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Recent experiments have shown that it is possible to create an in-plane harmonic

potential trap for a two-dimensional (2D) gas of exciton-polaritons in a microcavity

structure, and evidence has been reported of Bose-Einstein condensation of polari-

tons accumulated in this type of trap. We present here the theory of Bose-Einstein

condensation (BEC) and superfluidity of the exciton polaritons in a harmonic poten-

tial trap. Along the way, we determine a general method for defining the superfluid

fraction in a 2D trap, in terms of angular momentum representation. We show that

in the continuum limit, as the trap becomes shallower the superfluid fraction ap-

proaches the 2D Kosterlitz-Thouless limit, while the condensate fraction approaches

zero, as expected.

PACS numbers: 71.36.+c, 03.75.Hh, 73.20.Mf, 73.21.Fg

I. INTRODUCTION

In the past decade, there has been extensive work on Bose coherent effects of two-

dimensional (2D) exciton-polaritons in cavitie. (For general reviews see Refs. 1 and 2).

A microcavity is formed by two mirrors opposite each other, as in a laser cavity, with

quantum wells embedded in the cavity at the antinodes of the confined optical mode. The

resonant exciton-photon coupling leads to two polariton branches in the spectrum. The

http://arxiv.org/abs/0803.3239v1
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lower polariton (LP) branch has a minimum at k = 0 with a very small effective mass, in

the range 10−5−10−4 of the vacuum electron mass, depending on the details of the structure.

These quasiparticles act as a weakly interacting gas of bosons in two dimensions. Since the

thermal deBroglie wavelength in two dimensions varies inversely with mass, the extremely

light mass of these bosonic particles means that the critical temperature for superfluidity

can in principle be 100 K or above for experimentally achievable number densities.

In a translationally invariant two-dimensional system, without a trap, superfluidity oc-

curs via a Kosterlitz-Thouless superfluid (KTS) transition. Experiments on untrapped

systems3,4,5 have shown promising indications of the onset of spontaneous coherence effects.

This can be viewed as a type of Bose-Einstein condensation (BEC), with coherence length on

the order of the size of the cloud of particles, what is sometimes called a “quasicondensate.”7

It is possible, however, to have a true Bose-Einstein condensation (BEC) quantum phase

transition in two dimensions, if there is a confining potential.8,9 Recently, an experimental

method has been demonstrated for creating such a confining potential trap in a 2D exciton-

polariton system, in which the exciton energy is shifted using a stress-induced band-gap

shift10, and evidence for Bose-Einstein condensation of polaritons has been observed in this

system11. In these experiments, the trap is macroscopic, about 30 microns across compared

to a typical interparticle distance of 0.3 microns, and the spring constant is low enough that

the spacing between the quantized states h̄ω0 in the harmonic potential is small compared

to kBT , so that the states may be treated as a continuum. The diffusion length of the

polaritons is comparable to the trap size, so that we may consider them to be in equilibrium

spatially.

The properties of polaritons have been studied in several theoretical works. The theory of

polariton dynamics due to polariton-polariton interaction has been developed in Refs. 12,13,

14,15. The crossover between lasing and polariton coherence has been studied in Refs. 16 and

17. Polariton superfluidity has been predicted18 as well as spontaneous linear polarization of

the light emission.19 In these previous studies, the coherent polaritonic phases were analyzed

in the 2D infinite system.

In this paper we present the theory of the trapped polariton condensate. The paper

is organized in the following way. In Sec. II the effective Hamiltonian of of microcavity

polaritons in trapping potential is derived. In Sec. III the number of polaritons in Bose-

Einstein condensate (BEC) as a function of temperatures is calculated. The superfluid
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fraction as a function of temperature is also obtained. Finally, in Sec. IV we present our

conclusions.

II. THE EFFECTIVE HAMILTONIAN OF OF MICROCAVITY POLARITONS

IN TRAPPING POTENTIAL

The polaritons are linear superpositions of excitons and photons. The Hamiltonian of

polaritons is given by Ĥtot = Ĥexc + Ĥph + Ĥexc−ph, where Ĥexc is an excitonic Hamiltonian,

Ĥph is a photonic Hamiltonian, Ĥexc−ph is a Hamiltonian of exciton-photon interaction.

Analogous to the case of Bose atoms in a trap,20,21 in the case of a slowly varying external

potential, we can make the quasiclassical approximation, assuming that the effective exciton

mass is not a function of r. This quasiclassical approach is valid only if the characteristic

Pr ≫ h̄, where P is the momentum and r is the radial coordinate in the trap. This is the

case in the recent experiments.11

The Hamiltonian of 2D excitons in the infinite homogeneous system is given by

Ĥexc =
∑

P

εex(P )b̂
†
Pb̂P +

1

2A

∑

P,P′,q

Uqb̂
†
P+qb̂

†
P′−qb̂Pb̂P′ , (1)

where b̂†P and b̂P are excitonic creation and annihilation operators obeying to Bose commu-

tation relations. In the first term, εex(P ) = Eband −Ebinding + ε0(P ) is the energy dispersion

of a single exciton in a quantum well, where Eband is the band gap energy energy, Ebinding =

Ry∗2 = µe−he
4/(h̄2ǫ) is the binding energy of a 2D exciton (µe−h = memh/(me + mh) is

the reduced excitonic mass, ǫ is the dielectric constant, and e is the charge of an electron),

and ε0(p) = P 2/(2M), where M = me + mh is the mass of an exciton. In the second,

interaction term, A is the macroscopic quantization area and Uq is the Fourier transform

of the exciton-exciton pair repulsion potential. As discussed in Refs. 12 and 22, in the

low-density limit, the excitons can be treated as pure bosons, with an interaction poten-

tial that includes effects of the underlying fermion nature of the electrons and holes. For

small wave vectors (q ≪ a−1
2D, where a2D = h̄2ǫ/(2µe−he

2) is the effective 2D Bohr radius

of excitons) the pair exciton-exciton repulsion can be approximated as a contact potential

Uq ≃ U0 ≡ U = 6e2a2D/ǫ. This approximation for the exciton-exciton repulsion is appli-

cable, because resonantly excited excitons have very small wave vectors.15 Another reason

for this approximation is that the exciton gas is assumed to be very dilute and the average
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FIG. 1: a) Dashed line: the energy of the bare exciton vs. r, for the parameters of the

GaAs/AlGaAs structure described in the text. Dotted line: the energy of the cavity photon mode.

Solid lines: the upper and lower polariton energy which arises from the mixing of the photon and

exciton modes. b) The photon fraction as a function of r, for two cases: solid line: exciton energy

resonant with the cavity photon mode at r = 0; dashed line: exciton energy detuned 10 meV below

the cavity photon.

distance between excitons rs ∼ (πn)−1/2 ≫ a2D, which implies the characteristic momentum

q ∼ r−1
s ≪ a−1

2D. A much smaller contribution to the exciton-exciton interaction is also given

by band-filling saturation effects,23 which are neglected here.

The spatial dependence of the external field V (r) comes about due to the shifting of the

exciton energy with inhomogeneous stress;24 the photon states in the cavity are assumed

to be unaffected by stress. In this case the band energy Eband is replaced by Eband(r) =

Eband(0) + V (r). Near the minimum of the exciton energy, V (r) can be approximated as

1
2
γr2.

The Hamiltonian of non-interacting photons in a semiconductor microcavity is given by25:

Ĥph =
∑

P

εph(P )â
†
PâP, (2)
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where â†P and âP are photonic creation and annihilation Bose operators, and εph(P ) =

(c/n)
√

P 2 + h̄2π2L−2
C is the cavity photon spectrum (c is the speed of light in vacuum, LC

is the length of the cavity, and n =
√
ǫ is the effective refractive index).

The Hamiltonian of harmonic exciton-photon coupling has the form:15

Ĥexc−ph = h̄ΩR

∑

P

â†Pb̂P + h.c., (3)

where the exciton-photon coupling energy represented by the Rabi constant h̄ΩR depends

on the overlap between the exciton and photon wavefunction and the semiconductor dipole

moment.26 We neglect anharmonic terms for the exciton-photon coupling.

The linear part of the total Hamiltonian Ĥtot (without the second term on the right-hand

side of Eq. (1)) can be diagonalized by applying unitary transformations and has the form:15

Ĥ0 =
∑

P

εLP (P )p̂
†
Pp̂P +

∑

P

εUP (P )û
†
PûP, (4)

where p̂†P and û†P are the Bose creation and operators for the lower and upper polaritons,

respectively; the energy spectra of the low/upper polaritons are

εLP/UP (P ) =
εph(P ) + εex(P )

2
∓ 1

2

√

(εph(P )− εex(P ))2 + 4|h̄ΩR|2, (5)

which implies a splitting between the upper and lower states at P = 0 of 2ΩR, known as

the Rabi splitting. For the GaAs cavities used in Ref. 11, this splitting was approximately

14 meV. The upper and lower polariton energies from (5) are plotted in Figure 1(a) as a

function of r at momentum P = 0 for a value of γ chosen to give a fit to the experimentally

measured curvature of the lower polariton branch. The fit implies γ = 960 eV/cm2 for the

bare excitons.

The excitonic and photonic operators are defined as15

b̂P = XP p̂P − CP ûP, âP = CP p̂P +XP ûP, (6)

where p̂P and ûP are lower and upper polariton Bose operators, respectively, and XP and

CP are15

XP =
1

√

1 +
(

h̄ΩR

εLP (P )−εph(P )

)2
, CP = − 1

√

1 +
(

εLP (P )−εph(P )

h̄ΩR

)2
, (7)

where |XP |2 and |CP |2 = 1− |XP |2 represent the exciton and cavity photon fractions in the

lower polariton.15 Figure 1(b) shows the photon fraction at zone center, |C0|2, as a function
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of r. Further from the center, the exciton energy εex becomes detuned from the cavity

photon energy, leading the lower polariton to become more photon-like. Because cavity

photon lifetime is so much shorter than the intrinsic exciton lifetime (∼ 2 ps compared to

∼ 100 ps), the polariton lifetime is proportional to the photon fraction. This implies that

polaritons at higher energy in the trap have shorter lifetime; in other words, there is an

evaporative cooling effect. As shown in Fig. 1(b), this effect can be magnified by tuning

the exciton level below the photon level at the center of the trap, so that the polaritons are

more excitonic there.

Substituting the polaritonic representation of the excitonic and photonic operators (6)

into the total Hamiltonian Ĥtot, the Hamiltonian of lower polaritons is obtained:15

Ĥtot =
∑

P

εLP (P )p̂
†
Pp̂P +

1

2A

∑

P,P′,q

UP,P′,qp̂
†
P+qp̂

†
P′−qp̂Pp̂P′ , (8)

where

UP,P′,q =
6e2a2D
ǫ

XP+qXP′XP′−qXP. (9)

For the slowly changing confinement potential V (r) = −(Eband−Ebinding)+(c/n)h̄πL−1
C +

1
2
γr2 (r is the distance between the center of mass of the exciton and the center of the trap),

the exciton spectrum is given in the effective mass approximation as

ε(0)ex (P ) = εex(P ) + V (r) = (c/n)h̄πL−1
C +

γ

2
r2 +

P 2

2M
. (10)

This quasiclassical approximation is valid if P >> h̄/l, where l = (h̄/(Mω0))
1/2 is the size

of the exciton cloud in ideal exciton gas and ω0 =
√

γ/M .

At small momenta α ≡ 1/2(M−1 + (c/n)LC/h̄π)P
2/|h̄ΩR| ≪ 1 and weak confinement

potential β ≡ γr2/|h̄ΩR| ≪ 1, the single-particle lower polariton spectrum obtained by

substitution of Eq. (10) into Eq. (5), in linear order with respect to the small parameters α

and β, is

ε0(P ) ≈ (c/n)h̄πL−1
C − |h̄ΩR|+

γ

4
r2 +

1

4
(M−1 + (c/n)LC/h̄π)P

2. (11)

By substituting Eq. (10) into Eq. (7) we obtain XP ≈ 1/
√
2. The condition of the validity

of the quasiclassical approach in Eq. (1), Pr ≫ h̄, is also applied here.

If we measure energy relative to the P = 0 lower polariton energy (c/n)h̄πL−1
C − |h̄ΩR|,

the resulting effective Hamiltonian for polaritons in the parabolic trap in P space in the
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effective mass approximation has the form:

Ĥeff =
∑

P

(

P 2

2Meff

+ Veff(r)

)

p̂†Pp̂P +
U

(0)
eff

2A

∑

P,P′,q

p̂†P+qp̂
†
P′−qp̂Pp̂P′ , (12)

where the sum over P and P′ is carried out only over P >> h̄/l (as only in this case the

quasiclassical approximation used in Eq. (10) is valid), and the effective mass of a polariton

is given by

M−1
eff =

1

2
(M−1 + (c/n)LC/h̄π); (13)

the effective external potential Veff(r) =
1
2
V (r) (i.e., γeff = γ/2), and the effective polariton-

polariton pair repulsion potential is given by the hard-core contact potential Ueff(r − r′) =

U
(0)
eff δ(r−r′) = 1

4
U0δ(r−r′). Using the experimental parameters for GaAs/AlGaAs structure

used in Ref. 11 (Eph = 1.60735 eV) we obtain Meff = 7.8 × 10−5m0, where m0 is the

vacuum electron mass, in good agreement with the value of 7×10−5m0 obtained from direct

measurement of the effective polariton mass using angle-resolved photon detection, reported

in Ref. 11.

III. BOSE-EINSTEIN CONDENSATION AND SUPERFLUIDITY OF

MICROCAVITY POLARITONS

In the real space the effective Hamiltonian for trapped polaritons will look exactly like

the Hamiltonian of weakly-interacting dilute 2D Bose gas in a confinement:

Ĥeff =
∫

drψ̂†(r)

(

− h̄
2∇2

2Meff

+ Veff(r)

)

ψ̂(r) +
U

(0)
eff

2

∫

drψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r), (14)

where ψ̂†(r) and ψ̂(r) are real space Bose field operators of creation and annihilation of

polaritons, correspondingly.

Although Bose-Einstein condensation (BEC) cannot happen in a 2D homogeneous ideal

gas at non-zero temperature, as discussed in Ref. 8, in a harmonic trap BEC can occur in two

dimensions below a critical temperature T 0
c given by kBT

0
c = h̄π−1

√

6γeffN/Meff , where kB is

the Boltzmann constant, and N is the total number of polaritons in a trap. This expression

for the temperature of BEC is valid if we neglect the polariton-polariton repulsion, i.e., if

we assume U
(0)
eff = 0.
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FIG. 2: The condensate profile n0(r) in the trap, for γ = 960 eV/cm2 and total density at the center

n(0) = 1.2 × 109 cm−2. Solid line: T = 0, using the Thomas-Fermi/Bogoliubov approximation.

Dotted line: T = 15 K, using the theory presented in the text.

Neglecting the anomalous averages
〈

ψ̂ψ̂
〉

and
〈

ψ̂†ψ̂†
〉

via the Popov approximation27,

implying the system to be very dilute, that is na22D ≪ 1, where n = N/(πR2) is the total

density of polaritons, and R is the 2D radius of the trap, the self-consistent equation for the

non-condensate density n′(r) at temperatures kBT ≫ h̄
√

γeff/Meff can be written as21

n′(r) = −MeffkBT

2πh̄2
log



1− exp



− 1

kBT

√

(

1

2
γeffr2 + 2U

(0)
eff n− µ

)2

− |U (0)
eff |2n2

0







 ,

(15)

where n0 is the total density of condensate, and µ = 2U
(0)
eff n−U

(0)
eff n0 is the chemical potential

of the system in the Popov approximation.28 For the experimental parameters of interest, the

size of a trap is R ∼ 30 µm, the effective 2D Bohr radius of an exciton is a2D = 130 Å, and

γ ∼ 103 eV/cm2, which implies the above equation is valid for T ≫ 1 K, which is true in all

of these experiments. Figure 2 plots the spatial profile of the condensate for the experimental

parameters of the trap. Note that only the states P ≫ h̄/l can be treated as quasiclassical.

Since the the characteristic momenta for Bose condensate of weakly interacting particles is

P =
(

2MeffU
(0)
eff n

)1/2
satisfy to the condition h̄/l ≪ P =

(

2MeffU
(0)
eff n

)1/2
, we can apply the

quasiclassical approximation.

The total number of polaritons in the condensate is given by N0 = N −N ′, where N ′ =

2π
∫ R
0 n′(r)rdr is the total number of non-condensate particles. Assuming n0 = n − n′(r),

and solving the self-consistent equation (15) with respect to the non-condensate density

n′(r), we obtain the dependence of the fraction N0(T )/N of the total number of condensate
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particles on the temperature T . This is plotted in Fig. 3 for the experimental conditions.

In the thermodynamic limit N → ∞, the Thomas-Fermi approximation that the kinetic

energy of the system can be neglected has been proved to be valid for BEC in a harmonic

trap.29 For small quasimomenta P ≪
√

2MeffU
(0)
eff n0 and small temperatures, the energy

spectrum of the quasiparticles ε(P ) is given by21 ε(P, r) ≈ cs(r)P , where cs(r) is the sound

velocity in the Popov approximation28 (cs(r) =
√

U
(0)
eff n0(r, T )/Meff).

FIG. 3: Condensate fraction N0/N as a function of temperature, for three trap spring constants:

solid line: 760 eV/cm2; dotted line: 860 eV/cm2; dashed line: 960 eV/cm2.

Since the spectrum of the quasiparticles is a linear sound spectrum satisfying the Landau

criterium of superfluidity,30 superfluidity of the polaritons can occur in the trap. Therefore

at small temperatures there are two components in the trapped gas of polaritons: the normal

component and the superfluid component. We define the total number of particles in the

superfluid component s Ns ≡ N −Nn, where Nn is a total number of particles in the normal

component. We define Nn analogously to the procedure applied for definition of the density

of the normal component in the infinite system nn,
30 using the isotropy of the trapped

polaritonic gas instead of the translational symmetry for an infinite system. We imagine

that a “gas of quasiparticles” rotates in the liquid in the plane perpendicular to the axis

of the trap with some small macroscopic angular velocity ν. In this case, the distribution

function of a gas of quasiparticles can be obtained from the distribution function of a gas at

rest by substituting for the energy spectrum of the quasiparticles ε(P )−Lν, where L = r×P

is the angular momentum of the particle. Assuming Pr/h̄≫ 1, we apply the quasiclassical
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approximation for the angular momentum: L ≈ Pr and ε(L, r) = r−1cs(r)L. The total

angular momentum in a trap per unit of volume Ltot(r) is given by

Ltot(r) =
∫ d2L

(2πh̄r)2
LnB (ε(r, L)− Lν) , (16)

where we assume that at small temperatures the quasiparticles are non-interacting, and they

are described by the Bose-Einstein distribution function nB(ε) = (exp[ε/(kBT )]− 1)−1. For

small angular velocities, nB (ε− Lν) can be expanded with respect to Lν. Then we get

Ltot(r) = −
∫

d2L

(2πh̄r)2
L(Lν)

∂nB(ε)

∂ε
, (17)

Assuming that only quasiparticles contribute to the total angular momentum, we define the

density of the normal component nn(r) by Ltot(r) = nn(r)L0, where L0 = Meffrν is the

angular momentum of one quasiparticle. For the total number of particles in the normal

component we obtain

Nn = 2π
∫ R

0
nn(r)rdr =

∫ R

0

3ζ(3)k3BT
3

h̄2c4s(n0(r))Meff

rdr, (18)

where ζ(z) is the Riemann zeta function (ζ(3) ≃ 1.202), and the density of the condensate

n0(r) = n − n′(r) (the density of non-condensate polaritons n′(r) can be obtained from

Eq. (15)). The dependence of the fraction Ns(T )/N of the total number of polaritons in the

superfluid component Ns(T ) = N−Nn(T ) on the temperature T is presented in Fig. 4. The

superfluid fraction depends only weakly on the spring constant γ, and in the limit γ → 0

approaches the the superfluid density for a 2D translationally invariant system.31

IV. DISCUSSION

In conclusion, at low temperature, the Hamiltonian of 2D exciton polaritons in a slowly

varying external parabolic potential corresponds directly to the case of a weakly interacting

Bose gas with an effective mass and effective pair interaction in a harmonic potential trap.

The condensate fraction and the superfluid component are decreasing functions of tempera-

ture, as expected, and increasing functions of the curvature of the parabolic potential. The

mixing with the photon states leads to a decreased lifetime for high-energy states, that is,

an evaporative cooling effect, but does not fundamentally prevent condensation.

The results given here are comparable to those of the experiments, but do not correspond

exactly. The condensate peak seen in the experiments with a trap has approximately 15
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FIG. 4: Superfluid fraction Ns/N as a function of temperature for the same three trap spring

constants as Fig. 3. Dashed-dotted line: the superfluid fraction in the limit γ → 0, namely, the

translationally invariant 2D case.

µm full width at half maximum, while the peak shown in Fig. 2 comparable conditions has

width of approximately 30 µm. The most likely reason is that the mean-field shift due to the

repulsive interaction between particles Ueffn is known to strongly overestimate the actual

energy shift by as much a factor of ten,32 because anticorrelation of the excitons tends to

reduce the average interaction potential.

The condensate fraction obtained is a decreasing function of the characteristic potential

of the interparticle repulsion, which corresponds to the results obtained in Ref. [33]. The

authors of Ref. [33] showed that at finite number of bosons N , the interparticle repulsion

suppresses the temperature of BEC, and in the thermodynamic limit N → ∞ the interpar-

ticle interaction eliminates BEC at finite temperatures. Since we consider the very dilute

gas of a finite number of polaritons with weak repulsion (weakly-nonideal Bose-gas), the

increase of the interparticle repulsion results in the increase of the non-condensate fraction

(Eq. (15)) at the fixed finite temperature, which agrees with the results of Ref. [33].

In our calculations, we have assumed thermal equilibrium. Since the polariton lifetime is

short, one may question this assumption. The condition for thermal equilibrium, however,

is simply that the time scale for thermalizing collisions be short compared with the particle

lifetime. Porras et al.14 have shown than the time scale for polariton-exciton scattering

can be fast enough for a thermalized distribution of polaritons to exist in lowest k-states.

Although polaritons have very short lifetime, thermodynamic equilibrium can be achieved
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in the regime of the strong pump. Polariton- polariton interactions can help overcome of the

bottleneck and lead to large occupation numbers of the ground state. However, we cannot

rule out that consideration of pump and decay in a steady state may lead to differences

from the results presented here. To give an example, the renormalized dispersion of BEC

of particles with infinite lifetime is Bogoliubov-like, while in the steady state of the system

with pump and decay it is very different.34 This consideration of the influence of the decay

on the BEC may be a subject of further studies of a trapped gas.

The spin polarization is important not only for the excitations, but for the condensate

itself. In Ref. [8] the dynamics of the spin of the polariton BEC was analyzed in details.

It was shown that polariton-polariton interactions lead to the polarization dephasing in

spatially confined systems. The influence of spin on the phase transitions of the trapped

polaritonic gases are the subject of further research.
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