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We revisit the electromagnetic heat transfer between a metallic nanoparticle and a metallic semi-
infinite substrate, commonly studied using the electric dipole approximation. For infrared and
microwave frequencies, we find that the magnetic polarizability of the particle is larger than the
electric one. We also find that the local density of states in the near field is dominated by the
magnetic contribution. As a consequence, the power absorbed by the particle in the near field is due
to dissipation by fluctuating eddy currents. These results show that a number of near-field effects
involving metallic particles should be affected by the fluctuating magnetic fields.

I. INTRODUCTION

A lot of attention has recently been devoted to
the interaction between nano-objects like atoms,
nanoparticles or AFM tips, and surfaces, which is
mediated by fluctuating thermal fields. A great
variety of phenomena like Casimir-Polder forces
[1, 2, 3, 4], friction forces [5, 6, 7, 8, 9] or near-
field heat transfer [10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26] is governed
by the associated stochastic thermal currents. A
common assumption is that the electric dipole ap-
proximation can be used to model the nano-object
[18, 19, 20, 21, 22, 23, 24, 25]. Here, we revisit
the heat transfer between a surface and a metallic
nanoparticle. We find that the leading mechanism is
near-field induction heating, due to Joule dissipation
of eddy currents in the particle. The large currents
are produced by time-dependent infrared magnetic
fields that dominate the energy density near a metal-
lic surface. We find a different distance dependence
of the flux as compared with the case of polar materi-
als. Our work may find applications on local heating
for data storage [27], and lithography [20, 28].

All the phenomena previously cited have to be de-
scribed in the framework of fluctuational electro-
dynamics introduced by Rytov [29]. It is known
that the radiative heat flux between two bodies
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19] can be dramat-
ically enhanced when their separation distance be-
comes smaller than 10µm. It was found that evanes-
cent waves yield the leading contribution to the heat
flux. Experiments have been reported demonstrat-
ing these effects [30, 31, 32]. It has also been pre-
dicted that this heat transfer could have a very nar-
row energy spectrum [16, 17, 21] due to surface elec-

tromagnetic waves. A possible application to design
near-field energy converters has been studied [33].

The electric dipole moment of a sphere with radius
R and dielectric constant ǫr is generally assumed
to give the leading contribution [18, 19, 20, 21, 22,
23, 24, 25] because it varies like (R/λ)3 whereas the
next term in the Mie expansion varies as (R/λ)5 (λ
is the wavelength in vacuum) [34]. In this work,
we will show that the interaction between the mag-
netic dipole and the large magnetic fields in the near
field may give the dominant contribution to the heat
transfer.

In the next section, we compare the absorption cross
section of the electric and magnetic dipole moment.
The third section is devoted to the analysis of the
electric and magnetic energy density in the near
field of a metal-vacuum interface. The final section
analyses the heat transfer and discusses the physical
mechanism.

II. ABSORPTION BY A METALLIC

NANOPARTICLE

Let us first compute the power absorbed by a small
metallic particle. In what follows, we will use an
isotropic, homogeneous and local form of the com-
plex dielectric constant. To lowest order in R/λ [34],
the particle can be described by its electric dipolar
moment ~p. We define a complex polarizability αE

~p = αE ǫ0 ~E, (1)
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2where ǫ0 is the dielectric permittivity in vacuum and
~E is the external electric field. Another contribution
is given by the magnetic dipolar moment ~m charac-
terized by its magnetic polarizability αH

~m = αH
~H, (2)

where ~H is the external magnetic field. Higher mul-
tipoles can be neglected if |ǫr| ≫ 1 and R/λ ≪
1. The contributions of the electric and magnetic
dipoles to the power dissipated in the particle at a
positive frequency ω are given by [35, 36]

PE
abs(ω) = ω 2Im(αE) ǫ0

< | ~E|2 >

2
, (3)

PM
abs(ω) = ω 2Im(αH) µ0

< | ~H |2 >

2
(4)

where µ0 is the magnetic permittivity in vacuum.
αE and αH can be found in ref. [37] :

αE = 4π R3 ǫr − 1

ǫr + 2
, (5)

αH =
2π

15
R3

(

2πR

λ

)2

(ǫr − 1), (6)

where ǫr is the relative dielectric permittivity.

Here, we do not take into account the diamagnetism
of the material. Instead, the magnetic dipole mo-
ment is due to eddy currents in the particle. The po-
larisabilities are calculated assuming that R is much
smaller than the skin depth δ. A different form [35]
can be derived when dealing with particles such that
δ ≪ R ≪ λ. In what follows, we should keep in mind
that the dipole model is a fair approximation pro-
vided that the distance d between the center of the
particle and a surface is much larger than R. Note
that we have used for simplicity the extinction cross
section of the elecric dipole. The exact form of the
absorption cross section is discussed in ref. [38]. The
difference for a metallic nanoparticle is negligible.

As seen from Eqs (3,4), the absorption is the product
of two terms, the imaginary part of the polarizabil-
ity and the local density of energy. We shall show
that for metallic nanoparticles at low frequencies,
both terms are larger for the magnetic contribution.
Let us first analyse the role of the polarizability. It
appears from Eqs (3-6) that for values of the di-
electric constant on the order of unity, the electric
dipole contribution to losses is much larger than the

magnetic one because R/λ ≪ 1. Yet, for values of
ǫr such that |ǫr| ≫ 1, as it is the case for metals at
low frequencies, the magnetic dipole may provide the
leading contribution. The physical reason is that the
magnetic fields are continuous at an interface so that
they can penetrate in the material. By contrast, the

electric field in a spherical particle ~Eint is related to

the external electric field by ~Eint = [3/(ǫr +2)] ~Eext.
Surface charges induced at the interface prevent the
electric field to penetrate efficiently in the metallic
particle. This screening effect takes place on a length
scale given by the Thomas-Fermi length. It does not
depend on the skin depth.

FIG. 1: Imaginary parts of the electric and magnetic
polarisabilities of a gold sphere (ωp = 1.71 1016 s−1, ν0 =
4.05 1013 s−1, vF = 1.2 106ms−1 and A = 1). For ω ≪ ν,

Im(αH) ≈
4πR5ω2

p

15c2
ω
ν
and for ω ≪ ωp, Im(αE) ≈

12πR3ν

ω2
p

ω

We consider a non-magnetic metallic particle char-
acterized by a Drude model ǫr = 1−ω2

p/(ω
2+ i ων)

where ωp is the plasma frequency and ν is the
damping coefficient. To account for the confine-
ment effects, the bulk dielectric constant ǫr [39]
is corrected by modifying the damping constant
ν = ν0 + A vF /R, where ν0 is the bulk damping
coefficient, vF the Fermi velocity and A a sample-
dependent coefficient. Figure 1 shows Im(αE) and
Im(αH) as a function of circular frequency for two
gold spheres with radii R = 5 nm and R = 10 nm.
It is seen that the electric polarizability is larger
than the magnetic polarizability at optical frequen-
cies. As explained before, this is no longer the case
at low frequencies (typically smaller than ν), where
Im(αH) is larger than Im(αE).



3III. LOCAL DENSITY OF ENERGY NEAR

A METALLIC SURFACE

To derive the energy absorbed by a particle in the
vicinity of an interface, we need to consider the local

densities of energy ǫ0
<|~E|2>

2
and µ0

<| ~H|2>
2

. In a
vacuum, both contributions are equal. The energy
per unit volume U(z, ω) at a distance z from the
interface increases dramatically in the near field due
to the presence of evanescent waves as discussed in
ref. [36, 40]. U(z, ω) is the product of the local
density of states (LDOS) ρ(z, ω) by the mean energy
of a mode Θ(ω, T ) = ~ω/[exp(~ω/kBT )− 1], where
2π~ is Planck constant, kB is Boltzmann constant
and T the temperature of the substrate. The final
expression for the evanescent part of the LDOS [36,
40] is the sum of the four following contributions :

ρEs (z, ω) = ρv

∫ +∞

ω/c

dK

2|γ0|
cK

ω
Im(rs)e

−2γ0”z (7)

ρMs (z, ω) = ρv

∫ +∞

ω/c

dK

2|γ0|
cK

ω
f(K,ω)Im(rs) e

−2γ0”z(8)

ρEp (z, ω) = ρv

∫ +∞

ω/c

dK

2|γ0|
cK

ω
f(K,ω)Im(rp) e

−2γ0”z(9)

ρMp (z, ω) = ρv

∫ +∞

ω/c

dK

2|γ0|
cK

ω
Im(rp)e

−2γ0”z (10)

where the subscripts E and M denote the electric
and magnetic evanescent components, c is the light
velocity in vacuum, ρv(ω) = ω2/π2c3 is the vacuum
density of states, f(K,ω) = 2( cKω )2 − 1, rs = γ1−γ0

γ1+γ0

and rp = ǫ1γ0−ǫ2γ0

ǫ1γ0−ǫ0γ1

the Fresnel TE and TM reflection

factors, and the complex number γi = γ′
i + i γi” is

defined as the perpendicular part of the wave vector

at a frequency ω : K2 + γ2
0 = ǫi

ω2

c2 where i = 0 in
vacuum (ǫ0 = 1) and i = 1 in the metal. We have
neglected non-local effects as we consider distances
larger than the Thomas-Fermi screening length.

On Figure 2, we plot the LDOS versus the fre-
quency ω for d = 30 nm. The first conclusion is
that the contribution due to the evanescent waves
dominates. The second conclusion is that the s-
polarized magnetic contribution is dominant for fre-
quencies below ωM = 2.4 1014s−1 which are relevant
for heat transfer at 300 K. Indeed, in the expres-
sion of the energy density U(z, ω), Θ(ω, T ) acts as a
temperature-dependent frequency filter. At a given
temperature, we define a cut-off frequency ωM by
∫ ωM

0
Θ(ω, T )dω/

∫∞

0
Θ(ω, T )dω = 99/100. Frequen-

cies much higher than ωM are not relevant for heat
transfer. We note that the p-polarized contribution

FIG. 2: Contributions of the evanescent waves to the
local density of states (LDOS) at d = 30 nm of a gold-
vacuum plane interface when using a bulk Drude dielec-
tric constant. The magnetic and electric propagating
contributions are also plotted (they are equal).

associated with the surface plasmon polariton dom-
inates at optical frequencies but does not contribute
significantly in the infrared.

The dominant contribution of magnetic energy can
be understood by considering the analytical expres-
sions of ρMs (Eq. 8) and ρEp (Eq. 9). Both ex-
pressions are exactly symmetric, involving the same
factor f(K,ω), and the imaginary part of the reflec-
tion factor, respectively Im(rs) and Im(rp). The
physical origin of the factor f(K,ω) lies in a funda-
mental difference of structure between propagating
and evanescent waves. It is interesting to see why
the magnetic energy dominates the electric energy.
Indeed, in a vacuum, the electric and the magnetic
energy are equal. This is no longer true for an s-
polarized evanescent wave close to an interface.

Let us denote the wave vector as follows

~k0 = K ~ex − γ ~ez (11)

where K and γ are the interface parallel and per-
pendicular wave vectors and ~ex and ~ez unit vec-
tors. The Helmholtz equation in a vacuum yields
K2 + γ2 = ω2/c2. For an s-polarized field, the elec-
tric field is given by

~E = (0, E, 0), (12)

and the magnetic field follows from the Maxwell-

Faraday equation in vacuum ( ~curl ~E = − ∂
∂t

~B)

~B =
E

ω
(−γ, 0,K). (13)



4It follows that | ~B|2 = ~B ~B∗ = |E|2

ω2 (|γ|2 +K2). For a
propagating wave, this yields the well-known result

| ~B| = c | ~E|, (14)

whereas for an evanescent wave, γ is purely imagi-
nary so that |γ|2 = −γ2. We get:

| ~B|
c | ~E|

=

√

2
K2

k20
− 1. (15)

For evanescent waves, K ≫ k0 so we find that the
magnetic energy stored in an s-polarized evanes-
cent wave is much larger than the electric energy.
We have plotted in Figure 3 the function B

cE =

f(K,ω) =
√

|γ|2+K2

k2

0

for different frequencies. It is

seen that the density of energy, which is proportional
to the density of states, is driven by the magnetic
contribution.

FIG. 3: Ratio |~B|

c|~E|
for s-polarized evanescent waves.

Now, a similar reasoning can be done for p-polarized

waves. In this case, the inverse ratio | ~E|/c| ~B| is also
equal to

√

f(K,ω) ≃
√
2 K/k0 which shows that

the electric field dominates in this case. Near field is
thus always dominated by an s-polarized evanescent
magnetic field and a p-polarized evanescent electric
field. The relative weight of both contributions is
then given by the values of the imaginary part of the
reflection factors. Since Im(rs) is larger than Im(rp)
for a metal at low frequencies, the s-polarized contri-
bution to the LDOS dominates as seen in Figure 2.
As a consequence, the energy density is dominated
by its s-polarized magnetic contribution.

IV. HEAT TRANSFER BETWEEN AN

INTERFACE AND A NANOPARTICLE

We now combine the results obtained for the depen-
dence of the polarisabilities and for the energy den-
sity to derive the power absorbed by a small par-
ticle as given by Eqs (3,4). Although heat trans-
fer between a small particle and a substrate in the
near field has only been calculated using the electric
dipolar contribution [18, 19, 20, 21, 22, 23, 24, 25],
the results shown in Figure 1 (large magnetic dipole
moment) and in Figure 2 (large magnetic density of
states) clearly indicates that the magnetic contribu-
tion must be taken into account as suggested in ref.
[32]. Figure 4 shows the radiative power

Prad =

∫ +∞

ω=0

(PE
abs(ω) + PH

abs(ω))dω (16)

dissipated by the substrate in the small particle
(R = 5 nm). The key result observed in Figure
4 is that the heat transfer is dominated by the s-
polarized magnetic contribution. The magnetic con-
tribution can be larger than the electric dipolar con-
tribution by 3 orders of magnitude. The reason
is that heat is dissipated essentially by eddy cur-
rents. An important result is the dependence of the
heat flux with distance. The magnetic LDOS varies
asymptotically as 1/z and the electric LDOS as 1/z3

[36, 40]. For gold, these behaviors are valid at very
small distances (below 20 nm). Hence, there is no
simple distance dependence for the absorbed power
as seen in Figure 4.

FIG. 4: Radiative power dissipated in the gold parti-
cle (radius R = 5 nm) by the semi-infinite planar gold
substrate at 300 K, and the asymptotic behaviours



5The above analysis can be summarized by the fol-
lowing scenario. Random currents flowing parallel
to the interface can excite the s-polarized evanescent
electromagnetic fields at infrared frequencies. As ex-
plained above, the associated magnetic fields take
large values in the near-field. They are continuous
across a vacuum-metal interface so that they pene-
trate efficiently in the nanoparticle and can generate
large eddy currents. These currents are dissipated
through Joule effect. Thus, thermal heat transfer
appears to be due to near-field induction heating.
Radiative heat transfer between two parallel metallic
surfaces can also be revisited with a similar scenario
[41].

V. CONCLUSION

In summary, we have shown that the heat trans-
fer between a metallic nanoparticle and a metallic
surface is dominated by the magnetic contribution.

Heat is mainly dissipated by fluctuating eddy cur-
rents. The widely used electric dipole approximation
is valid for dielectrics but breaks down for metals. As
a consequence, the 1/z3 dependence of the flux be-
tween dielectrics is not valid for metals. A number
of other effects due to thermal radiation (e.g. forces,
friction) between metallic bodies are expected to be
driven by their magnetic contribution, even if the
media are non-magnetic. We note that the heat ex-
changed by two metallic nanoparticles separated by
a submicronic distance [42] should be driven as well
by the interaction between their magnetic dipoles.
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