the simulations
assumed both larger linewidths and shorter τ than in
the experiment. A comparison of simulations with dif-
ferent N suggests that similar results could be obtained
with smaller linewidths and longer τ provided that N is
increased beyond the limits of our calculations. For in-
sight into the physics of the exact calculations, the pulse
sequences are analyzed using average Hamiltonian the-
ory. From this analysis, special terms are identified that
contribute to the extension of measurable coherence in
CPMG simulations with strong but finite pulses. Fur-
thermore, the CPMG echo train tail height is sensitive
to the total number of spins that are included in the cal-
culation. This dependence on system size suggests that
real pulses applied to a macroscopic number of spins may
lead to the observed behaviors in Fig. 1 and section III.

Section VI visualizes the entire density matrix to show
the effects of the new terms identified in section V. Re-
gions of the density matrix that are normally inaccessible
in the delta-function pulse approximation are connected
to the measurable coherence by novel quantum coher-
ence transfer pathways that play an important role in
the CPMG long-lived tail, as simulated in section V.

II. CALCULATED EXPECTATIONS FROM
INSTANTANEOUS π PULSES AND DIPOLAR

EVOLUTION

In this section, we calculate the expected behavior of
N spin-1/2 particles under the action of pairwise dipolar
coupling and instantaneous π pulses to compare with the
experimental results of Fig. 1.
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A. The Internal Spin Hamiltonian

In order to calculate the expected behavior, we first
write the relevant internal Hamiltonian for the system.
The ideal Hamiltonian for a solid containing N spin-
1/2 nuclei in an external magnetic field contains two
parts.1,2,3 In the lab frame, the Zeeman Hamiltonian

HLab
Z =

N∑
j=1

−γ~(Bext + ∆Bloc
j )Izj (2)

describes the interaction with the applied and local mag-
netic fields, while the dipolar Hamiltonian

HLab
d =

N∑
j=1

N∑
k>j

[
~µj · ~µk
|~rjk|3

− 3(~µj · ~rjk)(~µk · ~rjk)
|~rjk|5

]
(3)

describes the interaction between two spins. In these
Hamiltonians, γ is the gyromagnetic ratio and Bext is
an external magnetic field applied along ẑ. For spin j,
∆Bloc

j is the local magnetic field, ~µj = γ~~Ij is the mag-
netic moment, and ~Ij = (Ixj , Iyj , Izj ) is the spin angular
momentum vector operator. The position vector between
spins j and k is ~rjk.

We proceed to the rotating reference frame1,2,3 defined
by the Larmor precession frequency ω0 = γBext. The
Zeeman term largely vanishes leaving only a small Zee-
man shift due to spatial magnetic inhomogeneities. The
Zeeman shift for spin j is defined as Ωzj = −~γ∆Bloc

j .
The scale of the spread of Zeeman shifts depends on the
sample. For highly disordered samples, or samples with
magnetic impurities, Ωzj varies wildly between adjacent
spins. The samples studied in this paper are much more
spatially homogeneous, so Ωzj is essentially the same for
a large number of neighboring spins. We therefore drop
the index j giving the Zeeman Hamiltonian in the rotat-
ing frame

HZ =
N∑
j=1

ΩzIzj = ΩzIzT (4)

where IzT =
∑N
j=1 Izj is the total Iz spin operator.

Strictly speaking, Eq. (4) can only describe a mesoscopic
cluster of N -spins (e.g., N < 10 are used in the numerical
simulations), which share a single Ωz value. We use an
ensemble of N -spin clusters, varying Ωz from one cluster
to the next to simulate the macroscopic powders studied
in this paper. The picture is that line broadening due to
bulk diamagnetism will cause a spread in Ωz values across
a large sample (e.g., from one particle to the next), but
that Ωz will be nearly constant for most N < 10 spin
clusters. Experiments that justify this assumption are
presented in section IV.

Even in the absence of the dipolar interaction, Zeeman
shifts from different parts of the sample can cause signal
decay as shown in the Bloch sphere representation in Fig.

(a) (b)

(c) (d)

FIG. 2: (Color online) Bloch sphere depiction of signal decay
due to a spread of Zeeman shifts. An external magnetic field
is aligned along ẑ. (a) Spins in equilibrium with total magne-
tization represented by a large pink arrow. (b) After a 90X
pulse, the spins are aligned along ŷ in the rotating frame. (c)
Spins with different Zeeman shifts precess at different rates
and fan apart. Red arrows represent spins with a positive
Zeeman shift (Ωz > 0), blue arrows represent spins with a
negative Zeeman shift (Ωz < 0), and black arrows represent
spins on resonance (Ωz = 0). (d) After some time, the total
magnetization decays to zero.

2. Each colored arrow represents a group of spins that
experience a different ∆Bloc resulting in a slightly differ-
ent precession frequency Ωz/~ in the rotating frame. The
initial magnetization at equilibrium starts aligned along
the z-axis [Fig. 2(a)]. After a 90X pulse, the spins are
tipped along the y-axis [Fig. 2(b)]. Because of the spread
of Zeeman shifts, spins in the rotating frame will begin
to drift apart [Fig. 2(c)]. The resultant magnetization,
or vector sum, will consequently decay [Fig. 2(d)]. This
process is referred to as the free induction decay (FID)
since it is detected in the NMR apparatus as a decaying
oscillatory voltage arising from magnetic induction in the
detection coil.1,40,41

Even without a spread of Zeeman shifts across the
sample, transverse magnetization will decay due to the
dipolar coupling. It is appropriate to treat the dipolar
Hamiltonian as a small perturbation1 since the external
magnetic field is typically four to five orders of magni-
tude larger than the field due to a nuclear moment. In
this case, the secular dipolar Hamiltonian in the rotating
frame is

Hzz =
N∑
j=1

N∑
k>j

Bjk(3IzjIzk − ~Ij · ~Ik) (5)
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where the terms dropped from Eq. (3) are non-secular
in the rotating frame. We define the dipolar coupling
constant as

Bjk ≡
1
2
γ2~2

|~rjk|3
(1− 3 cos2 θjk) (6)

where θjk is the angle between ~rjk and ~Bext.
Thus, the relevant total internal spin Hamiltonian is

Hint = HZ +Hzz (7)

where we note that HZ commutes with Hzz. From this
Hamiltonian, the free-evolution operator is defined as

U ≡ e− i
~Hintτ = e−

i
~HZτe−

i
~Hzzτ ≡ UZUzz (8)

where UZ and Uzz also commute.

B. Simplifying the External Pulse

During the pulses, another time-evolution operator is
needed. This pulse time-evolution operator is compli-
cated since it contains all the terms in the free evolution
plus an additional term associated with the rf pulse.

Pφ = exp
(
− i

~
(HZ +Hzz +HPφ)tp

)
(9)

where

HPφ = −~ω1IφT (10)

for a radio frequency pulse with angular frequency ω1

and transverse phase φ. In practice, the pulse strength
and phase could vary from spin to spin. Studies of the
effects of this type of rf inhomogeneity are reported in
section IV, but this approximate calculation considers
the homogeneous case.

Note that HPφ , in general, does not commute with
Hint = HZ + Hzz. Because of this inherent complica-
tion, it is advantageous to make ω1 large so that HPφ
dominates Pφ. This strong-pulse regime is achieved when
ω1 � Ωz/~ and ω1 � Bjk/~. This paper is primar-
ily concerned with π pulses, which sets the pulse du-
ration tp so that ω1tp = π. The delta-function pulse
approximation1,2,3,4,5,6 of a strong π pulse takes the limit
ω1 →∞ and tp → 0 so that Pφ simplifies to a pure left-
handed π rotation

Rφ = exp
(
iπIφT

)
. (11)

For these delta-function π pulses, the linear Zeeman
Hamiltonian is perfectly inverted, while the bilinear dipo-
lar Hamiltonian remains unchanged. The time-evolution
operators thus transform as

RφUZR−1
φ = U−1

Z (12)

RφUzzR−1
φ = Uzz. (13)

In other words, after a π pulse, the Zeeman spread will
refocus, while the dynamics due to dipolar coupling will
continue to evolve as if the π pulse was never applied.
Equation (13) is the basis for the statement: “π pulses
do not refocus the dipolar coupling”.

C. An Analytic Expression for the Density Matrix
Evolution in the Instantaneous Pulse Limit

Using the free-evolution operator and the delta-
function pulse, Eq. (1) for CPMG simplifies to

ρ(t) = {URyU}n ρ(0)
{
U−1R−1

y U−1
}n

=
{
URy(R−1

y Ry)U(R−1
y Ry)

}n
ρ(0){inv}n

=
{
UzzUZU−1

Z UzzRy
}n
ρ(0){inv}n

= (Uzz)2n(Ry)nρ(0)(R−1
y )n(U−1

zz )2n

= (Uzz)2nρ(0)(U−1
zz )2n

= Uzz(t)ρ(0)U−1
zz (t). (14)

where {inv} is the inverse of the operators in brackets
to the left of ρ(0), the dipolar time-evolution operator
for time t is Uzz(t) = exp(− i

~Hzzt), and we assumed
(Ry)nρ(0)(R−1

y )n = ρ(0) = IyT . Invoking Eqs. (8), (12),
and (13) has allowed the cancellation of UZ .

By assuming that the pulses are instantaneous, the
density matrix at the time of an echo is independent of
the Zeeman spread and the number of applied pulses.
In other words, the peaks of the Hahn echoes and the
CPMG echo train should follow the same decay envelope
given by the dipolar-only (Ωz = 0) FID.

D. General Method to Calculate the Observable
NMR Signal

The last step is to calculate the measured quantity that
is relevant to our NMR experiments. The NMR signal
is proportional to the transverse magnetization in the
rotating reference frame.1,2,3,4,5,6 Therefore, we wish to
calculate

〈IyT (t)〉 =
N∑
j=1

Tr{ρ(t)Iyj}. (15)

The real experiment involves a macroscopic number of
spins N but computer limitations force us to use only
small clusters of coupled spins. Since the size of the den-
sity matrix grows as 2N × 2N we are limited to N < 10.

To mimic a macroscopic system with only a small clus-
ter of spins, we first built a lattice with the appropriate
unit cell for the solid under study. Then we randomly
populated the lattice with spins according the natural
abundance. For one spin at the origin, N − 1 additional
spins were chosen with the strongest coupling |B1k| to
the central spin. Finally, we disorder-averaged over many
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random lattice populations to sample different regions of
a large crystal. For powder samples, we also disorder-
averaged over random orientations of the lattice with re-
spect to ~Bext. This method is biased to make the central
spin’s local environment as realistic as possible since the
dipole coupling falls off as 1/r3. We therefore chose to
calculate 〈Iy1(t)〉 for only the central spin in each disor-
der realization instead of 〈IyT (t)〉 for the entire cluster of
spins.

Using these clusters, the time dependence of the den-
sity matrix is calculated by starting from its conventional
Boltzmann equilibrium value

ρB = IzT (16)

assuming a strong Bext and high temperature.3 Treating
a strong 90X pulse as a perfect left-handed rotation about
x̂, ρB transforms as

ρ(0) = R90XρBR−1
90X

= IyT . (17)

From this point, Eq. (14) gives the evolution for ρ(t) in
the limit of delta-function π pulses:

ρ(t) = Uzz(t)IyTU−1
zz (t). (18)

For each disorder realization (DR), the density matrix
at time t+ dt is calculated by using the basis representa-
tion that diagonalizes the internal Hamiltonian. In this
basis, the density matrix is given by the matrix formula

ρmn(t+ dt) = ρmn(t)e−
i
~ (Em−En)dt (19)

where Em is the mth eigenvalue of Hzz, and ρmn is the
element at the mth row and nth column of the 2N × 2N
density matrix.1 Using the density matrix at each time t,
the expectation value 〈Iy1(t)〉 = Tr{ρ(t)Iy1} is calculated
for each DR, and then averaged over many DRs, yielding
the expected decay for both CPMG and Hahn echoes
[Fig. 3(blue curve)].

Though Hzz is the appropriate Hamiltonian to con-
sider, the small number of spins that we are able to treat
can never describe the true dynamics of a macroscopic
system even after substantial disorder averaging.

E. Ising Model Truncation

Let us consider another approach that truncates the
secular dipolar Hamiltonian and yields an analytic ex-
pression for 〈Iy1(t)〉 in the delta-function pulse limit.
This truncation enables us to model the behavior of many
more spins.

The secular dipolar Hamiltonian from Eq. (5) can be
rewritten as

Hzz =
N∑
j=1

N∑
k>j

Bjk

(
2IzjIzk −

1
2

(I+
j I
−
k + I−j I

+
k )
)

(20)
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FIG. 3: (Color online) Expected decay curves for the delta-
function pulse approximation using Hzz (blue curve) and
HIsing (black curve). The blue curve uses clusters of N = 8
spins and disorder-averages over 1,000 DRs. The black cure
uses N = 80 spins and averages over 20,000 DRs. Both cal-
culations use the realistic silicon lattice (4.67% natural abun-
dance of spin-1/2 29Si nuclei, diamond lattice constant 5.43
Å). Hahn echo data (green circles) and the CPMG echo train
(dashed red lines) from Fig. 1 are plotted in the background
for comparison.

by defining the raising and lowering operators

I+ = Ix + iIy

I− = Ix − iIy.

We call I+
j I
−
k and I−j I

+
k the flip-flop terms. These terms

flip one spin up and flop another spin down while con-
serving the total angular momentum.1

It is a very good approximation to drop the flip-flop
terms whenever spins within a cluster have quite different
Zeeman energies. In this case, the flip-flop would not
conserve energy so this process is inhibited.1 In that limit,
Hzz is truncated to the Ising model Hamiltonian with
long-range interactions

HIsing =
N∑
j=1

N∑
k>j

2BjkIzjIzk . (21)

This approximation is usually made when considering the
dipolar coupling between different spin species.1 In the
homonuclear systems that we consider, this approxima-
tion is not usually justified but we consider this limit here
for comparison.

UsingHIsing, the product operator formalism42 enables
us to analytically evaluate 〈Iy1(t)〉 for the central spin

〈Iy1(t)〉 = Iy1(0)
N∏
k>1

cos(B1kt/~). (22)
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Since the expression in Eq. (22) is analytic,40 the calcu-
lation of the resultant curve [Fig. 3(black curve)] is not
as computationally intensive as time-evolving the entire
density matrix. This calculation only requires the the
numerical value of the dipolar coupling B1k between the
central spin and a random population of N − 1 spins on
the lattice. In this way, many more spins can be treated.
The final step is a disorder average over many random
lattice occupancies and random lattice orientations.

Despite the differences in the two approaches, the sim-
ulated curves for the same lattice parameters are in rea-
sonable agreement. The initial decay due to the secular
dipolar Hamiltonian is two-thirds faster than the decay
due to the Ising Hamiltonian in agreement with second-
moment calculations.1,40,43,44 The Hahn echo experiment
in this sample follows the Ising model decay curve [Fig.
3(green circles vs black curve)]. In other samples we have
studied, the Hahn echo data lies between the calculated
blue and black curves but always decays to zero. It is
surprising then that the CPMG experiment has measur-
able coherence well beyond the decay predicted by either
approach [Fig. 3(red lines)].

III. MORE EVIDENCE THAT CONTRADICTS
THE DELTA-FUNCTION PULSE

APPROXIMATION

We performed many NMR experiments on dipolar
solids to try to illuminate different facets of the surprising
results observed in Fig. 1. In this section, we summarize
our most striking findings that are inconsistent with the
expectations set by the delta-function pulse approxima-
tion.

Our first reaction to the long-tail in the CPMG echo
train was to assume that the π pulses were some-
how locking the magnetization along our measurement
axis.13,45,46,47,48,49,50 Increasing the time delay τ between
π pulses reduces the pulse duty cycle down to less than
0.04% but the NMR signal still did not exhibit the ex-
pected behavior. Figure 4 shows three CPMG echo
trains with three different interpulse time delays. For
short delays between π pulses, the CPMG echo train ex-
hibits a long tail [Fig. 4(top)]. For intermediate delays,
some slight modulation develops in the echo envelope
[Fig. 4(middle)]. For much longer delays, we observe an
even-odd effect where even-numbered echoes are much
larger than odd-numbered echoes that occur earlier in
time20,21,22 [Fig. 4(bottom)].

The slight modulation of the echo envelope for the
middle graph of Fig. 4 is more visible when we perform
the same CPMG experiment on a Silicon sample with
a lower doping. Figure 5 shows CPMG echo trains in
Si:P (3 × 1013 P/cm3) and Si:B (1.43 × 1016 B/cm3).
Here, the echo shape is much wider in time than for the
higher doped Si:P (1019 P/cm3) sample because the Zee-
man spread is much smaller. The heights of the echoes
in Fig. 5 modulate in a seemingly noisy way. However,
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FIG. 4: (Color online) CPMG echo trains of 29Si in Si:P
(3.94× 1019 P/cm3) with three time delays between π pulses.
(Top) 2τ = 592 µs. (Middle) 2τ = 2.192 ms. (Bottom)
2τ = 9.92 ms. For comparison, T2 = 5.6 ms in silicon as
measured by the Hahn echoes and as predicted by the delta-
function pulse approximation. Data taken at room tempera-
ture in a 12 Tesla field.
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FIG. 6: (Color online) Four pulse sequences with π pulses of
different phases applied to 29Si in Si:Sb (2.75×1017 Sb/cm3).
(Top Left) CP, (Top Right) CPMG, (Bottom Left) APCP,
(Bottom Right) APCPMG. All are expected to yield identical
decay curves. 2τ = 72 µs, T = 300 K, and Bext = 11.74 Tesla.

when sampling short segments of echoes, an unusual fin-
gerprint pattern emerges repeatedly throughout the echo
train. Sections of the echo train are highlighted and over-
lapped to help guide the eye. Figures 4 and 5 are evidence
of complicated coherent effects.

From the analysis of section II, the calculated enve-
lope |〈Iy1(t)〉| is expected to be insensitive to the π pulse
phase. We define the following four pulse sequences

CP : 90X−τ−{180X−2τ−180X−2τ}n

APCP : 90X−τ−{180X̄−2τ−180X−2τ}n

CPMG : 90X−τ−{180Y −2τ−180Y −2τ}n

APCPMG : 90X−τ−{180Ȳ −2τ−180Y −2τ}n

where X̄ indicates rotation about −x̂ and Ȳ indicates ro-
tation about −ŷ. The Carr-Purcell (CP) sequence38 fea-
tures π pulses along x̂, the CPMG sequence39 features
π pulses along ŷ, and the alternating phase (AP-) ver-
sions flip the phase after each π pulse. The spin echoes
form in the middle of each 2τ time period. For CP and
APCP, the spin echoes form alternatingly along ŷ and
−ŷ, while in CPMG and APCPMG they form only along
ŷ. Though all of these sequences are expected to decay
with the same envelope, they differ drastically in exper-
iment (Fig. 6). The CP sequence decays extremely fast,
while the APCP and CPMG sequences have extremely
long-lived coherence. The pulse sequence sensitivity ex-
hibited in Fig. 6 demonstrates that the π pulses play a
key role in the system’s response.
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FIG. 7: (Color online) Nutation curve data (dots) of 29Si in
Si:Sb (2.75 × 1017 Sb/cm3) agree with a non-decaying sine
curve over 8.25 cycles. H1 = 8.33 kHz, T = 300 K, and
Bext = 12 Tesla.

IV. EXPERIMENTAL TESTS TO
UNDERSTAND THE PULSE QUALITY AND
THE INTERNAL DYNAMICS OF THE SPIN

SYSTEM

Because of the surprising results of the preceding sec-
tion, we performed many experiments to test whether
certain extrinsic factors were to blame for the discrep-
ancies in Figs. 1, 4, 5, and 6. We report that even after
greatly improving our experimental pulses, the tail of the
CPMG echo train persists well beyond the decay of the
Hahn echoes. We also report experiments with many
different sample parameters that all yield the same qual-
itative result.

These experiments are quite different from the usual
array of NMR experiments that primarily focus on op-
timizing the signal-to-noise ratio. In contrast, we have
plenty of signal to observe in the CPMG echo train, but
our aim was to find any sensitivity of the CPMG tail
height on some extrinsic parameter. Although deliber-
ately imposing a large pulse imperfection may lead to
NMR data that look qualitatively similar to those out-
lined in the previous section, experimental improvements
that greatly reduced these imperfections did not make
the effects vanish.

A. Nutation Calibration, Rotary Echoes, and Pulse
Adjustments in CPMG

Without proper pulse calibration it is difficult to pre-
dict the result of any NMR experiment. We calibrate
the rotation angle of a real finite pulse through a series
of measurements resulting in a nutation curve.51 This
experiment begins with the spins in the Boltzmann equi-
librium ρB = IzT . During a square pulse of strength
H1 = ω1/2π and time duration tnut applied along x̂ in
the rotating frame, the spins will nutate in the y-z plane.
Shortly after tnut, the projected magnetization along ŷ
is measured as the initial height of the FID.

Figure 7 shows a typical nutation curve in Si:Sb (1017

Sb/cm3). The π pulse is determined by the timing of the
first zero-crossing of the nutation curve. This nutation
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FIG. 8: (Color online) Extended nutation data of 29Si in Si:Sb
(2.75×1017 Sb/cm3) taken at room temperature in a 12 Tesla
field. (Top) H1 = 8.33 kHz. (Middle) H1 = 25 kHz. (Bot-
tom) Rotary echo data (green dots) and nutation data (blue
dots) for H1 = 25 kHz. Dashed lines in each graph show the
expected decay envelope due to dipolar coupling during the
nutation pulse. Solid traces are calculations that include the
dipolar decay, rf field spread from our NMR coil, and skin
depth of Si:Sb.

calibration is typically repeated several times during a
long experiment.

The nutation curve is also a measure of the quality of
other aspects of the single-pulse experiment.52 For ex-
ample, the homogeneity of the applied rf field may be
inferred from the decay of the nutation curve after sev-
eral cycles. Figure 7 shows nutation data out to over
eight cycles with very little decay. Extending the nuta-
tion experiment out to even longer pulse times (Fig. 8)
enables the study of the decay of its amplitude.

For such long nutation times, the dipolar coupling be-
tween spins contributes to the decay.53 This decay is cal-
culated using the density matrix evolved under the time-
evolution operator for the full pulse [Eq. (9)] for time tnut.
The expected decay envelope [Fig. 8(dashed curves)]
is the disorder-averaged expectation value 〈Iy1(t)〉 =
Tr{ρ(t)Iy1} (see section II).

Another significant contribution to the decay of the nu-
tation curve is rf field inhomogeneity. For a given spread
of rf fields, the decay of the NMR signal depends on the
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FIG. 9: (Color online) Finding the minimum tail height for
CPMG. (Top) CPMG data of 29Si in Si:P (3.94×1019 P/cm3)
with 2τ = 2.192 ms. (Bottom) Numbered spin echoes (SEn)
are plotted versus π pulse duration. SE15 and SE16 are ex-
pected to have zero amplitude. The nutation calibrated π
pulse has duration 12.2 µs. Data taken at room temperature
in a 12 Tesla field.

number of nutation cycles, therefore, a nutation with a
weaker H1 [Fig. 8(top)] will decay slower than a nuta-
tion with a stronger H1 [Fig. 8(middle)]. The damped
sine curves include the contribution from dipolar cou-
pling and add the spatial rf field variations due to the
calculated sample skin depth and the inherent inhomo-
geneities of our NMR coil.

The rotary echo experiment54 compensates for static
spatial rf field inhomogeneities by reversing the phase of
the nutation pulse at a time near tnut/2. Using this tech-
nique, the rotary echo data [Fig. 8(green dots)] approach
the dipolar decay envelope even though the nutation data
[Fig. 8(blue dots)] decay much faster.

So far, the Hahn echoes, the nutation curve, and ro-
tary experiment all agree with the model for calculating
the NMR signal developed in section II. One significant
difference between these experiments and the CPMG se-
quence is that they consist of only one or two applied
pulses while the CPMG sequence has many pulses. It
is possible that the calibration for the CPMG sequence
could be different then that set by the nutation curve.
We explored this question of calibration by varying tp
of the π pulse to see if the expected decay would be re-
covered. Figure 9(bottom) plots a series of echoes from
the CPMG sequence versus the misadjusted π pulse du-
ration. Spin echo 15 (SE15) and spin echo 16 (SE16) are
representative of coherence that should decay to zero for



9

FIG. 10: (Color online) (Top) Sectional calculation of the rf
field homogeneity in our NMR coil. Two cylindrical sample
sizes are outlined. (Middle) Histograms of rf field strength
distribution. (Bottom) CPMG data for the two sample sizes
of 29Si in Si:P (3.43×1019 P/cm3) are nearly identical despite
the noticeable change in rf field homogeneity. 2τ = 2.192 ms,
T = 300 K, and Bext = 7 Tesla.

delta-function π pulses. Despite the wide range of pulse
durations attempted, the tail of the CPMG echo train
never reached zero. Modifying CPMG with more com-
plicated pulse phase patterns55,56 changes the results, but
echoes at long times are still observed.

B. Characterization of RF Field Homogeneity and
Improvements through Sample Modification

If the strength of the rf field during a pulse greatly
varied from spin to spin, then the pulse calibration would
not be consistent across the sample. To test whether this
extrinsic effect could cause the results of secion III, we
examined the rf field homogeneity in our NMR coil and
made improvements by modifying the sample.

An ideal delta-function pulse affects all spins in the sys-
tem with the same rf field strength. However, a real NMR
coil is a short (∼ 10 turn) solenoid with rf fields that vary
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FIG. 11: (Color online) Pulse phase sensitivity and rf homo-
geneity tests in an insulating sample. CP, CPMG, APCP, and
APCPMG data of 13C in C60 for a large sample volume (left
column) and a small sample volume (right column). All are
expected to agree in the delta-function pulse limit. H1 = 45.5
kHz, 13C NMR linewidth = 290 Hz, 2τ = 180 µs, T = 300 K,
Bext = 12 Tesla.

in space.57 Figure 10 shows a calculation of the rf field
homogeneity in the quasi-static approximation using the
Biot-Savart law for our seven-turn NMR coil.58,59 The
grayscale plot indicates the spatial variation of rf fields
where lighter colored regions are areas of higher rf field
strength. The proximity effect would slightly smooth out
these rf fields beyond what is shown.57,60,61

For a given coil, the rf field homogeneity can be im-
proved by decreasing the sample volume. To this end, we
performed experiments using two different sample sizes
to assess the influence of rf homogeneity on the long tail
in the CPMG echo train. Figure 10 shows histograms of
the rf field distribution within the two sample sizes and
the corresponding CPMG echo trains. No noticeable dif-
ference in the tail height was observed despite the marked
improvement of rf homogeneity.

In addition to the coil dimensions, the sample itself
may have properties that introduce an rf field inhomo-
geneity. For example, the skin depth in metallic samples
attenuates the rf field inside the sample.30,58,59 Two ap-
proaches were taken to reduce the contribution of skin
depth effects to the rf field homogeneity. In the first
approach, a sample of highly doped Si:P (1019 P/cm3)
was ground, passed through a 45 µm sieve, and diluted
in paraffin wax. This high-doped silicon sample has a
resistivity of 0.002 Ohm-cm. At a 12 Tesla field the rf
frequency applied is 101.5 MHz. Thus the skin depth
at this frequency is 223.3 µm. Particle diameters on the
order of 45 µm would only have a 10% reduction of the
field at the center. Furthermore, dilution in wax helps
to separate the particles. Despite this improvement, the
effects summarized in section III remained.

The second method to reduce the rf field attenuation
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caused by skin depth is to use less metallic samples. Four
different silicon samples were used that differ in dopant
type (donors or acceptors) and dopant concentrations (up
to a factor of a million less for Si:P with 1013 P/cm3). For
samples doped below the metal-insulator transition,30

the calculated skin depth is very large and the rf field
attenuation at the center of the particle is much smaller.
For example, Si:Sb (2.75×1017 Sb/cm3) has a skin depth
of 1.05 mm, which reduces the H1 field by 2% at the cen-
ter of a 45µm particle. Si:P13 (resistivity 0.97 Ohm-cm
to 2.90 Ohm-cm) has a skin depth range of 4.92 cm to
8.50 cm, which results in a less than 0.03% reduction in
rf field at the particle center. Additionally NMR of 13C
in C60, and 89Y in Y2O3, two insulating samples, show
the same behavior as in silicon.20,21,22

Figure 11 shows the four pulse sequences in C60 for
two sample sizes. Despite the improvement in rf field
homogeneity, the long tail in the CPMG echo train and
the pulse sequence sensitivity are largely unaffected.

C. Measuring the Pulse Transients

Pulse transients are another possible source of exper-
imental error.62,63,64,65 In principle, the perfect pulse is
square and has a single rf frequency. In practice, however,
the NMR tank circuit produces transients at the leading
and trailing edges of the pulse. Because the pulse tran-
sients have both in-phase and out-of-phase components,
they can cause spins to move out of the intended plane of
rotation. These unintended transients can contribute to
poor pulse calibration and possible accumulated imper-
fections. Therefore, it is important to quantify the pulse
transients specific to our apparatus.

To measure the real pulse, we inserted a pickup loop
near our NMR coil and applied our regular pulses.62,63,64

Figure 12 shows the typical π pulse and π/2 pulse en-
velopes. The red traces show the in-phase components of
the pulses while the green traces show the out-of-phase
components. Empirically, changing parameters like the
resonance and tuning of the NMR tank circuit changes
the shape of the transients and even the sign of the out-
of-phase components.

For short time pulses (e.g. a π/2 pulse), the transient
constitutes a larger fraction of the entire pulse. Con-
sequently, the dominate pulse transient in these short
pulses could lead to larger extrinsic effects. Furthermore,
since H1tp = 1/2 is fixed for π pulses, one would expect
that any extrinsic effects caused by pulse transients would
also be larger for stronger (i.e. shorter in time) π pulses.

The affect of the pulse transients on the multiple pulse
sequences may be simulated65 by approximating the real
π pulse along ŷ as a composite pulse of three pure ro-
tations 180Y → 4X̄180.1Y 3X . Including the pulse tran-
sients in simulation yielded only small changes in the
expected decay envelope derived in section II and could
not reproduce the effects from section III.

While the pulse transients are sensitive to many
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FIG. 12: (Color online) Measured pulse shapes in-phase (red)
and out-of-phase (green) for a typical π pulse (left) and π/2
pulse (right) at radio frequency 101.5 MHz with pulse strength
H1 = 33.3 kHz. Transients are a larger fraction of short
duration pulses like π/2. Data taken at room temperature in
a 12 Tesla field. The real π pulse is approximated as three
pure rotations 4X̄180.1Y 3X .

0.8

0.6

0.4

0.2

0.0

N
M

R
 S

ig
n
a
l

6050403020100

Time (ms) 

0.5

0.4

0.3

0.2

0.1

0.0

C
P
M

G
 T

a
il 

H
e
ig

h
t 

(N
o
rm

a
liz

e
d
)

4003002001000

Pulse Strength (H1/FWHM)

CPMG Tail for H1/FWHM=222

FIG. 13: (Color online) Dependence of CPMG tail height on
pulse strength. (Top) Tail height is extrapolated as a t = 0
intercept for CPMG of 29Si in Si:Sb (2.75×1017 Sb/cm3) with
2τ = 2.192 ms. This example is for H1/FWHM= 222. (Bot-
tom) CPMG tail height versus pulse strength. Smaller sam-
ples and NMR coils were used to achieve the last two points.
Exact calculations for N = 5 spins in silicon (triangles) decay
to zero for H1 > FWHM.

changes in our NMR apparatus, the observed effects in
from section III are qualitatively insensitive. Therefore,
we infer that the pulse transients are not the dominant
cause of these effects.
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D. Pulse Strength Dependence

How strong does a real pulse need to be in order to be
considered a delta-function pulse? The limit described in
section II assumes pulses of infinite strength. This limit
ensures that all the spins are rotated identically. On the
other hand, weak pulses treat different spins differently.
Thus, if the calibration, rf field homogeneity, or pulse
strength were grossly misadjusted,66 then the observed
behavior could deviate from the calculation in section II.

However, Fig. 13 shows CPMG experiments in Si:Sb
(1017 Sb/cm3) for a variety of pulse strengths. The tail
height is extrapolated as a t = 0 intercept from the
CPMG pulse sequence [Fig. 13(top)] and plotted ver-
sus the rf field strength H1 = ω1/2π normalized by the
full-width-at-half-maximum (FWHM) of the Si:Sb line-
shape. For each data point, a separate nutation curve
was measured to calibrate the π pulse. The tail height of
the CPMG echo train is largely insensitive to the pulse
strength for H1/FWHM from 4 to 450.

The expected CPMG decay may be simulated using
finite pulses67 in an exact calculation for N = 5 spins
in silicon [Fig. 13(bottom, open blue triangles)]. These
calculations agree with the data when the pulses are
extremely weak (H1/FWHM< 1 ) but quickly fall to
zero once the pulses are over ten times the linewidth.
Thus, these calculations agree with the conventional as-
sumption that the strong pulse regime is achieved when
H1/FWHM � 1.

Because the experimental tail height in CPMG is so
insensitive to large changes in pulse strength, we conclude
that even very strong π pulses are still not the same as
delta-function pulses.

E. Using Composite π Pulses to Improve Pulse
Quality

Another way to improve pulse quality is to use com-
posite pulses4,6,68 in place of single π pulses. Composite
pulses were designed to correct poor pulse angle calibra-
tion, rf inhomgeneity, and the effects of weak pulses69

by splitting a full rotation into separate rotations about
different axes. These separate pieces counteract pulse
imperfections when strung together.

Figure 14 shows a series of experiments where the
single π pulses in CP, APCP, CPMG, and APCPMG
are replaced by composite pulses. The Levitt com-
posite pulse68,70 replaces 180Y with 90X180Y 90X .
The BB1 composite pulse71,72 replaces 180Y with
180α360β180α180Y where X = 0◦, Y = 90◦, α = 194.5◦,
and β = 43.4◦. Even though these composite pulses
should improve pulse quality,71 the CPMG tail height
and the sensitivity to π pulse phase is hardly affected.
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FIG. 14: (Color online) Pulse sequences CP, APCP, CPMG,
and APCPMG using standard π pulses (left column), Levitt
composite π pulses (middle column), and BB1 composite π
pulses (right column). H1 = 35.7 kHz, 2τ = 72 µs, T = 300
K, Bext = 11.74 Tesla.

F. Absence of Non-Equilibrium Effects

This experiment tests the assumption made in section
II that the equilibrium density matrix is simply ρB = IzT .
This ρB assumes that equilibrium is reached after wait-
ing longer than the spin-lattice relaxation time T1 be-
fore repeating a CPMG sequence.1 If, however, an ex-
periment is started out of equilibrium, then any unusual
coherences73,74 present in the initial density matrix might
lead to a different NMR signal.

Figure 15 shows the CPMG echo train in two regimes.
In red, the CPMG echo train is repeated after waiting
only a fifth of the spin-lattice relaxation time T1. In
blue, the CPMG echo train is repeated after waiting
5×T1. Inset (a) shows the saturation-recovery data that
determines T1. A single exponential is a good fit to the
data supporting the assumption of a single mechanism
for spin-lattice relaxation. Inset (b) shows a close-up of
echoes for the two wait times. For shorter wait times,
the echo shape is slightly distorted at the base of the
echoes compared to the much longer wait times. How-
ever, the CPMG echo peaks still exhibit a long tail and
is insensitive to the wait time.

G. Absence of Temperature Dependence

The CPMG tail height could be sensitive to both
temperature-dependent effects specific to each sample
and temperature-independent effects found in all dipolar
systems. To distinguish between the two sets of effects,
we performed the CPMG pulse sequence in Si:P (1019

P/cm3) at room temperature and at 4 Kelvin. Figure
16 shows that the CPMG tail height is insensitive to the
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FIG. 15: (Color online) Non-equilibrium effects and spin-
lattice relaxation. (Main) CPMG echo train for 29Si in Si:P
(3.94× 1019 P/cm3) with saturation recovery time trec = 1 s
(red) and trec = 20 s (blue). T = 300 K, Bext = 12 Tesla,
2τ = 592 µs. The initial height of the FIDs are scaled to
agree. (a) Exponential fit to the saturation recovery exper-
iment gives T1 = 4.9 s in this sample (b) Close-up of echo
shapes.

large change in temperature.
These results update previously reported data in the

same sample.21 Lowering the temperature increases the
spin-lattice relaxation time T1 from 4.9 seconds at room
temperature to over 6 hours at 4 Kelvin. As a conse-
quence, the increased T1 at low temperatures required
us to perform experiments at a much slower rate where
our NMR tank circuit would be susceptible to tempera-
ture instabilities. These temperature instabilities caused
poor pulse calibration from time to time. To rectify this
problem, we repeated the CPMG pulse sequence many
times at 4 Kelvin and measured the nutation curve after
each repetition. If the calibration remained consistent be-
tween four applications of the CPMG pulse sequence, we
averaged the four scans together to obtain the 4 Kelvin
data in Fig. 16(blue squares). None of these issues were
present in the room temperature data.

In addition, the sample was carefully prepared by siev-
ing the crushed powder to < 45 µm and diluting it in
paraffin wax to reduce the skin depth effect and to re-
duce clumping when cooling in a bath of liquid helium.

Absence of temperature dependence supports the as-
sumption that the relevant internal Hamiltonian is
Hint = HZ +Hzz.

H. Similar Effects Found in Different Dipolar
Solids

We performed the same pulse sequences in many dif-
ferent dipolar solids to show that the effects reported in
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FIG. 16: (Color online) Temperature effects on CPMG tail
height. CPMG echo peaks at room temperature (red) and 4
Kelvin (blue) in Si:P (3.94× 1019 P/cm3) diluted in paraffin
wax. 2τ = 2.192 ms, Bext = 12 Tesla.

TABLE I: Properties of dipolar solids used in these stud-
ies. Columns display the NMR spin-1/2 nucleus, dopant con-
centrations in number of dopant nuclei per cm3, gyromag-
netic ratio (γ) in MHz per Tesla, percent natural abundance
(n.a.), full width at half maximum of the measured spectrum
(FWHM) in Hz, spin-lattice relaxation time (T1) in seconds,
and transverse relaxation time (T2) as measured by the best
exponential or gaussian fit of the decay of Hahn echoes in
milliseconds. Si:P (1013) and Si:B (1016) data taken at room
temperature in a 7 Tesla field (no Hahn echo data for these
two samples). All other data taken at room temperature in a
12 Tesla field.

Sample Dopant Conc. γ/2π n.a. FWHM T1 T2
13C in C60 - 10.7 1.11 260 25.8 14
29Si in Si:P 3× 1013 8.46 4.67 350 17640 -
29Si in Si:B 1.43× 1016 8.46 4.67 370 10080 -
29Si in Si:Sb 2.75× 1017 8.46 4.67 200 276 6
29Si in Si:P 3.43× 1019 8.46 4.67 3600 4.8 6
89Y in Y2O3 - 2.09 100 3100 3100 24

section III are universal. Table I summarizes the samples
used in these studies and outlines dramatically different
features including the T1, which varies from 4.8 seconds
to 5.5 hours at room temperature.20,21 Measurements in
a variety of silicon samples with different doping con-
centrations, different dopant atoms, and even different
dopant types (N-type and P-type) show the same qual-
itative results despite the significant differences in their
local environments.

We also performed the same NMR pulse sequences
on different nuclei.20 The CPMG echo trains of 13C in
C60 have long tails that outlast both the measured Hahn
echoes and the predicted decay when calculated using the
Ising model and delta-function π pulses. Furthermore,
we see the same qualitative results for 89Y in Y2O3. Be-
cause the natural abundance (n.a.) of 89Y is 100%, dilu-
tion of the spins on the lattice does not contribute to the
results.75,76

Additionally, at room temperature, C60 molecules form
an fcc lattice, and each C60 undergoes rapid isotropic ro-
tation about its lattice point.77,78 This motion eliminates
any inter-C60 J coupling1 but leaves the dipolar coupling
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between spins on different buckyballs. Thus the J cou-
pling, which we have not included in Hint [Eq. (7)], does
not play a major role in the results.6,79

I. Single Crystal Studies

In order to reduce the effects of skin depth,30,58,59 most
of our samples were ground to a powder. The calcula-
tions outlined in section II took this into account in the
disorder average by configuring each disorder realization
with a random orientation of the lattice with respect to
~Bext. Then, by picking small clusters of N spins, each
disorder realization was designed to represent a realistic
cluster in any one powder particle.

The real ground powder particles have different shapes
and sizes. Though the magnetic susceptibility of silicon
is very low,80 each powder particle would have a slightly
different internal field due to its shape.58,59 By approx-
imating the random powder particle as an ellipsoid of
revolution, we calculated the resultant magnetic suscep-
tibility broadening of the NMR linewidth.81,82,83,84,85,86

Convolving the magnetic susceptibility broadening with
the dipolar linewidth accounted for the 290 Hz FWHM
of our Si:Sb (2.75× 1017 Sb/cm3) powder sample.

In order to reduce the extrinsic broadening due to the
magnetic susceptibility, we studied a single crystal of
Si:Sb. Measurements in a single crystal allow confirma-
tion of the lattice model and furthers the understanding
of the magnetic susceptibility broadening. In a single
crystal of Si:Sb (1017 Sb/cm3) the orientation of the lat-
tice allows only discrete coupling constants and subse-
quently, a unique dipolar lineshape. Additionally, the
shape and orientation of the crystal with respect to ~Bext

yields a smaller spread in the internal field due to the
magnetic susceptibility.84 Fig. 17(inset, blue spectrum)]
plots the convolution of the dipolar lineshape and the
magnetic susceptibility broadening for the single crystal.
The small satellites in the spectrum are due to the dipo-
lar coupling between nearest-neighbors. This simulation
is a good fit to the measured spectrum [Fig. 17(inset, red
spectrum)].

In the single crystal, the CPMG echo train still exhibits
a long-lived coherence for short τ [Fig. 17(middle)] and
the even-odd effect for longer τ [Fig. 17(bottom)].

J. Magic Angle Spinning

The technique of magic angle spinning1,3,4,87 (MAS)
is used to reduce the dipolar coupling coefficient by ro-
tating the entire sample about an axis tilted at 54.7◦

with respect to ~Bext. In the time-average, the angular
factor (1 − 3 cos2 θjk) in the dipolar coupling constant
[see Eq. (6)] vanishes. In addition to reducing the dipo-
lar coupling, MAS eliminates Zeeman shift anisotropies
and first order quadrupole splittings. These experiments
seek to connect Hzz to the effects outlined in section III.
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FIG. 17: (Color online) NMR data in a single crystal of Si:Sb
(2.75× 1017 Sb/cm3) oriented with its (110) axis along ẑ (see
top inset). (Top) NMR spectrum (red) compared with a cal-
culation for silicon that include dipolar coupling of N = 6
spins, magnetic susceptibility broadening, and skin depth
due to the crystal shape (blue). FWHM=110 Hz. (Middle)
CPMG echo train for 2τ = 2.1 ms shows the long tail. (Bot-
tom) CPMG echo train for 2τ = 5.2 ms shows the even-odd
effect.

Also, narrowing the NMR linewidth even further than in
the single crystal leads to a better understanding of the
population of 29Si nuclei in the silicon lattice.

The FWHM of the MAS spectrum of Si:Sb (1017

Sb/cm3) [Fig. 18(top graph, red spectrum)] decreased
by almost a factor of 6 compared with the spectrum of
the static sample [Fig. 18(top graph, black spectrum)].
Despite this narrowing, the MAS spectrum does not re-
solve distinct features in the NMR lineshape. The upper
limit on the spread in Zeeman shifts is consistent with
the single crystal data (Fig. 17). Therefore, we conclude
that only Hint = HZ + Hzz is needed to produce the
static spectrum for this sample.

Figure 18 shows the CPMG echo train for two different
time delays τ taken during MAS. The top graph shows
that the echo train decays even more slowly than in the
static sample. Also, for very large inter-pi-pulse spacings,
as shown in the bottom graph, the even-odd effect is
not present. The absence of the dipolar coupling and
the dramatic changes in the observed CPMG echo trains
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FIG. 18: (Color online) Magic Angle Spinning in Si:Sb (1017

Sb/cm3). (Top) NMR spectrum of a static powdered sample
with FWHM = 175Hz (black) and the MAS spectrum spun
at 3 kHz with FWHM = 31 Hz (red). (Middle) CPMG echo
train while spinning. 2τ = 11.25 ms. Long tail is expected
since dipolar coupling is reduced. (Bottom) CPMG echo train
while spinning. 2τ = 0.2 s. No pronounced even-odd effect,
in contrast to Fig. 4(bottom) and Fig. 17(bottom).

suggest that Hzz plays an important role in our static
NMR studies.

We conclude this section by stating that these studies
are by no means a complete study of all extrinsic effects
in NMR. They are, however, representative of the high
quality of the pulses that we use and the simple spin
Hamiltonian of the nuclei under study. These experi-
ments are near-optimal yet still exhibit the unexpected
behavior of multiple π pulse echo trains. From these
experimental results we can make concrete assumptions
about the real pulse P and the real free evolution V.

The experiments outlined in this section provide the
following constraints on any theoretical model that may
explain our results: (1) the relevant internal Hamiltonian
should contain only the Zeeman and dipolar Hamiltoni-
ans Hint = HZ +Hzz and (2) the pulses are strong and
address all spins equally, but they are not instantaneous.

V. TREATMENT OF FINITE PULSES IN
EXACT CALCULATION AND AVERAGE

HAMILTONIAN THEORY

In section II we demonstrated how instantaneous π
pulses allow the measurable coherence of the system to
evolve as if there were no pulses applied at all. Addi-
tionally, this measurable coherence should decay to zero
under the action of the dipolar Hamiltonian with time
constant T2.

However, in section III we reported experiments that
contradict these expectations, such as the sensitivity of
the echo train to the phase of the applied π pulses. Some
of these echo trains extend well beyond the expected T2

(CPMG, APCP) while others decay much faster (CP,
APCPMG).

Additionally, the experimental explorations of section
IV strongly suggest that extrinsic pulse imperfections are
not responsible for these large discrepancies. Our ob-
served effects are universal across many different samples
all connected by the same form of the dipolar Hamilto-
nian. Thus, only the Zeeman and dipolar Hamiltonians
are needed but the validity of the instantaneous π pulse
approximation must be reconsidered.

In this section, we calculate the exact evolution of the
density matrix by numerical means. The action of strong
but finite pulses under the simultaneous influence of the
dipolar Hamiltonian is the intrinsic effect that can lead
to the large discrepancies we have observed.

A. Exact Numerical Calculation With Strong
Finite Pulses

Since the delta-function pulse approximation has failed
to explain our results, we return to the exact form of the
pulse evolution operator from Eq. (9)

Pφ = exp
(
− i

~
(HZ +Hzz +HPφ)tp

)
(23)

where HZ is the Zeeman Hamiltonian, Hzz is the secular
dipolar Hamiltonian, and HPφ = −~ω1IφT is the Hamil-
tonian form of an rf pulse applied for time tp along the
φ-axis in the rotating frame.

To model the evolution of a spin system after n pulses,
the relevant form of Eq. (1) becomes

ρ(t) = {UPφU}nρ(0){U−1P−1
φ U

−1}n (24)

where the free evolution propagator is given by U =
exp(− i

~ (HZ+Hzz)τ). From here, no approximations are
made. Instead, numerical diagonalization is used during
each Pφ and U to evaluate ρ(t) for the four pulse se-
quences that we consider.20,88

Figure 19 plots the exact calculation of 〈Iy1(t)〉 =
Tr{ρ(t)Iy1} [Eq. (15)] averaged over 400 disorder real-
izations (DRs) for the four pulse sequences CP, CPMG,
APCP, and APCPMG. These exact calculations have the
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FIG. 19: (Color online) Exact calculation using strong but
finite π pulses. Calculation uses parameters: N = 6 spins,
simulated pulse strength H1 = 40 kHz (tp = 12.5 µs), delay
between π pulses 2τ = 2 µs, dipolar coupling scaled by 25 ×
Bjk of 29Si, Zeeman shift Ωz/h drawn from a 3 kHz wide
Gaussian for each DR, and the disorder average is taken over
150 DRs. The full lineshape is 4 kHz, which is a convolution
of the pure dipolar line of 2.2 kHz and the Zeeman spread of
3 kHz. Compare these curves to the data of Fig. 6. CPMG
and APCP display long-lived tails while CP and APCPMG
decay to zero.

same qualitative trends as the experiments. Namely,
CPMG and APCP produce long-lived measurable co-
herence while CP and APCPMG decay away to zero.
Since these exact calculations include no extrinsic imper-
fections, we conclude that the dipolar Hamiltonian and
Zeeman Hamiltonian under the pulse must be the sole
cause for the different time-evolved curves in Fig. 19.

However, there are two important caveats for these cal-
culations. First, we used an N = 6 spin system to simu-
late the behavior of a macroscopic spin system. Because
of computer limitations, using a much larger system is
not possible, inevitably leaving out many multi-spin en-
tanglements. Second, to get these results using only
N = 6 spins, our simulations used both larger linewidths,
and shorter inter-pulse spacing than in the experiments.
We will return to these two important points in the last
part of this section to show how system size and coupling
strength are related.

B. Understanding the Exact Calculation using
Average Hamiltonian Theory

To understand the mechanisms underlying the ex-
act calculation, we turn to average Hamiltonian
theory1,3,5,45,89 to obtain approximate analytic results for
the four pulse sequences under study. This analysis, in
turn, allows the development of further calculations to
uncover trends in the behavior of N spins under strong
π pulses.

Average Hamiltonian or coherent averaging theory89

was developed in NMR to approximate the behavior of
multiple pulse experiments that use many π/2 pulses.
Additionally, average Hamiltonian theory can be used to
describe NMR experiments with very long pulses such as
spin-locking or the magic-echo.16,17

Here, we wish to apply average Hamiltonian theory
to a train of strong but finite π pulses where the delta-
function pulse approximation (section II) predicts echoes
that decay to zero. Because our pulses are so strong (Fig.
13), we expected the nonzero pulse duration to give only
a small perturbation to the delta-function pulse approxi-
mation. However, the exact calculations show a dramatic
departure from this expectation (Fig. 19).

The average Hamiltonian analysis starts from the total
time-dependent Hamiltonian of an interacting spin sys-
tem in the presence of an rf field

Htot(t) = HZ +Hzz − ~ω(t)IφT (25)

where ω(t) = ω1 during a pulse and zero during free
evolution. HZ and Hzz are the Zeeman Hamiltonian
and the secular dipolar Hamiltonian respectively [Eqs.
(4) and (5)]. The spin operator along φ can be pro-
jected along the principle axes in the rotating frame
IφT = cosφIxT + sinφIyT .

We label the first two terms of Eq. (25) as the internal
Hamiltonian Hint = Hzz+HZ in the language of average
Hamiltonian theory.3,89 The applied pulse term then be-
comes the external or rf HamiltonianHrf (t) = −~ω(t)Iφ.

The total time-evolution operator

Utot(t) = T exp
[
− i

~

∫ t

0

dt′H0(t′)
]

(26)

can then be split into a product of two parts

Utot(t) = Urf (t)Uint(t) (27)

Urf (t) = T exp
[
− i

~

∫ t

0

dt′Hrf (t′)
]

(28)

Uint(t) = T exp
[
− i

~

∫ t

0

dt′H̃(t′)
]

(29)

H̃(t) = U−1
rf (t)HintUrf (t) (30)

where T is the Dyson time-ordering operator1 and H̃(t)
is the toggling frame Hamiltonian.3,5,89 This separation
is convenient when Hrf is periodic and cyclic with cy-
cle time tc. In this case, Urf (tc) = 1 and the Magnus
expansion90 gives

Uint(ntc) = exp
[
− i

~
ntc(H̄(0) + H̄(1) + H̄(2) + ...)

]
(31)

for the time-evolution after any multiple, n, of the cycle
time. The first two terms in the expansion are given by

H̄(0) =
1
tc

∫ tc

0

dtH̃(t) (32)

H̄(1) = − i

2tc~

∫ tc

0

dt2

∫ t2

0

dt1[H̃(t2), H̃(t1)]. (33)
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The advantage of the Magnus expansion is that the full
time-evolution operator Utot(t) is now written as a single
exponential instead of a product of exponentials. Addi-
tionally, the terms in the average Hamiltonian expansion
H̄(0), H̄(1), H̄(2) . . . are time independent and exactly
describe the system at multiples of the cycle time tc. In
practice, this exact expression is replaced by an approx-
imate one when the series expansion is truncated after
the first few terms.1,3,5,45,89

The four pulse sequences studied here all have the same
cycle time tc = 4τ + 2tp consisting of two π pulses with a
time delay of τ before and after each pulse. The average
Hamiltonian description is simplest when the cycle time
is short in the strong pulse regime (~ω1 � Ωz, Bjk) since
the expansion in Eq. (31) is then dominated by the first
few terms.

Using these steps we can calculate the leading terms
for the four pulse sequences under study. For example,
the time-evolution of ρ(t) under the CPMG sequence is

ρ(t) = Utot(t)ρ(0)U−1
tot (t)

= {U5P4U3P2U1}nρ(0){inv}n (34)

where P2 = P4 are π pulses along ŷ and include the
Zeeman and dipolar Hamiltonians. Ui, i = 1, 3, 5 are the
free evolution propagators that only include the Zeeman
and dipolar Hamiltonian.

After identifying the parts of Utot, the next step is
to calculate the toggling frame Hamiltonians for each of
these events. As an example, H̃(t3) in CPMG for event
U3 is

H̃(t3) = {U−1
rf (t1)U−1

rf (t2)U−1
rf (t3)}Hint{inv}

= R−1
y (ΩzIzT +Hzz)Ry

= −ΩzIzT +Hzz (35)

where the unitary operators Urf are applied in reverse
time-ordering [Eq. (30)].

Table II gives the expressions for all the toggling frame
Hamiltonians as modified by Hrf in each event of the
CPMG sequence. Note that the difference between the
toggling frame transformation of the U3 interval and the
U1 and U5 intervals is only the sign in front of the Zee-
man term ΩzIzT . This detail is important because it is
an explicit indication that the pulses are free from any
extrinsic errors. Thus, Iz rotates to −Iz after each π
pulse. This rotation flips the sign of the single-spin Zee-
man Hamiltonian, but does nothing to the bilinear dipole
Hamiltonian.

For comparison, the toggling Hamiltonians for the
APCP sequence are provided in Table III. The other two
sequences can be obtained with a proper sign change from
the toggling Hamiltonians for CPMG and APCPMG.
The toggling frame Hamiltonians for APCPMG differs
from CPMG by the signs of Sθ and S2θ in event P2 of
Table II. Similarly, CP differs from APCP also by the
signs of Sθ and S2θ in event P2 of Table III.

The time-dependent terms of the toggling frame
Hamiltonians during the pulses are of key interest in this

TABLE II: Toggling frame Hamiltonians H̃(ti) during each
event of the CPMG cycle {τ−180Y−2τ−180Y−τ} where tp is the
pulse time, and τ is the free evolution time. Cθ = cos(ω1t),
C2θ = cos(2ω1t), Sθ = sin(ω1t), S2θ = sin(2ω1t).

Event Time H̃(ti) for CPMG
U1 τ +ΩzIzT +Hzz
P2 tp +Ωz(IzTCθ+IxT Sθ)− 1

2
Hyy+HSyC2θ+HAy S2θ

U3 2τ −ΩzIzT +Hzz
P4 tp −Ωz(IzTCθ+IxT Sθ)− 1

2
Hyy+HSyC2θ+HAy S2θ

U5 τ +ΩzIzT +Hzz

TABLE III: Toggling frame Hamiltonians H̃(ti) during each
event of the APCP cycle {τ−180X̄−2τ−180X−τ}.

Event Time H̃(ti) for APCP
U1 τ +ΩzIzT +Hzz
P2 tp +Ωz(IzTCθ+IyT Sθ)− 1

2
Hxx+HSxC2θ+HAx S2θ

U3 2τ −ΩzIzT +Hzz
P4 tp −Ωz(IzTCθ−IyT Sθ)− 1

2
Hxx+HSxC2θ−HAx S2θ

U5 τ +ΩzIzT +Hzz

analysis. The cosine and sine terms depend directly on
the strength of the rf field ω1. It is tempting to assume
the limit ω1 → ∞ and tp → 0, which would make these
time-dependent terms under the pulses negligible. After
all, most experiments in this study are conducted us-
ing very strong pulses. However, by keeping these small
terms, we find that they have a large impact over many
pulses.

The toggling frame Hamiltonians from Table II are fed
into Eq. (32) to yield the leading order behavior for the
CPMG sequence.20 This approach is repeated for all four
pulse sequences giving the zeroth-order average Hamilto-
nians

H̄(0)
CP =

1
tc

(4τHzz − tpHxx) (36)

H̄(0)
CPMG =

1
tc

(4τHzz − tpHyy) (37)

H̄(0)
APCP =

1
tc

(4τHzz − tpHxx +
4Ωztp
π

IyT ) (38)

H̄(0)
APCPMG =

1
tc

(4τHzz − tpHyy −
4Ωz
π
tpIxT ) (39)

with the following first order corrections

H̄(1)
CP =

+i
2tc~

tp
π

(
tp[HAx ,HSx +Hxx]

+(8τ+2tp)[ΩzIyT ,ΩzIzT +Hxx]
)

(40)

H̄(1)
CPMG =

−i
2tc~

tp
π

(
tp[HAy ,HSy +Hyy]

+(8τ+2tp)[ΩzIxT ,ΩzIzT +Hyy]
)

(41)

H̄(1)
APCP = 0 (42)

H̄(1)
APCPMG = 0 (43)
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where we define

Hxx =
N∑
j=1

N∑
k>j

Bjk(3IxjIxk − ~Ij · ~Ik) (44)

Hyy =
N∑
j=1

N∑
k>j

Bjk(3IyjIyk − ~Ij · ~Ik) (45)

HAx =
3
2

N∑
j=1

N∑
k>j

Bjk(IyjIzk + IzjIyk) (46)

HAy =
3
2

N∑
j=1

N∑
k>j

Bjk(IxjIzk + IzjIxk) (47)

HSx =
3
2

N∑
j=1

N∑
k>j

Bjk(IzjIzk − IyjIyk) (48)

HSy =
3
2

N∑
j=1

N∑
k>j

Bjk(IzjIzk − IxjIxk). (49)

Inspection of these expressions leads to several impor-
tant conclusions. First, the average Hamiltonian expres-
sions for all four pulse sequences reduce to the bare dipo-
lar Hamiltonian Hzz in the limit when tp → 0. The first
order correction terms H̄(1) vanish in that limit since they
are all proportional to tp. While the instantaneous pulse
approximation leads to an identical decay for all four
pulse sequences, real pulses introduce dynamics unique
to each sequence.

Second, all the first-order correction terms H̄(1) are
strictly due to the commonly neglected time-dependent
terms under the pulse. Though the prefactor is small,
these first-order terms provide important contributions
to the time-evolution of quantum coherences.

Third, by symmetry, the alternating phase sequences
APCP and APCPMG have no odd-order average Hamil-
tonian terms. Some sequences were designed to exploit
such symmetries in an effort to eliminate the first few
average Hamiltonian terms and thus reduce decay. How-
ever, in experiments and in simulations, we observe a
long-lived coherence in the APCP sequence but a fast
decay in the APCPMG sequence.

Fourth, changing (+Ixj ,+Iyj ) → (+Iyj ,−Ixj ) maps
the average Hamiltonian expressions for CP (APCP)
into those for CPMG (APCPMG). Also, for Ωz = 0,
H̄(0)

CP ≡ H̄
(0)
APCP and H̄(0)

CPMG ≡ H̄
(0)
APCPMG leaving only

a difference in the first order correction terms. Despite
these similarities, all four pulse sequences produce very
different results in experiments (Fig. 6) and in simula-
tions (Fig. 19).

Fifth, changing (+Ixj ,+Iyj ) → (−Ixj ,−Iyj ) maps
Eqs. (36)-(43) into the expressions for the phase-reversed
partner of each sequence. For example, if “flip-CP” uses
(X̄, X̄) pulses, then H̄(0)

flipCP = +H̄(0)
CP, while H̄(1)

flipCP =

−H̄(0)
CP. As another example, if “flip-APCP” uses (X, X̄)

pulses, then H̄(0)
flipAPCP = 1

tc
(4τHzz − tpHxx − 4Ωztp

π IyT ,
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FIG. 20: (Color online) Calculations for the CPMG pulse
sequence with N = 4, 2τ = 2 µs, tp = 12.5 µs, 25×Bjk of 29Si
in silicon, and an average over 400 DRs. Exact calculations
with Ωz/h drawn from a 3 kHz wide Gaussian for each DR
(purple curve) and Ωz = 0 (red curve). Average Hamiltonian

calculations H̄(0)
CPMG + H̄(1)

CPMG with Ωz/h drawn from a 3
kHz wide Gaussian for each DR (teal curve) and Ωz = 0

(blue curve). Approximate calculation with H̄(0)
CPMG +F̄ (1)

CPMG

for Ωz = 0 (green curve). Zeroth order average Hamiltonian

H̄(0)
CPMG (black curve).

[compare with Eq. (38)] while H̄(1)
flipAPCP = H̄(1)

APCP = 0.
Sixth and finally, the alternating phase sequences

APCP and APCPMG have another distinct difference
from CP and CPMG at the level of H(0). In equations
(38) and (39) a single spin operator appears that is pro-
portional to both the Zeeman shift Ωz and the pulse du-
ration tp.

C. Second Averaging

Though the average Hamiltonian expressions [Eqs.
(36)-(43)] are all different, it is not obvious how they pro-
duce the very distinct expectation values 〈Iy(t)〉 in Fig.
19. In order to gain insight into the mechanisms that
produce these results, we rewrite the average Hamilto-
nian expressions using second averaging.3,91,92

Equations (38) and (39) each contain a single spin op-
erator term (e.g. 4Ωztp

π IyT in H̄(0)
APCP) that looks like a

transverse field coupled to the spins. Since H̄(0) is time-
independent, we treat this effective transverse field as a
continuous field H̄rf even though it only originates from
the pulses. Applying average Hamiltonian theory in this
second toggling frame yields

¯̄H
(0)

APCP = − 1
tc

(2τ − tp
2

)Hyy (50)

¯̄H
(0)

APCPMG = − 1
tc

(2τ − tp
2

)Hxx. (51)
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These leading order second-averaged Hamiltonians dif-
fer only in the direction of a single anisotropic dipolar
Hamiltonian term. The direction for both Hxx and Hyy
were dictated by the effective transverse field H̄rf . The
effect that these anisotropic dipolar Hamiltonians have
on the measurable coherence depends on the initial den-
sity matrix. For this paper, we set ρ(0) = IyT . From the

commutation relations, we note that ¯̄H
(0)

APCP preserves

IyT , since [IyT ,Hyy] = 0, while ¯̄H
(0)

APCPMG does not, since
[IyT ,Hxx] 6= 0. Therefore, this second-averaging analysis
predicts that APCP will have long-lived coherence while
APCPMG should rapidly decay towards zero.

However, only considering Eqs. (50) and (51) would
be a mistake since higher order corrections in this second
averaged Magnus expansion are non-negligible. Strictly
truncating the second averaged Hamiltonian to Eqs. (50)
and (51) is only a good approximation when Ωztp �
Bjktc. In contrast, our experiments are typically in the
regime where Ωztp is comparable to Bjktc. Still, our ex-
perimental results show long-lived coherence in APCP,
suggesting that the higher-order corrections do not in-
duce decay.

Because a similar difference exists between the CP and
CPMG pulse sequences, we wish to apply the idea of sec-
ond averaging to their average Hamiltonian expressions
as well. However, because equations (36) and (37) do not
have similar effective transverse fields, we must look to
their first order correction terms.

For CPMG, the first order term H̄(1)
CPMG [Eq. (41)] con-

tains a single spin operator proportional to Ω2
zIyT from

the commutator [IxT , IzT ]. Similarly, H̄(1)
CP [Eq. (40)]

contains a term proportional to Ω2
zIxT . These single spin

terms are analogous to the effective transverse fields that

produced ¯̄H
(0)

APCP and ¯̄H
(0)

APCPMG. Thus, this analysis pre-
dicts long-lived coherence in CPMG and a fast decay in
CP, at least for large Ωz (Fig. 19).

However, in experiments, we observed a long tail in
CPMG even for very small Ωz. This experimental result
inspired us to re-examine H̄(1)

CPMG for another single spin
operator. Evaluating Eq. (41) for Ωz = 0 gives

H̄(1)
CPMG|Ωz=0 =

−i
2tc~

t2p
π

[HAy ,HSy +Hyy]. (52)

There are many multi-spin operators in this expression
but the only single-spin operator left in Eq. (52) is

F̄ (1)
CPMG ≡ −

9t2p
16πtc~

N∑
j=1

N∑
k>j

B2
jk(Iyj + Iyk). (53)

Although this term is indeed a single spin operator, it is
not proportional to the total spin operator IyT . Never-
theless, the effect of F̄ (1)

CPMG on H̄(0)
CPMG can be examined

by calculating the time-evolution of 〈Iy1(t)〉 using only
H̄(0)

CPMG + F̄ (1)
CPMG [Fig. 20(green curve)].

For comparison, Fig. 20 plots exact calculations and
average Hamiltonian calculations for the CPMG se-
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FIG. 21: (Color online) Calculations of the time evolution of

〈Iy(t)〉 under H̄(0)
CPMG + H̄(1)

CPMG [Eqs. (37) and (41)] with dif-
ferent coupling strengths as multiples of Bjk for 29Si in Silicon
(Bjk × 1 produces a dipolar linewidth of 90 Hz). Parameters:
N = 4 spins, ΩZ = 0, H1 = 40 kHz, 2τ = 2 µs, 1000 DR
average. Exact calculations produce similar curves for these
parameters.

quence. Without any additions, H̄(0)
CPMG [Fig. 20(black

curve)] decays to zero. Using the average Hamiltonian
H̄(0)

CPMG + H̄(1)
CPMG to time-evolve the expectation value

〈Iy(t)〉 yields a long-tail in good agreement with the ex-
act calculation for the case where Ωz/h is drawn from
a 3 kHz wide Gaussian for each DR [Fig. 20(teal curve
compared to purple curve)].

Even for the case of Ωz = 0 the average Hamiltonian
H̄(0)

CPMG + H̄(1)
CPMG [Fig. 20(blue)] is still in good agree-

ment with the exact calculation [Fig. 20(red)]. These
curves show that the long-tail in CPMG can exist in the
absence of the Ω2

zIyT term. Surprisingly, we also find that
H̄(0)

CPMG+F̄ (1)
CPMG [Fig. 20(green curve)] fits together with

these two curves despite the terms that were neglected.
However, these neglected terms also contribute to a tail in
calculations of H̄(0)

CPMG+H̄(1)
CPMG−F̄

(1)
CPMG. Furthermore,

multi-spin terms play an even bigger role in systems with
stronger coupling or a larger number of spins.

The emphasis of this section was to highlight the influ-
ence of a few important terms in the average Hamiltonian
[Eqs. (36)-(43)]. Focussing on only a few terms allows us
to understand the qualitative results in calculations of
〈Iy1(t)〉. The exact calculation contains more physics.
As we shall show in section VI, the qualitative similar-
ities pointed out in the second-averaging of APCP and
CPMG, for example, do not give a complete picture of
the evolution of ρ(t) (Fig. 25).
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FIG. 22: (Color online) Exact calculations of the CPMG pulse
sequence show that the tail height of the measurable coher-
ence increases with system size (even N are compared to avoid
artifacts93). Parameters: Ωz = 0, H1 = 40 kHz, 2τ = 2 µs,
25×Bjk of 29Si in silicon with a dipolar linewidth of 2.2 kHz,
400 DR average (100 DR average for N=8).

TABLE IV: Trace norms of the N -spin pure rf pulse Hamilto-
nian, HPY =−~ω1IyT , compared to that of the internal dipo-
lar Hamiltonian,Hzz. The local energy scale per-spin is calcu-
lated by dividing the total energy norms by ‖IzT ‖=

√
N2N−2.

Calculations were made using Fig. 22 parameters: Ωz = 0,
25×Bjk of 29Si in Silicon, H1 = 40 kHz, and averaged over
400 disorder realizations. Values given in kHz.

Expression N=4 N=6 N=8
Total Trace Norms:
‖HPY ‖/h 160.0 391.9 905.1
‖Hzz‖/h 4.1 10.2 25.9
Trace Norms per spin:
(‖HPy‖/‖IzT ‖)/h 40.0 40.0 40.0
(‖Hzz‖/‖IzT ‖)/h 1.0 1.0 1.1

D. Reconciling Simulations with Experiments

We now address the two important caveats that we
made for the exact calculations of Fig. 19. Namely, we
included only a small number of spins in our exact calcu-
lation and inflated the dipolar coupling strength slightly
above the experimental values in order to accentuate
the contributions of the time-dependent terms under the
pulses. For simplicity, this discussion considers only the
CPMG pulse sequence with Ωz = 0.

Figure 21 shows a set of calculations of 〈Iy(t)〉 evolved
under the first two terms of the Magnus expansion for
the CPMG sequence (H̄(0)

CPMG + H̄(1)
CPMG) for different

dipolar coupling strengths. For weak dipolar coupling
strengths (Bjk×1 of 29Si in Silicon), the measured coher-
ence decays to zero in agreement with the delta-function
pulse approximation (see section II). As Bjk increases,
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FIG. 23: (Color online) Exact calculations changing both
dipolar coupling strength and system size. By adding more
spins, the dipolar coupling strength can be reduced to yield
a similar tail height in CPMG. Parameters: Ωz = 0, H1 = 40
kHz, 2τ = 2 µs, 400 DR average.

the initial decay rate increases, consistent with the dipo-
lar linewidth.1,2,40,41,43 For large Bjk, this initial decay
is followed by a long tail that increases with dipolar cou-
pling strength.

Figure 22 shows a different set of calculations where
the CPMG tail height increases with system size. In this
case, the coupling strength is fixed at 25 times that of
29Si, while each exact calculation considers a different
number of spins N . By keeping Bjk fixed, the initial
decay is very similar for the three system sizes shown.
However, after some time, the effect of many strong but
finite π pulses appears to produce a long-lived tail in the
measured coherence that depends on N .

The system size dependence of the CPMG tail height in
Fig. 22 is peculiar, and deserves further analysis. In Table
IV we report our simulated numerical values of the size of
both the external rf pulse Hamiltonian, HPY = −~ω1IyT ,
and the internal dipolar Hamiltonian, Hint = Hzz using
the trace norm3,45,89 where ‖A‖ =

√
Tr{A†A}. On a

per spin basis, the rf pulse is ∼40 times the size of the
dipolar Hamiltonian, well into the strong pulse regime.
Therefore, the deviation from the delta-function pulse
limit should be tiny for any single pulse. Moreover, there
is no N -dependence in the per-spin comparison of energy
scales, which is consistent with the nearly identical initial
decays of all three curves in Fig. 22. On the other hand,
the tail height at later times in Fig. 22 is N -dependent;
the total internal energy scale ‖Hzz‖ in Table IV is also
N -dependent.

Since the CPMG tail height is sensitive to both the
dipolar coupling strength and the system size, we per-
formed a comparative calculation in an attempt to ex-
trapolate the results of Fig. 19 towards a system with
large N and weak Bjk (as in silicon). Figure 23 shows
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a pair of calculations where N is increased while Bjk
is decreased. The N = 4 spin calculation uses a dipo-
lar coupling strength 25 times stronger than that of sil-
icon, while the N = 6 spin calculation uses a reduced
dipolar coupling strength of 25/

√
6 times that of silicon.

We reduced the dipolar coupling strength by the ratio
of the system sizes using the trace norm scaling3,45,89

‖IzT ‖ =
√

Tr{I2
zT } =

√
N2(N−2) in order to keep ‖Hzz‖

constant between the two calculations. The relative
agreement in the calculated CPMG tail height supports
the notion that small systems of strongly coupled spins
share similarities with large systems of weakly coupled
spins.

These scaling calculations show that the total dipolar
energy of the system, which increases with system size,
is an important parameter in finite π pulse effects. It is
unknown whether a saturation would occur at some large
N or how strong the pulses need to be in a real system
so that the delta-function pulse approximation can safely
be invoked.

VI. VISUALIZING THE DYNAMIC DENSITY
MATRIX: EFFECTS OF NOVEL QUANTUM

COHERENCE TRANSFER PATHWAYS

The multiple-pulse experiments and calculations pre-
sented thus far have been concerned with the disorder-
averaged expectation value 〈Iy1(t)〉 = Tr{ρ(t)Iy1}. We
can gain more insight into the full quantum dynamics of
the spin system by visualizing the time-evolution of ρ(t),
both for a single disorder realization (DR), and for an
average over many DRs.

For an N = 6 spin system, ρ(t) is a 26 × 26 matrix1,4

of complex numbers z = reiθ that is difficult to present
in compact form. Since the initial state of the system
following the 90X pulse is ρ(0) = IyT , we found it conve-
nient to visualize the state of ρ(t) using a red-white-blue
color scale to represent the phase angle θ of each cell in
ρ(t). Any cells that have magnitudes r < 1/10 of the
largest initial magnitudes are colored black.

We start with the calculation for the case of CPMG
with delta-function π pulses as we have outlined in sec-
tion II. By setting the Zeeman spread Ωz = 0, the evolu-
tion of ρ(t) is caused by the dipolar Hamiltonian alone.

Figure 24 shows the disorder averaged expectation
value 〈Iy(t)〉 for N = 6 spins coupled by either the trun-
cated Ising Hamiltonian [Fig. 24(Ising)]

HIsing =
N∑
j=1

N∑
k>j

2BjkIzjIzk (54)

or by the secular dipolar Hamiltonian [Fig. 24(Secular)]

Hzz =
N∑
j=1

N∑
k>j

2Bjk
[
IzjIzk −

1
4

(I+
j I
−
k + I−j I

+
k )
]

(55)

along with snapshots of the corresponding density matrix
for each case.

In a single disorder realization (DR), the final density
matrix under HIsing looks very similar to the initial den-
sity matrix, however the phase of each nonzero element
has been scrambled from its initial phase (see Fig. 24 as
color online). The scrambled phase in a single DR trans-
lates to a decay of the magnitude in the average over 150
DRs and thus also the decay of 〈Iy1(t)〉.

Figure 24 shows that the secular dipolar Hamiltonian
also scrambles the phase of the density matrix as it
evolves in time. In a single DR, Hzz also spreads coher-
ence to additional cells in the density matrix. The mech-
anism responsible for the spreading of coherence in this
case are the flip-flop terms of Hzz. These terms allow the
transitions between spin-states that conserve z-angular
momentum. Both the flip-flop terms and the initial den-
sity matrix proportional to IyT dictate the possible cells
that can be reached after time-evolution.1,4,41 Through
both the scrambling of the phase and the spread of co-
herence, the evolution of the density matrix for delta-
function pulses leads to decay in the disorder average.

For finite pulses, the evolution of the density matrix
can be very different. Figure 25 shows the density matrix
as it evolves under the four pulse sequences

CP : 90X−τ−{180X−2τ−180X−2τ}n

APCP : 90X−τ−{180X̄−2τ−180X−2τ}n

CPMG : 90X−τ−{180Y −2τ−180Y −2τ}n

APCPMG : 90X−τ−{180Ȳ −2τ−180Y −2τ}n

where the internal Hamiltonian is present during the
strong but finite pulses. Note that even after the first
two π pulses, ρ(t) looks very similar to ρ(0), since ω1 is
big and the difference from a pure rotation is small. Nev-
ertheless, in contrast to the delta-function pulse approx-
imation, these pulse sequences allow much more coher-
ence transfer to different cells of the density matrix. In
particular, for the CP and CPMG sequences, the spread
of coherence has reached every single cell of the 26 × 26

density matrix after evolving under 300 strong but finite
π pulses.

The average Hamiltonian expressions for the four pulse
sequences give us a better understanding of the mecha-
nism of coherence flow to other cells of the density matrix
for the case of finite pulses. For example, the APCP se-
quence has a zeroth order Average Hamiltonian

H(0)
APCP =

N∑
j=1

N∑
k>j

Bjk

[
κ1IzjIzk + κ2(I+

j I
−
k + I−j I

+
k )

+κ3(I+
j I

+
k + I−j I

−
k )
]

+ κ4(I+
j − I

−
j ) (56)

when expressed using the raising and lowering operators.
Here, κ1 = 8τ+tp

tc
, κ2 = 4τ+tp

4tc
, κ3 = − 3tp

4tc
, κ4 = −i 2Ωztp

πtc
.

The last two terms in Eq. (56) do not appear in the
Hamiltonian under the delta-function pulse approxima-
tion [Eq. (55)]. Furthermore, these terms are distinct
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FIG. 24: (Color online) Dipolar decay of 〈Iy1(t)〉 with snapshots of the z-basis density matrix evolving in time under the Ising
Hamiltonian (left) and the secular dipolar Hamiltonian (right). Parameters: N = 6, ρ(0) = IyT , Ωz = 0, H1 = 40 kHz, 2τ = 2
µs, 25 × Bjk of 29Si in silicon, and Bjk = 0 during pulses. The phase is colored on a red-white-blue color scale (inset). Cells
are set to black if their magnitude is less than 1/10 of the largest initially filled cells. In a single disorder realization (DR) the
initial phase coherence is lost after many pulses using HIsing (left). Using Hzz (right) spreads coherence to other parts of the
density matrix and mixes their phase. After an average over 150 DRs, the initial state has decayed in both cases.95
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FIG. 25: (Color online) Expectation value 〈Iy1(t)〉 and the density matrix ρ(t) as they evolve under four different pulse sequences
with N = 6, Ωz drawn from a 3 kHz wide Gaussian, 25×Bjk of 29Si in silicon, H1 = 40 kHz, 2τ = 2 µs. The phase is colored on
a red-white-blue color scale (inset). Cells with negligible magnitude are colored black. Compare the single DR density matrix
snapshots with those of Fig. 24. Much more coherence is spread about the density matrix in these exact calculations, yet the
disorder average can yield long-lived coherence (CPMG and APCP) as well as fast decay (CP and APCPMG).95
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FIG. 26: (Color online) Knockout calculations for CPMG.
Parameters: N=6, 150 × Bjk of 29Si in silicon, Ωz = 0,
H1 = 40 kHz, 2τ = 2 µs, and 400 DR average. The “knock-
out” trace (purple), is calculated by deleting density matrix
cells with quantum coherence order q 6= ±1 after each π pulse.
(The delta-function pulse approximation assumes all coher-
ence stays as q = ±1 for all time.) The long tail in the exact
CPMG calculation (red) requires coherence transfer pathways
between all quantum coherences.1,4,88

because they do not conserve z-angular momentum. The
appearance of these novel terms is yet another intrinsic
property of the finite pulse. Regardless of how well real
pulses are engineered to reduce tp, unless tp is exactly
zero, these extra terms will enable the spread of coher-
ence to parts of the density matrix fundamentally for-
bidden in the delta-function pulse approximation. Thus,
after the application of many π pulses, the final density
matrix could be nowhere near the expected result, if we
fail to consider the action of real pulses.

The significance of our argument for NMR would be
lost if these extra coherence transfer pathways only led
to an imperceptible difference in the decay of 〈Iy1(t)〉.
However, as Fig. 25 shows, the enhanced spread of coher-
ence in a single DR can surprisingly preserve the measur-
able coherence (CPMG and APCP) or lead to decay (CP
and APCPMG) in the disorder average depending on the
phase of the π pulses. Thus, it is of considerable impor-
tance to understand the entire density matrix since real
pulses connect all cells back to the measurable channel.

To illustrate the influence of these new coherence trans-
fer pathways4 to the measurable cells, we performed a
“knockout” calculation88 that periodically zeroes cells in
the density matrix that should always be zero under the
secular dipolar Hamiltonian and delta-function π pulses
[i.e. cells that remain black in Fig. 24(Secular Dipolar)
after 2400 pulses in 1 DR]. The red curve in Fig. 26 is the
disorder averaged 〈Iy1(t)〉 for the CPMG sequence with
a long-lived tail. The purple curve is the same CPMG
pulse sequence but applies the “knockout” procedure af-
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FIG. 27: (Color online) Calculations for APCP with N = 4,
Ωz drawn from a 290 Hz wide Gaussian, 1×Bjk of 29Si in sili-
con, H1 = 1.5 MHz, 2τ = 2 µs, and 100 DR average. Even for
H1/FWHM = 5000, the delta-function pulse approximation
(black) misses important physics from the exact calculation
(green).

ter each π pulse and in each DR. Because of the drastic
decay of the “knockout” curve, we infer that not only do
these extra coherence transfer pathways exist, but they
allow coherence to constructively flow back to the mea-
surable channel leading to the long tail in the CPMG
sequence.

VII. CONCLUSIONS

We have shown experimental evidence of pulse sensi-
tivity in dipolar solids for a variety of samples and ex-
perimental conditions. We find that the spin system is
intrinsically sensitive to the phase and presence of real fi-
nite pulses even when these pulses are much stronger than
the spectral linewidth. Furthermore, exact calculations
show this pulse sequence sensitivity in small clusters of
spins with large coupling strength and short inter-pulse
spacing. We suggest that our findings should apply to
large numbers of spins with weaker coupling and longer
inter-pulse spacing, based on a phenomenological scaling
of our exact results. The results of the exact calculation
and average Hamiltonian analysis show that no extrinsic
effects are needed to describe the phenomena.

Conventional expectations from NMR theory suggest
that the delta-function pulse approximation is applica-
ble when the pulse is much stronger than the spread of
Zeeman energies (~ω1 � Ωz) and much stronger than
the coupling strength (~ω1 � Bjk). However, we have
shown that the delta-function pulse approximation can
miss important physics for any real pulse in the presence
of an always-on internal Hamiltonian. These effects are
especially pronounced when considering the action of π
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pulses since the unique pulse-dependent terms have no
analog in the delta-function pulse approximation.20

Simply ignoring the intrinsic effects under real finite
pulses can lead to dramatic consequences as shown in
Fig. 27. The green trace shows the exact calculation
of 〈Iy1(t)〉 for the APCP sequence under the action of
finite pulses. The black trace is the same calculation but
where we have artificially set the internal Hamiltonian
to zero during the pulses. It is particularly alarming to
note that we have used a pulse strength that is 5000
times stronger than the full-width-at-half-maximum of
the NMR spectrum, yet the two curves do not agree.
The validity of the delta-function pulse approximation
needs to be justified carefully and quantitatively, at least
in the limit of many spins, many π pulses, or both.

Our findings have an important connection to the field
of quantum information processing since many quantum
algorithms call for the application of repeated π pulses
to a quantum system.7,8,9,10,11,12 Typically, the delta-
function pulse approximation is used in the analysis.
While we have not considered all possible internal Hamil-
tonians, or pulse types, we caution the reader that the
validity of the delta-function pulse approximation should
be checked for each system. Our results suggest that to
obtain the ideal behavior of repeated π pulse sequences,
the internal Hamiltonian should be completely set to zero

during the action of any real pulse. It may not be enough
to simply reduce the coupling strength, even by an order
of magnitude. Furthermore, any effective transverse field
during the pulses could also change the system’s expected
response after many pulses are applied. The effects of
real pulses need to be taken into account if the promise
of quantum control is to be realized.

More theoretical research on this problem could lead
to a deeper understanding of the interplay between the
internal Hamiltonian and real pulse action.88 It should
also be possible to take advantage of the dynamics under
the real pulse in the development of advanced strong-
pulse sequences.94
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