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Theory of enhancement of thermoelectric properties of materials with nanoinclusions
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Based on the concept of band-bending at metal/semiconductor interfaces as an energy filter for
electrons, we present a theory for the enhancement of the thermoelectric properties of semiconductor
materials with metallic nanoinclusions. We show that the Seebeck coefficient can be significantly
increased due to a strongly energy-dependent electronic scattering time. By including phonon
scattering, we find that the enhancement of ZT due to electron scattering is important for high
doping, while at low doping it is primarily due to decrease of the phonon thermal conductivity.

PACS numbers: 73.63.-b, 72.15.Eb, 72.10.-d, 65.40.-b

I. INTRODUCTION

The energy conversion efficiency of thermoelectric de-
vices depends on the figure of merit ZT = S2σT/κ,
where S, σ, T , and κ are the Seebeck coefficient, elec-
trical conductivity, temperature, and thermal conductiv-
ity. In the best thermoelectric materials ZT is typically
∼ 1, and it is difficult to increase ZT beyond this value
because of competing effects of electrical and thermal
conductivities. Advances over the past decade show that
it is possible to enhance ZT in nanostructured thin-film
systems by taking advantage of quantum confinement to
enhance the power factor S2σ,1 or to increase phonon
scattering at interfaces to reduce the lattice contribution
to κ.2 On the other hand, many existing and envisioned
thermoelectric applications will require a material that
is itself of macroscopic dimension. Therefore, recent re-
ports of property enhancement in bulk alloys possessing
nanometer-scale compositional modulations have gener-
ated much excitement.3,4,5,6 ZT values as high as 2.2 have
been reported3,4 in the (PbTe)x(AgSbTe2)1−x system,
and have been ascribed to a large Seebeck coefficient and
low lattice thermal conductivity due to nanoscale clus-
tering of Ag and Sb. Heremans et al.5 reported that the
Seebeck coefficient in bulk PbTe can be increased signif-
icantly by precipitating a fine distribution of Pb nanoin-
clusions, and suggested heuristically that the increase in
Seebeck coefficient originates from an energy-filtering ef-
fect due to a strongly energy-dependent electronic scat-
tering time. Kim et al.6 observed an enhancement of
the thermoelectric properties when ErAs nanoparticles
of 2.4 nm average diameter were embedded in a InGaAs
matrix, and ascribed the increase to a reduction in the
phonon thermal conductivity. Given these observations,
a general understanding of the role of nanoinclusions in
enhancing the thermoelectric properties of materials is
needed, in particular to assess the relative importance of
electronic and phonon scattering.
In this paper we present a theoretical model and nu-

merical calculations of the thermoelectric properties of
bulk semiconductors containing metallic nanoparticles.
Our model considers scattering of electrons on the band-
bending at the interfaces between the semiconductor host
and randomly distributed metallic islands. This causes

energy-dependent scattering of electrons, leading to an
energy filterting effect that increases the Seebeck co-
efficient. This provides an explicit physical model for
the proposed energy filtering effect.5 By combining this
model with a model for phonon scattering on the nanoin-
clusions, we predict significant enhancement of the ZT
factor.
We point out that while the role of metallic nanoinclu-

sions may appear at first to be similar to that of point de-
fects for which extensive work has been done, the physics
is actually quite different. Indeed, in addition to the elec-
tronic scattering, the phonon scattering on nanoinclu-
sions occurs in a completely different regime than that
on point defects, as will be discussed in section IVB.
The central idea in this paper is illustrated in Fig-

ure 1. There, spherical metallic nanoinclusions with ra-
dius R and volume fraction x are randomly distributed
in a bulk semiconductor material. In general, at such
metal/semiconductor interfaces, charge transfer between
the metal and the semiconductor leads to band-bending
away from the interface, characterized by the electro-
static potential V (r) (Fig. 1b). The presence of this
potential causes energy-dependent scattering of electrons,
as illustrated in Fig. 1c. The high-energy electrons are
unaffected by the potential, but the low energy electrons
can be strongly scattered. Because the Seebeck coeffi-
cient depends on the energy derivative of the relaxation
time d ln τ (E) /dE at the Fermi energy, this type of en-
ergy filtering is precisely the prescription to increase the
Seebeck coefficient of thermoelectric materials.
Our theoretical model is based on the Boltzmann

Transport Equation (BTE) within the relaxation time
approximation. We apply the model to a system of n-
doped PbTe with metallic nanoinclusions because of the
availability of experimental data and good understand-
ing of scattering mechanisms in bulk PbTe7,8,9, although
the theory can be used for any thermoelectric material.

II. CHARGE AND HEAT TRANSPORT IN

BULK PBTE

In this section we will review the expressions7,8,9 for
the charge and heat transport in bulk PbTe with n-type

http://arxiv.org/abs/0807.0260v1
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FIG. 1: (a) Schematic of the semiconductor host with metallic
nanoinclusions. Panel (b) shows an example of the calculated
potential V (r) and the energy diagram for PbTe at T = 300K,
n = 2.5 × 1019cm−3, VB = −0.11eV , and R = 1.5nm. Panel
(c) illustrates the concept of energy filtering: low energy elec-
trons scatter strongly with the potential, but high energy
electrons are unaffected. The calculated electronic relaxation
time for the potential of panel (b) is also shown.

doping. The valence band of PbTe contains four energy
minima located at the L points. The energy dispersion
relation near each minima is usually described by the
Kane model8

~
2k2l
2m∗

l

+
~
2k2t
m∗

t

= E(1 + E/Eg), (1)

where Eg is the direct energy gap of PbTe, ~ is the Planck
constant, and k and m∗ are the electron wavevector and
effective mass (at minimum energy point k = 0, E = 0)
along the longitudinal (suffix l) and transverse (suffix t)
directions of the corresponding L point. For n-type PbTe
the electron concentration is given by

n[EF ] =
(2m∗

dkBT )
3/2

3π2~3

∞
∫

0

γ(z)3/2
(

−∂f0
∂z

)

dz, (2)

wherem∗

d = 42/3(m∗

lm
∗2
t )1/3 is the density of states effec-

tive mass in which the 4-fold degeneracy is included, kB
is the Boltzmann constant, f0(z) is the Fermi function
written in terms of dimensionless variables z = E/(kBT )
and zF = EF /(kBT ). EF is the Fermi energy, and the
function γ(z) = z+bz2, where b = kBT/Eg. In the relax-
ation time approximation the BTE expressions for elec-
trical conductivity, σ, Seebeck coefficient, S, and electron
contribution to thermal conductivity, κe, are

8

σ =
e2

m∗

c

(2m∗

dkBT )
3/2

3π2~3
〈τ(z)〉 , (3)

S =
kB
e

〈τ (z)(z − zF )〉
〈τ (z)〉 , (4)

and

κe = σT
k2B
e2

(

〈

τ (z)z2
〉

〈τ (z)〉 −
[ 〈τ(z)z〉
〈τ (z)〉

]2
)

, (5)

wherem∗

c = 3/(1/m∗

l+2/m∗

t ) is the effective conductivity
mass, and the average is defined as

〈A(z)〉 ≡
∫

∞

0

γ(z)3/2

1 + 2bz

(

−∂f0
∂z

)

A(z)dz. (6)

In bulk PbTe at room temperature the dominant con-
tributions to the total relaxation time, τbulk(z), are scat-
tering by the deformation potential of acoustic and opti-
cal phonons, and polar scattering by optical phonons.7,8,9

We also take into account scattering on the short-range
potential of vacancies although it gives a much smaller
contribution compared to scattering by phonons. Thus,
the total relaxation time for bulk PbTe is given by

1

τ bulk(z)
=

1

τPO(z)
+

1

τa(z)
+

1

τo(z)
+

1

τv(z)
. (7)

The relaxation time due to polar scattering by optical
phonons reads8,9

τPO(z) =
~
2γ(z)1/2F−1

e2(2m∗

d1kBT )
1/2(ǫ−1

∞ − ǫ−1
0 )γ′(z)

, (8)

wherem∗

d1 = (m∗

lm
∗2
t )1/3 is the density of states effective

mass in the single valley, the function γ′(z) = 1+ 2bz, ǫ0
and ǫ∞ are the static and high frequency permittivities,
and

F = 1− δ ln(1 +
1

δ
)− 2bz(1 + bz)

(1 + 2bz)2
(9)

×[1− 2δ + 2δ2 ln(1 +
1

δ
)].

Here δ = (2kr0)
−2 with r0 the screening length of optical

phonons:

r−2
0 =

25/2e2m
∗3/2
d (kBT )

1/2

3π2~3
(10)

×
∞
∫

0

γ(z)1/2γ′(z)

(

−∂f0
∂z

)

dz.

The relaxation time due to scattering by the deforma-
tion potential of acoustic and optical phonons, and also
due to scattering on the short range potential of vacan-
cies can be written generally as8,9

τm(z) =
τ0,m

γ(z)1/2γ′(z)[(1−A)2 − B]
, (11)

where A = bz(1 − Km)/γ′(z), and B = 8bz(1 +
bz)Km/(3γ

′2(z)), with the suffix m = a for acoustic
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phonons, m = o for optical phonons, and m = v for
vacancies. The constants τ0,m and Km are defined as

τ0,a =
2π~4Cl

E2
ac(2m

∗

d1kBT )
3/2

, Ka =
Eav

Eac
, (12)

τ0,o =
2~2a2(~ω0)

2ρ

πE2
oc(2m

∗

d1kBT )
3/2

, Ko =
Eov

Eoc
, (13)

and

τ0,v =
π~4

U2
vcm

∗

d1(2m
∗

d1kBT )
1/2Nv

, Kv =
Uvv

Uvc
. (14)

Here Cl is a combination of elastic constants, Eac and Eav

are the acoustic phonon deformation potential coupling
constants for conduction and valence bands, Eoc and Eov

are optical phonon deformation potential coupling con-
stants for conduction and valence bands, Uvc and Uvv

are coupling constants of the short range potential of va-
cancies for conduction and valence bands, a is the lattice
constant, ω0 is the frequency of optical phonons, and ρ
is the mass density. Nv is the concentration of vacancies
calculated from the condition that one vacancy gives two
charge carriers, Nv = n/2.

The parameters used for calculation of the relaxation
times in bulk PbTe at T = 300K are taken from Ref. [9].
These parameters are shown in Table I. For calculations
at different temperatures we assumed the values of these
parameters to be the same as for T = 300K except for
Eg and m∗

t which were linearly interpolated and extrap-
olated using T = 4.6K and T = 300K values,9 with Eg

saturating for T > 400K.8

Parameter Value Parameter Value

Eg 0.315 eV ~ω0 0.0136 eV

m∗

t /m0 0.0453 a 6.461 Å

m∗

l /m0 0.24 ρ 8.24 g/cm

ǫ0 400 Eac 15 eV

ǫ∞ 32.6 Eoc 26 eV

Cl 7.1×1010N/m Ka,o 1.5

Uvc 3×10−34erg cm3 Kv 1.5

TABLE I: Parameters used to calculate the relaxation times
for bulk PbTe at T=300K.9 m0 is the free electron mass.

III. ELECTRON SCATTERING ON

BAND-BENDING POTENTIAL OF

NANOINCLUSIONS

A. Band-bending potential

In our model we assume that spherical metallic nanoin-
clusions with radius R and volume fraction x are ran-
domly distributed in a n-doped PbTe host material. In

this section we will calculate the contribution to the re-
laxation time due to scattering of electrons on the band-
bending potential at the metal-semiconductor interface.

For a single nanoinclusion, the electrostatic potential
V (r) can be calculated by solving the Poisson equation

ǫ0
4πe2

1

r

d2

dr2
rV (r) = n[EF ]− n[EF − V (r)]. (15)

The right-hand-side of this expression is simply the spa-
tially varying charge [see Eq. (2)] calculated by assum-
ing a rigid shift of the electronic bands with the local
potential V (r). We solve the Poisson equation with the
boundary conditions V (∞) = 0 and V (R) = VB. (VB is
the potential at the semiconductor/metal interface. The
value of VB is fixed for a particular metal, and depends
on the detailed properties of the interface. However, one
may consider it to be an optimization parameter provided
that the physics of the metal/semiconductor interface al-
lows tailoring of VB by choosing the metal.) We used
the fourth-order Runge-Kutta and shooting methods in
order to solve Eq. (15). Figure 1b shows an example of
the calculated potential V (r).

For small values of VB or for large r (when the potential
is screened and small) the right-hand-side of Eq. (15) can
be linearized with respect to small V :

d2

dr2
rV (r) =

1

λ2
rV (r), (16)

where λ is the screening length. The solution of Eq. (16)
is

V (r) ∝ 1

r
e−r/λ. (17)

For degenerate electrons the expression for λ takes the
simple form

1

λ2
=

2e2(2m∗

d)
3/2

ǫ0π~3

(

EF +
E2

F

Eg

)1/2(

1 + 2
EF

Eg

)

. (18)

Due to the large value of the dielectric constant in PbTe,
ǫ0 = 400, the screening length for typical doping con-
centrations is several times larger then the wavelength
of electrons on the Fermi surface. For example, for
n = 5×1019cm−3 one can obtain from Eq. (18) λ = 11nm
and kFλ = 7, where kF is the wavevector of the electron
on the Fermi surface. This value of kFλ slowly varies with
doping (for degenerate electrons we can use Eqs (2) and
(18) to obtain the dependence on doping kFλ ∝ n1/6).
On the other hand, a large value of λ can lead to an over-
lap of the band-bending between nanoparticles, which
may change the bulk carrier concentration. We have re-
stricted our calculations to a parameter range (doping
and inclusion volume fraction) where such effects are not
significant.
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B. Relaxation time for scattering on nanoinclusions

When the electron scattering on nanoinclusions is
taken into account the total relaxation time τ is

τ−1 = τ−1
bulk + τ−1

i , (19)

where the relaxation time for bulk PbTe is given by Eq.
(7), and τ i is the relaxation time due to scattering by
V (r) at randomly distributed metallic inclusions

τ−1
i = nivσt. (20)

Here

ni = 3x/(4πR3) (21)

is the concentration of inclusions, σt is the electronic
transport scattering cross-section, and v = ∂pEp is the
electronic velocity with p the momentum.
In order to calculate the transport cross-section in

a system with nonparabolic energy dispersion, we con-
sider an electron with momentum p and wave function
ψ
p
(r) = up(r)e

ipr/~ in the periodic field of the unper-
turbed PbTe crystal of unit volume. Here up(r) is the
periodic Bloch amplitude. As mentioned earlier, the non-
parabolicity of the electron energy dispersion near the
conduction band minima is usually described by the Kane
model8

Ep(1 + Ep/Eg) = p2/2m∗

d1. (22)

The isotropic energy dispersion in a form of Eq. (22)
with density of state mass m∗

d1 is usually assumed in
the calculation of the relaxation time.7,8,9 The transition
probability for scattering from state ψ

pi
to state ψ

pf
per

unit time due to a perturbation potential V (r) is given
by the standard formula of perturbation theory10

dwfi =
2π

~

∣

∣

∣

∣

Vpfpi
+

∫

Vpfp1
Vp1pi

Epi
− Ep1

dν1 + ...

∣

∣

∣

∣

2

×δ(Epf
− Epi

)dνf , (23)

where dν = d3p/(2π~)3. The matrix elements are

Vp′p ≡
∫

ψ∗

p′(r)V (r)ψ
p
(r)d3r ≈

∫

ei(p−p
′)r/~V (r)d3r,

(24)
where we used the fact that collisions with a small mo-
mentum transfer dominate scattering on the slow varying
bend-bending potential, therefore the Bloch amplitudes
entering Eq. (24) are rather close to each other and the
overlap factor is about unity

∫

u∗
p′(r)up(r)d

3r ≈1.

Applying Eq. (24) to Eq. (23), the calculation of
dwfi becomes identical to the calculation of the tran-

sition probability for scattering of a plane wave eipir/~ in
a model system described by an equation

(Ep̂ + V )ψ = Epψ (25)

with unperturbed Hamiltonian Ep̂, p̂ ≡ −i~∂r, and
perturbation potential V (r). Applying the operator 1 +
Ep̂/Eg to Eq. (25) one obtains

p̂2

2m∗

d1

ψ =

[

p2

2m∗

d1

+
V 2

Eg
− V

(

1 + 2
Ep

Eg

)]

ψ. (26)

Here we neglect the commutator term E−1
g [Ep̂, V (r)]ψ

E−1
g [Ep̂, V (r)]≈EF

Eg

1

(kFλ)2
V (r) ≪ V (r) (27)

using the fact that rV (r) is a slow varying function and
kFλ≫ 1.
Eq. (26) has the form of the usual Schrödinger equa-

tion that can be used for numerical solution of the scat-
tering problem with a potential

Up(r) = V (r)

(

1 + 2
Ep

Eg

)

− V 2(r)

Eg
. (28)

C. Calculation of transport cross-section

The transport cross-section for scattering on the spher-
ically symmetric potential is given by10

σt = 2π

π
∫

0

|f(θ)|2(1− cos θ) sin θdθ, (29)

where f(θ) is the scattering amplitude defined from the
large-r asymptotic of the wave function

ψ ≈ eipr/~ +
f(θ)

r
eipr/~. (30)

The wave function ψ is a solution of the Schrödinger
equation (26) with potential Up(r) given by Eq. (28).
It can be expressed as a sum of contributions with differ-
ent angular momentum l10

ψ =

∞
∑

l=0

Pl(cos θ)Rkl(r), (31)

where Pl are the Legendre polynomials and Rkl(r) are
solutions of the radial Schrödinger equation (k = p/~):

1

r2
∂rr

2∂rRkl +

(

k2 − l(l+ 1)

r2
− 2m∗

d1

~2
Up(r)

)

Rkl = 0.

(32)
The large-r asymptotic of Rkl(r) has the form

Rkl(r) ∝ sin(kr − lπ/2 + δl)/r, (33)

where δl is the phase shift of Rkl(r) relative to the
potential-free solution. The scattering amplitude f(θ)
can be expressed in terms of the phase shifts as10
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f(θ) =
1

2ik

∞
∑

l=0

(2l+ 1)Pl(cos θ)(e
2iδl − 1). (34)

The calculation of the transport cross-section (29)
with scattering amplitude (34) can be performed in
the same way10 as the usual cross-section [without the
(1 − cos θ) factor in Eq. (29)]. In the integrals
π
∫

0

Pl(cos θ)Pl′(cos θ)(1 − cos θ) sin θdθ that appear in the

evaluation of the transport cross-section (29) only terms
with l′ = l, l± 1 give nonvanishing contributions.10 After
integration over θ, Eq. (29) can be expressed in terms of
the δl as

σt =
4π

k2

∞
∑

l=1

l sin2(δl − δl−1). (35)

We used the following numerical procedure to solve the
Schrödinger equation (32) and calculate the phase shifts.
The spherical Bessel function jl(kr) is a regular solution
of Eq. (32) for r < R, in the region where Up(r) = 0.
We used the fourth-order Runge-Kutta method to solve
Eq. (32) for r > R with boundary conditions such that
the solution Rl(kr) and its derivative match the spheri-
cal Bessel function at r = R . At some large r = rmax

we assume that the potential Up vanishes and match the
solution Rl(kr) and its derivative R′

l(kr) to a linear com-
bination of the spherical Bessel function jl(kr) and spher-
ical Neumann function yl(kr) (which is another solution
of Eq. (32) for Up(r) = 0):

Rl(kr)|r=rmax
→ αjl(kr) + βyl(kr), (36)

with α = (Rly
′

l − R′

lyl)/(jly
′

l − j′lyl) and β = −(Rlj
′

l −
R′

ljl)/(jly
′

l − j′lyl). Finally the phase shift δl is given by

δl = − arctan(β/α). (37)

In conjunction with equations (20) and (35) this pro-
vide expressions to numerically calculate τ i for a given
V (r). An example of the numerically calculated τ i is
given in Fig. 1c for scattering by V (r) of Fig. 1b with
inclusion volume fraction x = 5%. A simple fit gives
the dependence τ i (E) ∼ E1.39 as shown by the dashed
line in Fig. 1c. This energy dependence of τ i is much
stronger than that of τ bulk, and leads to enhancement of
the Seebeck coefficient.
To obtain an analytical description of τ i (E), we also

calculated τ i in the Born approximation by using Fermi’s
golden rule [first term in r.h.s. of Eq. (23)]

1

τBorn
i

=
p2

2π~4
dp

dE

π
∫

0

|Vp′p|2(1− cos θ) sin θdθ. (38)

Here θ is the angle between initial and final momenta
p and p′. The expression for τBorn

i can be simplified

by taking the angle integration in Eq. (38) for Vp′p

and making the substitutions of integration variables
t = 2kR sin θ

2 and y = r/R. Finally one obtains

τBorn
i (E) = E3/2 (1 + E/Eg)

3/2

1 + 2E/Eg

R

x

4
√

2m∗

d1

3α(E,R)
, (39)

where

α(E,R) =

∫ 2kR

0

∣

∣

∫

∞

1 sin(yt)V (yR)ydy
∣

∣

2
tdt. (40)

Numerical tests show that for |VB| . 0.1eV the Born
approximation is valid, τ i(E) ≈ τBorn

i (E), while for
|VB| > 0.1eV , τBorn

i (E) begins to deviate from τ i(E)
calculated from the exact solution of Schrödinger’s equa-
tion (32). Nevertheless, Eq. (39) allows us to analyze the
energy dependence of the relaxation time that is difficult
to do by using the exact formulas (20) and (35). For
energies E & 0.1eV , the integral over variable t in (40)
weakly depends on the upper limit of the integration,
and the function α(E,R) varies slowly with both E and
R. Thus, we have τBorn

i (E) ∼ E3/2, in good agreement
with the full numerical calculations which yielded a de-
pendence E1.39 . Comparing the result τBorn

i (E) ∼ E3/2

with the expression (20) (and using v(E) ∼
√
E) we find

that the electronic scattering cross-section of the band-
bending potential depends on energy as E−2; this strong
energy dependence is responsible for the superlinear en-
ergy dependence of τ i (E).

IV. RESULTS AND DISCUSSION

A. Enhancement of the Seebeck coefficient and

power factor

The calculation of the total relaxation time allows us
to obtain S, σ and κe using the expressions (3-5). We
first consider a specific case by adopting a simple model
for the interface potential VB = Φm − χ + EF with
Φm the metal workfunction and χ the electron affinity,
and choose Φm − χ = −0.35eV corresponding to Pb
nanoinclusions (work function Φm = 4.25eV 11) and an
electron affinity for PbTe χPbTe = 4.6eV 12. Figure 2
shows the calculated room temperature Seebeck coeffi-
cient as a function of the doping n and fixed nanoin-
clusion volume fraction x = 5%. We note the excel-
lent agreement between the experimentally measured S
(filled circles)13 and that calculated numerically (solid
line) for bulk PbTe. In addition, one can see that for any
nanoinclusion radius, the Seebeck coefficient is always
increased compared to that of the inclusion-free system.
In fact, for the smallest nanoinclusion radius considered
here (1.5nm), the enhancement in S is over 100% at high
doping.
It is interesting to consider the impact of VB on the

calculated Seebeck coefficient. Figure 3a shows S as a
function of VB. It is clearly seen from this figure that
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FIG. 2: Calculated Seebeck coefficient for PbTe with metallic
nanoinclusions as a function of the doping for several different
values of the nanoinclusion radius.

the presence of an extended electrostatic potential leads
to an increase in S regardless of the sign of VB . (VB = 0
is equivalent to bulk PbTe with nanoinclusions. Nega-
tive values correspond to the situation of Fig. 1, and
positive values represent a Schottky barrier). This gen-
eral behavior can be understood (at least for small |VB |)
from the Born approximation which predicts that the in-
verse scattering time is proportional to the square of the
perturbation potential. With increase of |VB| the contri-
bution to the total inverse relaxation time from inclusion
scattering increases, leading to an increase of S because
the energy dependence of τ changes from that of τ bulk
to the more strongly energy dependent τ i. For large val-
ues of |VB | the contribution of island scattering becomes
dominant and S saturates as seen in Fig. 3a.
Figure 3a also shows the calculated values of σ as a

function of the interface potential VB. The conductivity
decreases as |VB| is increased, with a fairly symmetric
behavior for ±VB. Combining the results for σ and S,
we obtain the power factor S2σ as depicted in Fig. 3b.
There, one can see that the power factor is increased
compared to that at VB = 0, in a range of interface po-
tentials −0.15eV < VB < 0.15eV . The power factor has
two maxima at some optimal values of VB because the
Seebeck coefficient saturates for large |VB | while the elec-
trical conductivity σ continues to decrease with increase
of |VB|.
For the optimal interface potential VB ≈ ±0.07eV , we

find that the power factor is increased by ∼ 35%. Impor-
tantly, the power factor does not decrease substantially
over a wide range of values of the interface potential.
Thus, it is possible to take full advantage of the reduc-
tion in thermal conductivity due to phonon scattering at
the nanoinclusions, as we will discuss later.
Instead of optimizing the value of the interface poten-

tial VB to achieve the maximum power factor as shown in
Figure 3b, we can keep VB fixed (by choosing a specific
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FIG. 3: Panel (a) shows the calculated Seebeck coefficient and
conductivity for PbTe as a function of the interface potential
VB. Panel (b) shows the resulting power factor. Parameters
are R = 1.5nm, T = 300K, x = 5%, and n = 2.5×1019cm−3.

metal for the inclusions) and optimize other parameters,
for example the inclusion volume fraction or radius. To
analyze the dependence of the transport coefficients on
these parameters we can use Eq. (39). As we noted
above, the function α(E,R) in Eq. (40) varies slowly
with both E and R, so the inverse relaxation time due
to electron scattering by inclusions can be approximated
as τ−1

i (E) ≈ CE−3/2, where the constant C depends on
VB, x, and R mostly through the combination (at least
for small VB)

C ∝ V 2
Bx/R. (41)

In turn, the transport coefficients (S, σ, and κe) depend
only on this ratio of parameters. This means that if any
two parameters out of these three are fixed one can al-
ways adjust the third parameter (for example, the one
that can be most easily tuned in the experiment) to max-
imize the power factor.

Before closing this section, we remark that we have
searched for resonant tunneling states in the positive VB
regime as a way to enhance S. However, we have not
found any significant increase in S beyond that already
discussed. The reason is that, because the potential con-
tains contributions from several Legendre polynomials l,
the appearance of a resonant state for one value of l is
washed out by the nonresonant conditions in the other
channels.
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FIG. 4: (color online) Thermoelectric coefficients as a func-
tion of temperature calculated for n = 2.5 × 1019cm−3,
x = 5%, and R = 1.5 nm. (a) The optimized ZT factor, with
the optimal values of VB shown in the inset.(b) The Seebeck
coefficient. (c) The electrical conductivity. Inset shows opti-
mized (filled circles) and bulk PbTe (solid line) power factor
S2σ. (d) The thermal conductivity. In all panels, solid cir-
cles include electron and phonon scattering on the inclusions;
open circles include electron scattering on the inclusions but
with bulk PbTe values of κph; solid lines and filled squares
are the calculated and measured15 values for bulk PbTe.

B. Enhancement of the ZT factor

While S and σ are quantities of fundamental inter-
est, for applications it is usually ZT = S2σT/κ that is
most important. The electronic relaxation time calcu-
lated above leads directly to the electronic thermal con-
ductivity κe. Since the total thermal conductivity is the
sum of electronic and phonon contributions, κ = κe+κph,
to obtain ZT we also need to calculate κph. For this pur-
pose, we adopt a previous method6,14 that considered the
scattering of phonons on nanoinclusions, with the scat-
tering mechanism for short wavelength phonons being the
different sound velocities in the host and nanoinclusions.
This approach has been shown to give excellent agree-
ment with experiments on nanoscale ErAs inclusions in

InGaAs6. For T & TD (TD = 130K is the Debye tem-
perature of PbTe) κph can be written as8

κph ≈ kB
2π2vs~3

∫ kBTD

0
τph (~ω)

2 d (~ω) , (42)

where vs is the speed of sound in PbTe and ~ω is the
phonon energy. The phonon relaxation time τph is given
by

τ−1
ph = τ−1

U + τ−1
D , (43)

where τ−1
U = cTω2 is the contribution of umklapp

scattering8 and τD is due to scattering by nanoinclu-
sions. The constant c was determined from Eq. (42) us-
ing the experimental value κbulkph = 2.0W/mK for PbTe
at T = 300K. For τD we used the expression derived in
Refs. [ 6,14]. In the near geometrical scattering regime
(qR & 1) τD reads

τ−1
D = nivs(2πR

2)[1− sin(2ξ)/ξ + sin2(ξ)/ξ2], (44)

where ξ = qR(vs/v
′

s−1), q is the phonon wave vector, and
v′s is the speed of sound inside the inclusion. Numerical
tests show that when the difference in the sound velocities
is larger than 20% the integrated quantity κph weakly
depends on this difference and τD can be approximated
by its geometrical limit value

τ−1
D = nivs(2πR

2) =
3

2

x

R
vs. (45)

Note that this phonon scattering regime is opposite to
that on point defects where qR≪ 1.
Figure 4 shows ZT and its components calculated for

x = 5%, R = 1.5nm and a doping n = 2.5×1019cm−3, as
a function of temperature. We discuss this doping first
because experimental values of ZT and all of its compo-
nents are readily available for inclusion-free PbTe, and
can be compared with our calculations; indeed, the calcu-
lated values for ZT , S, σ, and κ (solid lines in Fig. 4a-d)
are in good agreement with experiment15 (filled squares)
for T . 700K. (The deviations for T & 700K origi-
nate in our neglect of the hole contribution to the charge
and heat transport.) In the presence of nanoinclusions,
the individual components of ZT deviate from their bulk
PbTe values at all temperatures shown. For T & 400K
the increase of the Seebeck coefficient is compensated by
decrease of the conductivity, and the optimized power
factor is close to that of bulk PbTe (see inset in Fig. 4c).
At such temperatures the small increase of the ZT factor
due to ‘electron-only’ scattering by nanoinclusions (open
circles in Fig 4a) is a result of the decrease of κe (open
circles in Fig. 4d). Comparing the ZT shown by filled
and open circles in Fig. 4a one can conclude that at a
doping n = 2.5× 1019cm−3 the enhancement of the opti-
mized ZT is primary due to decrease of κph, at least for
T & 400K.
To get a more comprehensive understanding of the role

of nanoinclusions in enhancing the thermoelectric prop-
erties, we show in Fig. 5 the room-temperature ZT factor
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as a function of the interface potential for two values of
the doping. In addition, we plot ZT calculated using the
bulk value of the phonon thermal conductivity κbulkph (dot-

ted lines). We first consider the situation of high doping,
as depicted in panel (a). In the absence of a spatially-
varying potential (VB = 0) and without phonon scatter-
ing on nanoinclusions, ZT is given by the filled circle.
Turning on the phonon scattering gives a modest 25%
increase in ZT (the star in the figure). Similarly, one
can consider the increase in ZT without phonon scatter-
ing on the nanoinclusions (dotted line); in this case, a
large increase in ZT of up to 224% is obtained. Thus at
this doping, electron scattering can give a much larger
increase in ZT . However, the true advantage of nanoin-
clusions is realized when both electron and phonon scat-
tering are included, and the ZT factor can be increased
by as much as 430%. This increase is much larger than
simply the sum of the individual electronic and phonon
contributions.

The origin of this behavior lies in the non-additive
effects of electronic and phonon thermal conductivities,
since ZT depends inversely on their sum. For the large
doping situation of Fig. 5a we have κbulke = 4.2W/mK,
κbulkph = 2.0W/mK, and therefore κbulkph < κbulke . In this
case, reducing κph by itself does not lead to an apprecia-
ble gain in ZT . However, when κe is also reduced be-
cause of scattering and becomes comparable to κph, then
both work in concert and lead to a large increase in ZT .
Thus, one can imagine that electron scattering on the
electrostatic potential serves as an amplification mecha-
nism to enhance the impact of the reduction in phonon
thermal conductivity. This mechanism works here be-
cause at high doping (1) κbulkph < κbulke and (2) the power
factor is maintained or even enhanced in a wide range of
interface potentials.

The situation is quite different in the case of low dop-
ing, where κbulkph ≫ κbulke , as illustrated in Fig. 5b. In this
case, the electronic thermal conductivity is already quite
low, κbulke = 0.6W/mK < κbulkph = 2.0W/mK, and the
main impact of nanoinclusions is to decrease the phonon
thermal conductivity. The maximum increase in ZT is
107%, with 94% coming from phonons alone. In fact, for
this low doping, the power factor is always reduced com-
pared to the inclusion-free system – a signature of this
effect is the reduction of ZT below that of the inclusion-
free system for larger values of VB .

Fig. 6 shows the calculated ZT as a function of tem-
perature for low (n = 5 × 1018cm−3) and high (n =
5 × 1019cm−3) doping levels. Included in the figure are
the ZT factor calculated with both electron and phonon
scattering on nanoinclusions (filled circles), that calcu-
lated with ‘electron-only’ scattering on nanoinclusions
and with bulk PbTe values of κph (open circles), and the
ZT calculated for inclusion-free bulk PbTe (solid line).
The corresponding values of VB that maximize ZT are
shown in the insets by filled circles. The inset in Fig. 6a
shows that at n = 5 × 1018cm−3 the optimal VB is very
small |VB| < 0.03eV and even vanishes for T > 600K.
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FIG. 5: Temperature dependence of the optimized ZT fac-
tor for PbTe. (a) low doping n = 5 × 1018cm−3 and (b)
high doping n = 5 × 1019cm−3. In both panels filled circles
denote the optimized ZT calculated with both electron and
phonon scattering on nanoinclusions, open circles denote ZT
calculated with electron scattering on nanoinclusions and with
bulk PbTe values of κph, and the solid line is for bulk PbTe.
The inset in (a) shows the values of VB that maximize ZT .
In (b) the bottom inset shows the optimal values of VB that
maximize ZT (filled circles) and V Pb

B for Pb nanoinclusions.
The top inset shows the calculated power factor.

Thus, the electron contribution to enhancement of op-
timized ZT is negligible (solid line and line with open
circles almost coincide in Fig. 6a) and the enhancement
of the optimized ZT is dominated by the reduction in
κph due to phonon scattering on the inclusions. This can
be explained by the fact that for bulk PbTe the Seebeck
coefficient increases with decrease of the doping concen-
tration n, and the relative enhancement of the Seebeck
coefficient from its bulk value due to electron scattering
on inclusion is smaller at low doping compared to high
doping (see Fig 2). As a consequence the reduction of
σ at low doping overweights the increase of S2 and the
power factor is reduced compared to the inclusion-free
system, leading to small or vanishing optimal VB . From
a practical point of view this result means that in order
to enhance the ZT factor at low doping levels one needs
to find a metal that gives little or no interfacial potential.

For larger doping the electron contribution to enhance-
ment of ZT becomes important and the optimized VB in-
creases. It is seen in Fig. 6b that for n = 5× 1019cm−3

the ‘electron-only’ contribution to enhancement of the
optimized ZT makes up over 50% of the enhancement at
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FIG. 6: Panel (a) shows the calculated Seebeck coefficient and
conductivity for PbTe as a function of the interface potential
VB. Panel (b) shows the resulting power factor. Parameters
are R = 1.5nm, T = 300K, x = 5%, and n = 2.5×1019cm−3.

T . 600K and the optimized VB is as large as 0.2eV .
Moreover, at large doping, κbulke > κbulkph , and the reduc-
tion of κe due to scattering on inclusions amplifies the
effect of the reduced κph. The upper inset in Fig. 6b
shows that the power factor σS2 is enhanced only for
T < 600K. The reduction of the power factor relative
to the inclusion-free system at T > 600K is due to the

fact that at high temperature the Seebeck coefficient of
bulk PbTe is already large (see Fig. 4b), the relative in-
crease in S induced by electron scattering on inclusions
becomes smaller at increased temperature, so the reduc-
tion of σ overweights the increase of S2. Nevertheless,
the ‘electron-only’ contribution results in enhancement
of ZT (open circles in Fig. 6b) even at higher tempera-
tures due to reduction of κe.

Figure 6b shows by open squares the ZT factor
for PbTe with Pb inclusions (assuming V Pb

B − EF =
−0.35eV ) for parameters n = 5× 1019cm−3, R = 1.5nm,
and x = 5%. For this set of parameters the interface po-
tential V Pb

B is close to the optimal one (see inset in Fig
6b) in a wide range of temperatures, so the ZT factor for
the system with Pb inclusions is very close to the opti-
mal ZT . The enhancement of ZT due to Pb inclusions
is on the order of 400% at room temperature and 50% at
T = 900K, where it reaches a value as high as 1.5.

V. CONCLUSION

In conclusion, we developed a theory that allows the
calculation of the ZT factor and its components for a
system of a semiconductor host material with spherical
metallic nanoinclusions. The enhancement of the See-
beck coefficient can be explained by a strong energy de-
pendence of electron scattering on the band-bending at
the interface between metallic inclusions and the semi-
conductor host. The electronic contribution to enhance-
ment of ZT is important for high doping, while at low
doping the enhancement of ZT is dominated by the re-
duction in the phonon thermal conductivity. The theory
can be used to choose the optimal parameters for the
metal nanoinclusions (interface potential, inclusion vol-
ume fraction or radius) in order to maximize ZT .
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