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We present a study of different models of local disorder in graphene. Our focus is on the main
effects that vacancies — random, compensated and uncompensated —, local impurities and sub-
stitutional impurities bring into the electronic structure of graphene. By exploring these types of
disorder and their connections, we show that they introduce dramatic changes in the low energy
spectrum of graphene, viz. localized zero modes, strong resonances, gap and pseudogap behavior,

and non-dispersive midgap zero modes.
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Graphene is poised to become a new paradigm in solid
state physics and materials science, owing to its truly bi-
dimensional character and a host of rich and unexpected
phenomena'?3. These have cascaded into the literature
in the wake of the seminal experiments that presented
a relatively easy route towards the isolation of graphene
crystals®.

Carbon is a very interesting element, on account of its
chemical versatility: it can form more compounds than
any other element®. Its valence orbitals are known to hy-
bridize in many different forms like sp', sp?, sp>, and
others. As a consequence, carbon can exist in many
stable allotropic forms, characterized by the different
relative orientions of the carbon atoms. Carbon binds
through covalence, and leads to the strongest chemical
bonds found in nature. Common to the most interesting
forms of carbon is the so-called graphene sheet, a single
plane of sp? carbon organized in an honeycomb lattice
(Fig. 1(a)). Graphite, for instance, is made of stack-
ings of graphene planes, nanotubes from rolled graphene
sheets, and fullerenes are wrapped graphene. Yet, for
many years, it was believed that graphene itself would
be thermodynamically unstable. This presumption has
been overturned by a series of remarkable experiments
in which truly bi-dimensional (one atom thick) sheets of
graphene have been isolated and characterized*. This
means that studies of the 2D (Dirac) electron gas can
now be performed on a truly 2D crystal, as opposed to
the traditional measurements made at interfaces as in
MOSFET and other structures®.

The crystalline simplicity of graphene — a plane of
sp? hybridized carbon atoms arranged in a honeycomb
lattice — is deceiving. The characteristics of the hon-
eycomb lattice make graphene a half-filled system with
a density of states (DOS) that vanishes linearly at the
neutrality point, and an effective, low energy quasiparti-
cle spectrum characterized by a dispersion which is linear
in momentum” close to the Fermi energy. These two fea-

tures underlie the unconventional electronic properties
of this material, whose quasiparticles behave as Dirac
massless chiral electrons®. Consequently, many phenom-
ena of the realm of quantum electrodynamics (QED)
find a practical realization in this solid state material.
They include: the minimum conductivity when the car-
rier density tends to zero?; the new half-integer quantum
Hall effect, measurable up to room temperature?; Klein
tunneling'®; strong overcritical positron-like resonances
in the Coulomb scattering cross-section analogous to su-
percritical nuclei in QED'"12; the zitterbewegung in con-
fined structures'®; anomalous Andreev reflections'®'?;
negative refraction!'® in p-n junctions.

Arguably, the most interesting and promising proper-
ties from the technological point of view are its great crys-
talline quality, high mobility and resilience to very high
current densities!; the ability to tune the carrier density
through a gate voltage?; the absence of backscattering'”
and the fact that graphene exhibits both spin and valley
degrees of freedom which might be harnessed in envis-
aged spintronic!®1? or valleytronic devices?’.

Disorder, ever present in graphene owing to its exposed
surface and the substrates, is the central concern of this
paper. In particular, we focus on the effects of vacan-
cies and random impurities in the electronic structure
of bulk graphene. The models examined below apply
to situations in which Carbon atoms are extracted from
the graphene plane (e.g. through irradiation®!), in which
adatoms and/or adsorbed species attach to the graphene
plane?2, or in which some carbon atoms are chemically
substituted for other elements. They are, therefore, mod-
els of local disorder. We do not consider explicitly other
sources of disorder like rough edges or ripples®?, or the
dramatic effects of Coulomb impurities, which have been
discussed elsewhere'?*. In this article we expand the
discussion of vacancies initiated in Ref. 25, using the
same techniques, and discuss the consequences of local
disorder originally presented in Ref. 26. Numerically we
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FIG. 1: (Color online) In (a) @i and @2 are the primitive
vectors that define the WS unit cell highlighted as the dashed
hexagon. The lattice parameter, a, is ~ 1.4 A. The first BZ of
the associated reciprocal lattice is shown in (b), together with
the points of high symmetry I';, M and the two nonequivalent
K and K'.

resort to exact diagonalization calculations and to the
recursion method?”?8. The latter allows the calculation
of the DOS and other spectral quantities for very large
system sizes with disorder. In our case, the calculations
below refer to honeycomb lattices with 4 x 10° carbon
atoms, a size already of the order of magnitude of the
real samples, if not larger for some experiments.

The article is organized as follows. In section I we
present the basic electronic properties of electrons in the
honeycomb lattice, mostly to introduce the notation and
the details relevant for the subsequent discussions. In
section IT we present our results regarding the different
models of disorder. This section is subdivided according
to the different models of disorder studied: vacancies in
IT A and II B, local impurities in II C and substitutional
impurities in IID. The discussion of the results is kept
within each subsection and the principal findings of this
paper are highlighted in the conclusion, in section III.

I. ELECTRONS IN A HONEYCOMB LATTICE

Graphene consists of carbon atoms organized into a
honeycomb lattice, bonded through covalence between
two sp? orbitals of neighboring atoms (Fig. 1(a)). The
graphene plane is defined by the plane of the sp® orbitals.
The saturation of the resulting o bonding orbitals, leaves
an extra electron at the remaining 2p, orbital per carbon
atom. Ideal graphene has therefore a half-filled electronic
ground state.

The Bravais lattice that underlies the translation sym-
metries of the honeycomb lattice is the triangular lat-
tice, whose primitive vectors d; and do are depicted in

Fig. 1(a). One of the consequences is the existence of two
atoms per unit cell, that define two sublattices (A and
B in the figure): indeed, the honeycomb lattice can be
thought as two interpenetrating triangular lattices. This
bipartite nature of the crystal lattice, added to the half-
filled band, imposes an important particle-hole symmetry
as will be discussed later.

The electronic structure of graphene can be captured
within a tight-binding approach, in which the electrons
are allowed to hop between immediate neighbors with
hopping integral ¢t ~ 2.7 eV, and also between next-
nearest neighbors with an additional hopping t':

H= —tz c;-fcj -t Z czcj + he. . (1)
(4,9) ((4.9))

The presence of the second term introduces an asym-
metry between the valence and conduction bands, thus
violating particle-hole symmetry. To emphasize the two
sublattice structure of the honeycomb, we can write the
Hamiltonian as

H=-1t Z ijblqr(; —1 Z bIaiJr(;
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with operators a; and b; pertaining to sublattices A and
B respectively. The vectors § connect atom i to its imme-
diate neighbors, whereas the A connect atom i to its six
second neighbors. Fourier transforming eq. (2) and in-
troducing a spinor notation for the sublattice amplitudes
leads to

_ i e2(k) e(k) - _(ax
H = Zk:\yk (El(k)* e (k) Wi, with Wy =, F ).
3)
Since the spin degree of freedom does not play a role in
our discussion other than through a degeneracy factor,

it will been omitted, for simplicity. The functions ¢; (k)
and es(k) read

er(k) = —t Z 6_1‘5"1s , ea(k) = —t/ Z e—i&.ﬁ (4)
2 R

ea(k) = — 2t' cos(V3kya)

— 4t cos <§kya> cos <gkxa>

le1 (k)| =3t + 2t2 cos(v/3kya)

4 4t2 cos <§kya> cos (gkma>

where es(k) alone is the dispersion relation of a trian-
gular lattice, and yield, after diagonalization of (3), the
dispersion relations for graphene:

’ (5)

Egt(/k) ' (6)

Ey(k) = ex(k) £[t]4/3 —
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FIG. 2: (Color online) (a) Band structure along the symme-

try directions of the reciprocal BZ of the honeycomb lattice.
(b) Band structure of graphene (¢ = 0) with the two bands
touching at the K and K’ points of the BZ.

The two bands Fy (k) are represented in Fig. 2(b) in
the domain k,, € [—m,7]. This unusual bandstructure
makes graphene very peculiar with valence and conduc-
tion bands touching at the Fermi energy, at a set of points
at the edge of the first Brillouin zone, equivalent to the
points K and K’ by suitable reciprocal lattice transla-
tions. Its low energy physics is dictated by the dispersion
around those two inequivalent points, which turns out to
be linear in k. In fact, expanding (5) around either
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one gets the so-called K . effective bandstructure”:

E(K 4+ @) = -3t +vr|q + O(d), (8)

with a Fermi velocity, vp (hvp = vp = 3ta/2, and we
take units in which i =1 and ¢ = 1). When ¢ = 0 the
dispersion is purely conical, as in a relativistic electron
in 2D. For this reason, the two cones tipped at K and K’
are known as Dirac cones. The low-energy, continuum
limit of (2) is given by

H=vp / d2rpt(r) - Fr), 9)

where ¥ (7) is a two dimensional spinor obeying the Dirac
equation in 2D%°.

Some quantitative aspects of graphene’s band struc-
ture (6) are plotted in Figs. 2 and 3. In panel 2(a) the
band dispersion is plotted along the symmetry directions
of the BZ indicated in Fig. 1(b), and in panel 3 the DOS
for different values of the nearest-neighbor hopping, ¢/,
are plotted. Focusing on the particle-hole symmetric case
(t = 0), it is clear that, besides the marked van Hove sin-
gularities at £ = +t, the most important feature is the
linear vanishing of the DOS at the Fermi level, a fact
that is at the origin of many transport anomalies in this
material®30,
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FIG. 3: (Color online) DOS associated with eq. (6) for dif-

ferent values of the next nearest neighbor hopping t'.

Particle-hole symmetry in this problem arises from the
bipartite nature of the honeycomb lattice, and is a gen-
eral property of systems whose underlying crystal lat-
tice has this nature. When we have a bipartite lat-
tice, the basis vectors of the Hilbert space can be or-
dered so that, for any ket, |¢), the amplitudes in sub-
lattice A come first. For example, if {¢Y,¢%,..., oY}
are the Wannier functions for the orbitals in sublattice
A, and {¢k, ¢%,...,¢%} the ones in sublattice B, then
our ordered basis could be {¢},...,¢N; 0L, ... o8} If
the Hamiltonian includes hopping only between near-
est neighbors, this means that it only promotes itin-
erancy between different sublattices. The stationary
Schrédinger equation then reads, in matrix block form
in the ordered basis,

(")) -2) oo

Expanding we get

h =F
{ o i (hl\ghas) o5 = E*pp, (11)

hTAB va = FEpp

and therefore, if F is an eigenstate, so is —F. For a
half-filled system, the elementary excitations around the
Fermi sea can be thought, as usual, as particle-hole pairs.
Since in that case Er = 0, particles and holes have sym-
metric dispersions. This is completely analogous to the
situation found in simple semiconductors or semimet-
als, although matters are slightly more complicated in
graphene because there are two degenerate points, K and
K’ in the BZ. Thus there will be two families of parti-
cle and hole excitations: one associated with the Dirac
cone at K, and the other with the cone at K’, like in a
multi-valley semiconductor.



II. LOCAL DISORDER IN GRAPHENE

Disorder is present in any real material, graphene being
no exception. In fact, true long-range order in 2D implies
a broken continuous symmetry (translation), which vio-
lates the Hohenberg-Mermin-Wagner theorem3!:32. So,
by this reason alone, defects must be present in graphene
and, in a sense, as paradoxical as it might sound, are pre-
sumably at the basis of its thermodynamic stability.

But the study of disorder effects on graphene is moti-
vated by more extraordinary experimental results. One
of them is the study undertaken by Esquinazi et al.?! in
which highly oriented pyrolytic graphite (HOPG) sam-
ples were irradiated via high energy proton beams. As
a result, the experiments revealed that the samples ac-
quired a magnetic moment, displaying long range ferro-
magnetic order up to temperatures much above 300 K.
This triggered enormous interest, since the technologi-
cal possibilities arising from organic magnets are many
and varied. Furthermore, carbon, being the most cova-
lent of the elements, has a strong tendency to saturate
its shell in its allotropes, and is somehow the antithe-
sis of magnetism. Besides the moment formation, it was
found that the magnitude of the saturation moment reg-
istered in hysteresis curves was progressively increased
with successive irradiations. This is strong evidence that
the defects induced by the proton beam are playing a
major role in this magnetism. In this context the study
of defects and disorder in graphene gains a significant
pertinence.

In the following paragraphs we will unveil some de-
tails and peculiarities that emerge from different models
of disorder applied to free electrons in the honeycomb
lattice.

A. Vacancies

Vacancies are one of the defects more likely to be in-
duced in the graphene structure by proton irradiation.
A vacancy is simply the absence of an atom at a given
site. When an atom is removed two scenarios are possi-
ble: either the disrupted bonds remain as dangling bonds,
or the structure undergoes a bond reconstruction in the
vicinity of the vacancy, with several possible outcomes?3.
In either case, a slight local distortion of the lattice is
expected. In the following discussion, however, it is as-
sumed that, as first approximation, the creation of a va-
cancy has the sole effect of removing the 7, orbital at
a lattice point, together with its conduction band elec-
tron. In this sense, the physics of the conduction band
electrons is still described by the Hamiltonian (1), where
now the hopping to the vacancy sites is forbidden.

1. Vacancies and a theorem

Vacancies have an interesting consequence when ¢’ = 0.
If the distribution of vacant sites is uneven between the
two sublattices, zero energy modes will necessarily ap-
pear. This follows from a theorem in linear algebra3*
and can be seen as follows. Assume, very generally, that
we have a bipartite lattice, with sublattices A and B (It
can be any bipartite lattice like the square or honeycomb
lattices in 2D, cubic in 3D, etc.), and that the number
of orbitals/sites in A(B) is Na(Np). Just as we did be-
fore, the basis vectors of the Hilbert space can always
be ordered so that any ket, |¥), has the amplitudes on
sublattice A appearing first, followed by the amplitudes
on sublattice B:

|W>:(SﬁA’(pB):(¢]A7¢?47"'7¢§A;¢1B7¢QB""7 gB)'
(12)
We now consider an Hamiltonian containing only nearest-
neighbor hopping, plus some local energy (e 4, €5) on each
sublattice. The corresponding stationary Schrodinger
equation will then be (in matrix block form that respects
the ordering of the basis)

1 h
Hiw) =gy o (0 M) (28) =B (1)
hAB EB]].NB ¥B ¥B
(13)
where 1, is the M x M identity matrix, hap a No X Np

matrix, and ¢4 (pp) a vector in a subspace of dimension
Na (Np).
To analyze the spectrum we note that

h =(F —
;PB ( EA)@A (14)
h' pa=(E —¢cB)¢n
which, from cross-substitution, implies that
hihpp = (B —ea)(E — )¢5 - (15)

If we call A2 to the (non-negative) eigenvalues of hfh, the
spectrum of H is then

E:EA+EBj: (5,4—53

. S 2) N (16)

The symmetry about (¢4 + £p)/2 simply reflects the
particle-hole symmetry.

2. Uncompensated lattices

States of a peculiar nature should appear when the
number of sites in each sublattice is different. With-
out any loss of generality we take Ny > Np. Since the
block hap in (13) is a linear application from a vector
space having dim(A4) = N4, onto a vector space B with
dim(B) = Np, it follows from basic linear algebra that

e rank(hap) = rank(hTAB) = Np;



e hap ¢p = 0 has no solutions other than the trivial

one;

° h%‘ 5 ¥4 = 0 has non-trivial solutions that we call
YA

From the rank-nullity theorem,
rank(hQB) + nullity(th) =Ny, (17)

and hence the null space of hTAB has dimension:

nullity(hj‘4 ) = Na— Np. Consequently, there are states
of the form

[T°) = (¢%;0)

in which ¢9 satisfies h; 5 ¥% = 0, that are eigenstates of
‘H with eigenvalue € 4:

h0=(ca—ca)pa

18
B = (ea— )0 (18)

H|TO) = E|T) & {

Furthermore, since nullity(hf4 5) = Na — Np implies the
existence of N4 — N linearly independent (%, this eigen-
state has a degeneracy of N4 — Np. It should be stressed
that a state of the form (¢4;0) has only amplitude in
the A sublattice. Therefore, we conclude that, whenever
the two sublattices are not balanced with respect to their
number of atoms, there will appear N4 — Np states with
energy F 4, all linearly independent and localized only
on the majority sublattice. In addition, one can modify
sublattice B in any way (remove more sites, for instance)
that these zero modes will remain totally undisturbed.

We remark that in the above the details of the hopping
matrix hap were not specified and need not be. The re-
sult holds in general, provided that the hopping induces
transitions between different sublattice only, and that the
diagonal energies are constant (diagonal disorder is ex-
cluded).

3. Zero modes

The case with ¢4 = eg = 0 is of obvious relevance
for us, since our model for pristine graphene does not
include any local potentials. In this situation, the above
results imply that introducing a vacancy in an otherwise
perfect lattice, immediately creates a zero energy mode.
Now this is important because those states are created
precisely at the Fermi level, and have this peculiar topo-
logical localization determining that they should live in
just one of the lattices.

Even more interestingly, it is possible to obtain the
exact analytical wavefunction associated with the zero
mode induced by a single vacancy in a honeycomb lat-
tice. This was done by the authors and collaborators in
Ref. 25, and will not be repeated here. We only mention
that the wavefunction can be constructed by an appro-
priate matching of the zero modes of two semi-infinite
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FIG. 4:  (Color online) Selected eigenstates in a graphene

sheet with 80 atoms containing a single impurity at the cen-
ter (black dot). Only the region near the vacancy is shown.
(a) The eigenstate with energy closest, but different, to zero..
(b) The eigenstate with E = 0. (c) and (d) show the presence
of two quasi-localized eigenstates even with ¢t = 0.2¢.

and complementary ribbons of graphene, and that, in
the continuum limit, the wavefunction of the zero mode
introduced by one vacancy has the form?°

N .
ezK .r e’LK.’r‘

U(z,y) ~ (19)

x4y  x—iy

The important point is that the amplitude of this state
decays with the distance to the vacancy as ~ 1/r, and
thus has a quasi-localized character, although strictly
not-normalizable. And such quasi-localized state appears
exactly at the Fermi level.

Should another vacancy be introduced in the same sub-
lattice, we already know that another zero mode will ap-
pear. However, the nature of the two zero modes will
depend whether the vacancies are close or distant. In
the latter case, the hybridization between the two modes
should be small on account of the 1/r decay, and we can
expect two states of the form (19) about each vacancy
site. Of course significant effects in the thermodynamic
limit can only arise with a finite concentration of vacan-
cies, and for such analysis we undertook the numerical
calculations described next.



4. Numerical Results — Single Vacancy

The first calculation is the numerical verification of the
exact analytical result for the localized state in (19). For
that, we consider the tight-binding Hamiltonian (1) and
calculate numerically, via exact diagonalization, the full
spectrum and eigenstates in the presence of a single va-
cancy. For some typical results we turn our attention to
Fig. 4. There we plot a real-space representation of some
selected wavefunctions. This has been done by drawing
a circle at each lattice site, whose radius is proportional
to the wavefunction amplitude at that site, and whose
color (red/blue) reflects the sign (+/-) of the amplitude
at each site. Thus bigger circles mean higher amplitudes.
In the first panel, 4(a), we are showing the eigenstate
with lowest, yet non-zero, absolute energy. It is visible
that the wavefunction associated with such state spreads
uniformly across the totality of the system. like a plane
wave. In the second panel, 4(b), we draw the wavefunc-
tion of the state E = 0, that corresponds to (19). The
state is clearly decaying as the distance to the central va-
cancy increases. In addition, the state exhibits the full C;
point symmetry about the vacant site, just as expected.
This picture provides a snapshot of the lattice version®®
of (19). Since only one vacancy was introduced, the state
shown in Fig. 4(b) is the only zero mode present.

When particle-hole symmetry is disturbed by a non-
zero t', we still find states having this quasi-localized na-
ture, where the wavefunction amplitude is still quite con-
centrated about the vacancy. Two examples are shown
in panels 4(b) and 4(c). They are two eigenstates with
neighboring energy calculated for the same system. An
important difference occurs here, in that, unlike the
case t' = 0 where only one localized state appears, the
particle-hole asymmetric case opens the possibility for
more than one of such states.

This fact can be seen more transparently through the
inverse participation ratio (IPR) of the eigenstates. With
such purpose in mind, the IPR

P(Ea) =D _1Wn(r)l*

was calculated across the band in both the # = 0 and
t'" # 0 cases, with a single central vacancy. Typical re-
sults are shown in Fig. 5. From 5(a) we do confirm that,
when t' = 0, the presence of a vacancy introduces a lo-
calized state at £ = 0, which is reflected both by the
enhanced IPR there, and by the sharply peaked LDOS
calculated at the vicinity of the vacancy site. Although
not shown in this figure, the amplitude of the peak in the
LDOS at E = 0, p;(0), decays as the distance between
R; and the vacancy increases, in total consistence with
the analytical picture. When next-nearest neighbor hop-
ping is included, we also confirm the appearance of states
with a considerably enhanced IPR. Not only that, but,
instead of one, we do observe a set of states with IPR
much larger than the average for the remainder of the
band. The LDOS is also enhanced near these energies,
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FIG. 5: (Color online) IPR and LDOS calculated at one site

closest to the vacancy. In panel (a), we have results for the
IPR with ¢ = 0 and ¢’ # 0 without any vacancy (top row),
and with a single vacancy (bottom) for comparison. In panel
(b) we show the dependence of the IPR of the zero mode,
P(E = 0), with the system size N (left), and also (P(E))
versus N for the remainder (extended) states (right). Dashed
lines are guides for the eye.

although the effect appears as a resonance on account of
the finite DOS, in contrast with the sharp peak in the
previous, particle-hole symmetric, case.

A more definite and quantitative analysis is provided
by the results in the subsequent panel (Fig. 5(b)). Here
we present the dependence of P(E) on the number of car-
bon atoms in the system, N. To understand the differ-
ences, we recall that the IPR for extended states should
scale as

P(E)~—. (20)

But, for the zero mode (it should be obvious that when
the term zero mode is employed, we are referring to the
case with ¢ = 0.), we face an interesting circumstance.
Remember that the wavefunction (19) is not normaliz-
able. So, strictly speaking, the state is not localized,



and hence the designation quasi-localized that we have
adopted above. The consequence of this is that the nor-
malization constant for ¥(x,y) depends on the system
size:

|* ~ log(vV'N) ~ log(N). (21)

PIIMIENY

This, in turn has an effect on the IPR because P(FE) is
defined in terms of normalized wavefunctions:

1

This scaling of the IPR with N is precisely the one ob-
tained numerically in Fig. 5(b) (left) for the zero mode,
and is just another way of confirming the 1/r decay of
this wavefunction.

5. Numerical Results — Finite Concentration of Vacancies

Unlike the single vacancy case, the dilution of the hon-
eycomb via the introduction of a finite concentration of
vacancies is not solvable using the analytical expedients
employed in ref. 25, and numerical calculations become
essential in this case. Our procedure consists in diluting
the honeycomb lattice with a constant concentration of
vacancies, which we call  (z = Nyae/N). The diluted
sites are chosen at random and the global DOS, aver-
aged over several vacancy configurations, is calculated
afterwards. This is clearly a disordered problem, and we
employ the recursive method allowing us to obtain the
DOS for systems with 2000% sites (which is already of
the order of magnitude of the number of atoms in real
mesoscopic samples of graphene studied experimentally).
Some results are summarized in Fig. 6. One of the ef-
fects of this disorder is, as always, the softening of the
van-Hove singularities (not shown). But the most sig-
nificant changes occur in the vicinity of the Fermi level
(Fig. 6(a)). In the presence of electron-hole symmetry
(t' = 0), the inclusion of vacancies brings an increase of
spectral weight to the surroundings of the Dirac point,
leading to a DOS whose behavior for £ ~ 0 mostly re-
sembles the results obtained elsewhere within coherent
potential approximation (CPA)3%. Indeed, for higher di-
lutions, there is a flattening of the DOS around the cen-
ter of the band just as in CPA. The most important
feature, however, is the emergence of a sharp peak at the
Fermi level, superimposed upon the flat portion of the
DOS (apart from the peak, the DOS flattens out in this
neighborhood as x is increased past the 5 % shown here).
The breaking of the particle-hole symmetry by a finite
t' results in the broadening of the peak at the Fermi en-
ergy, and the displacement of its position by an amount
of the order of ¢'. All these effects take place close to the
the Fermi energy. At higher energies, the only deviations
from the DOS of a clean system are the softening of the
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FIG. 6: (Color online) IPR and DOS for the diluted hon-

eycomb lattice. (a) DOS for selected concentrations, x, and
different values of ¢'. (b) IPR for selected values of ¢’ using a
concentration z = 0.5 %. For comparison, the corresponding
DOS is also plotted in each case. The concentration of vacan-
cies is x, and only the vicinity of the Fermi level is shown.



van Hove singularities and the development of Lifshitz
tails (not shown) at the band edge, both induced by the
increasing disorder caused by the random dilution. The
onset of this high energy regime, where the profile of the
DOS is essentially unperturbed by the presence of va-
cancies, is determined by € & vp /I, with [ ~ nl_mlg ? being
essentially the average distance between impurities.

To address the degree of localization for the states near
the Fermi level, the IPR was calculated again, via exact
diagonalization on smaller systems. Results for different
values of ¢’ are shown in Fig. 6(b) for random dilution at
0.5 %. One observes, first, that P, ~ 3/N for all energies
but the Fermi level neighborhood, as expected for states
extended up to the length scale of the system sizes used
in the numerics. Secondly, the IPR becomes significant
exactly in the same energy range where the DOS exhibits
the vacancy-induced anomalies discussed above. Clearly,
the farther the system is driven from the particle-hole
symmetric case, the weaker the localization effect, as il-
lustrated by the results obtained with " = 0.2¢. To this
respect, it is worth mentioning that the magnitude of the
strongest peaks in P,, at ¢’ =0 and ¢’ = 0.1t is equal to
the magnitude of the IPR calculated above for a single
impurity problem. Such behavior indicates the existence
of quasi-localized states at the center of the resonance,
induced by the presence of the vacancies. For higher dop-
ing strengths, the enhancement of P,, is weaker in the
regions where the DOS becomes flat. This explains the
qualitative agreement between our results and the ones
obtained within CPA in that region, since CPA does not
account for localization effects.

In summary, in this section, we saw that a single va-
cancy introduces a quasi-localized zero mode. Its pres-
ence is ensured by the uncompensation between the num-
ber of orbitals in the two sublattices, and a theorem from
linear algebra. The presence of this mode translates in
the appearance of a peak in the LDOS near the vacancy,
and in an enhanced IPR for this state. When we go from
one to a macroscopic number of vacancies, we saw that
both the peak and the enhancement of the IPR persist
in the global DOS at Ef .

B. Selective Dilution

It is important to recall that the results of the previous
section pertain to lattices that were randomly diluted.
During such process, we expect the number of vacancies
in sublattice A to be equal to the number of vacancies
in sublattice B, on average. Strictly speaking, since our
original lattices are always chosen with Ny = Np, the
fluctuations on the degree of uncompensation, Ny — Np,
should scale as 1/v/N thus vanishing in the thermody-
namic limit. Because of this, in principle, we would ex-
pect the lattices used above to be reasonably compen-
sated. But the theorem in § IT A 1 only guarantees the
presence of zero modes when the lattice is uncompen-
sated. It turns out that, notwithstanding our utilization
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FIG. 7: (Color online) Dilution of just one sublattice of the

honeycomb. (a) DOS for different dilution strengths, diluting
only sublattice A. (b) On the left we show a detail of the
DOS and the evolution of the gap with vacancy concentra-
tions. On the right we plot the dependence of the missing
spectral weight on the band (= 1 — ws) with x (circles). The
continuous line is the best fit using f(x) = az/(b — z) to the
data represented by the circles.

of rather large system sizes, such v/N fluctuations are
still significant and the lattices were indeed slightly un-
compensated.

This clearly begs the clarification of the origin of the
zero modes in the cases with finite densities of vacancies.
Do they appear only through these fluctuations in the
degree of sublattice compensation, or can we have zero
modes even with full compensation? To try to elucidate
this we developed a controlled approach to this issue, in
the following. From now on we consider only the particle-
hole symmetric situation (¢’ = 0).

1. Complete uncompensation

We have studied the DOS for systems in which only
one of the sublattices was randomly diluted, with a finite
concentration of vacancies. In this case, the system has
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precisely a number of zero modes that equals the number
of vacancies. Starting from a clean lattice with NV = N+
Np sites, the latter corresponds to N, = Nx. We should
thus expect a §(F) peak contributing to the global DOS,
with an associated spectral weight, w; that coincides with
the fraction of zero modes:

Nx x

wé(m):]\](l—x):l—:c' (23)

Since the total spectral weight is normalized to 1, the
spectral weight at £ = 0 has to be transferred from the
states in the band. In Fig. 7 we show what is happen-
ing. As seen in 7(a), the selective dilution promotes the
appearance of a gap in the DOS, whose magnitude in-
creases with the amount of dilution. At the center of the
gap we can only see an enormous peak (not visible in the
range used) staying precisely at F' = 0, corroborating our
expectations regarding the Dirac-delta in the DOS. But
since it appears exactly at £ = 0, we cannot resolve nu-
merically its associated spectral weight. To obtain such
spectral weight we calculated the spectral weight loss in
the remainder of the band. The result and its varia-
tion with the amount of dilution, x, is displayed in the
right-most frame of Fig. 7(b). A non-linear fit to the
data reveals that the dependence expected from (23) is
indeed verified by the accord between the fitted curve in
Fig. 7(b) and eq. (23).

As Fig. 7 shows, the spectral weight is transferred al-
most entirely from the low energy region near Er and
from the high energy regions at the band edges. This
depletion near £ = 0 introduces the gap, 2E,. A gap
implies the existence of a new energy scale in the prob-
lem. Since the hopping ¢ is the only energy scale in the
Hamiltonian, such new scale has to come from the con-
centration of vacancies. By dimensional analysis, such
scale is dictated essentially by the average distance be-
tween vacancies (1)

e~”7F~n1/2 ~VZ  (h=1).  (24)
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FIG. 9: (Color online) DOS for the honeycomb lattice using
the controlled selective dilution discussed in the text, calcu-
lated for different concentrations of vacancies, x, and several
degrees of uncompensation, 1. Only the low energy region
close to the Dirac point is shown.

When the the magnitude of the gap found numerically is
plotted against x we arrive at the curve of Fig. 8. The
least squares fit shown superimposed onto the numeri-
cal circles leaves confirms this assumption, and we arrive
at a quite interesting situation, of having a half-filled,
particle-hole symmetric and gapped system, with a finite
concentration of (presumably quasi-localized) zero modes
at the mid-gap point.

2. Controlled uncompensation

We now turn to a more controlled approach to the di-
lution and uncompensation. For that we introduce an
additional parameter, 7, that measures the degree of un-
compensation. As before, we want to study finite con-
centrations of vacancies. This is determined by z in such
a way that the number of vacancies in a lattice with N
sites will be V, = Nz. But now, the number of vacancies
in each sublattice is determined by

1
NA = 5N:z:(l +1)

NP = INa(1 — ), (25)
with 0 < n < 1. Therefore, the parameter 1 permits
an interpolation between completely uncompensated di-
lution (n = 1), and totally compensated dilution (n = 0).
Let us look directly at the results for the DOS, calculated
at different x and 7, and plotted in Fig. 9.

At any concentration x the following sequence of events
unfolds as 7 decreases from 1 to 0: (i) There is a perfectly
defined gap in the limit n = 1.0 discussed above; (ii)
for n < 1 a small hump develops at the same energy
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scale of the previous gap; (iii) although the gap seems
to disappear, it is clearly visible that when n < 1, the
DOS decays to zero after the hump in a pseudo-gap like
manner, and is zero at E = 0; (iv) decreasing further 7
towards complete compensation (say, for n = 0.6, 0.4),
this behavior persists, being visible that the DOS drops
to zero at E = 0; (v) closer to full compensation (n = 0.1)
the DOS seems to display an upward inflection near E =
0, and apparently does not drop to zero. Unfortunately,
we are unable to resolve this region numerically with the
desired accuracy. For instance, at higher dilutions = =
0.2 we can still see the curve of 7 = 0.2 dropping to zero
near F = 0.

Naturally that, for all the cases with n # 0, the ex-
istence of N4 — NP zero modes is guaranteed. As be-
fore, we inspected this by calculating the missing spectral
weight in the bands, and confirmed that it does agree
with the fraction of uncompensated vacancies. Hence,
the picture emerging from these results seems to suggest
that, although the gap disappears for n < 1, the DOS still
drops to zero at F = 0, and might drop in a singular way
as 71 approaches zero. If we separate the contributions
of the zero modes to the global DOS from the contribu-
tion of the other states, the consequence of this would
be that, in a compensated lattice (n = 0), the DOS as-
sociated with the other states would seem to diverge as
E — 0, but would be zero precisely at E = 0. Stated
in another way, coming from high energies, we would see
a decreasing DOS up to some typical energy € ~ /z, at
which point it would turn upwards. At very small ener-
gies the DOS would seem to be diverging but, at some
point arbitrarily close to £ = 0, it would drop precipi-
tously down to zero. Unfortunately, at the moment the
numerical calculations are not so accurate as to allow the
confirmation or dismissal of such possibility. In fact, the
peaks for n = 0.0 are of the same magnitude of the ones
found when the dilution is completely random across the
two sublattices (Fig. 6(a)). So, although the evidence is
compelling towards the affirmative, these results are still
inconclusive as to whether the zero modes disappear in
a perfectly compensated diluted lattice or not.

C. Local Impurities

Vacancies are local scatterers in the unitary limit. A
vacancy can be thought as an extreme case of a local po-
tential, U, when U — oo. In this context we investigated
the intermediate case characterized by a finite local po-
tential. The Hamiltonian in this case changes from the
pure tight binding in (1) to

H= UZchp —tz clej —t Z cle;+ he. . (26)
P (4:3) (.00

The first term represents the local potential of magnitude
U at the impurity sites p. These impurity sites belong
to the underlying honeycomb lattice but their space dis-
tribution is random. The concentration of impurities,
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FIG. 10: (Color online) Real part of (30) (top) obtained from
the homogeneous DOS (bottom) through the Kramers-Kronig
relations.

x = N;/N, is kept constant and we consider only the
case with ¢ = 0 in the sequel.

Physically the model summarized in the Hamilto-
nian of eq. (26) could describe the situation in which
some of the carbon atoms are substituted by a different
species. Another realistic circumstance has to do with
the fact that a real graphene sheet is expected to have
some molecules from the environment adsorbed onto its
surface??. Consequently, even if the honeycomb lattice
of the carbon atoms is not disrupted with foreign atoms,
the presence of adsorbed particles can certainly induce
a local potential at the sites where they couple to the
carbon lattice.

Much of the details of this model can be understood
from the local environment around a single impurity, in
which case exact results and closed formulas are obtain-
able within a T-matrix approach®. Hence, we start by
analyzing the single impurity problem in the honeycomb
lattice, taking into account the full electronic dispersion
and calculating the exact local Green’s functions, which
allow the identification of the main spectral changes in-
troduced by the scattering potential. Within T-matrix,
the 2 x 2 electron Green’s function is written as

G =G+ G T G . (27)

In the Dyson-like expansion above G° is the non-
interacting Green’s function whose matrix elements are
denoted by [G°)®f (sub/superscripts refer to posi-

tion/sublattice), and the T-matrix, T, is formally defined

in terms of the scattering potential, V', by3%:36
Vv
TE)=——. 28
R @

Taking V;‘J‘Tff = Uby 1/0r,00a,80q,0 for a potential localized
only on site r = 0 of sublattice A, the local Green’s func-
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FIG. 11:  (Color online) (Top) LDOS at the impurity site
(po(E)) for different strengths of the scattering potential, in-
dicated in the legend. (Bottom) The same data divided by
the free DOS (p°(E)).

tion on that site reads
[GO]gs"

Goi' = ——2—t -
(e

(29)
The function [GO]§;* is simply related to the density of

states per carbon atom in the absence of impurity, p°(E),
through

[G°(B)lo" = F(B) —inp"(E). (30)

The knowledge of p°(E) suffices for the determination of
F(E) on account of the analytical properties of G°(E)
and the Kramers-Kronig relations. Moreover, any new
poles of the exact Green’s function can come only from
the denominator in (29), and are determined by the con-
dition

1-UF(E)=0. (31)

Should this condition be satisfied for E within the branch
cut of G, the new poles will signal the existence of res-
onant states in the band, and bound states of the local
potential otherwise. Since p°(E) is known exactly® (cfr.
Fig. 3), so can be G°(E) through eq. (30). The function
F(E) is shown in Fig. 10. The profile of this function
and the condition above, allows two immediate conclu-
sions without further calculation: (i) the presence of the
local potential induces bound states beyond the band
continuum and (ii) a resonance appears at low energies
beyond a certain threshold, U,.s, with energy of opposite
sign with respect to the scattering potential, and which
moves toward £ =0 as U — co.

The latter characteristic is certainly more interesting
and we explore it a little further. To that extent notice
that from (29) and (30) follows the interacting LDOS at
the impurity site:
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FIG. 12: (Color online) (a) Position of the maximum in the
LDOS compared with the roots of (31). (b) Energy of the
bound state.

This quantity was calculated using the results of Fig. 10
and (32) and, at the same time, using the recursive
method that we have been using so far. The two do
coincide, just as expected since the solution of the sin-
gle impurity problem is exact, and, on the other hand,
the recursive method is exact for the particular case of
the LDOS?7. The LDOS at the site of the impurity is
shown in the top frame of Fig. 11 for several values of U.
The bottom frame shows the same data divided by the
non-interacting DOS, which amounts to replacing p°(E)
by unity in the numerator of eq. (32). The resonance al-
luded above is visible in both panels through the marked
enhancement of the LDOS in the vicinity of the Dirac
point. The position of the maximum in po(E) differs
slightly from the roots of eq. (31) due to the modula-
tion introduced by p°(E) in (32). This effect is shown
in detail in Fig. 12(a) where the two values are explicitly
compared. In addition, the LDOS also exhibits the Dirac-
delta peak associated with the bound state (not shown
in the figure), whose energy is plotted in Fig. 12(b) as
a function of U. It is worth mentioning that analytical
expressions can be obtained for the resonant condition
(31) using the low energy Dirac approximation to the
electronic dispersion30:38,

Returning now to our initial goal of populating the
lattice with a finite concentration of local impurities, we
expect the main features of the above analysis to hold to
a large extent. But new features should also emerge from
the possibility of multiple scattering and interference ef-
fects in a multi-impurity environment. Although some
of these effects can be captured within standard approx-
imations to impurity problems®®, we choose to present
the exact numerical results obtained with the recursion
technique. Examples of such calculations are shown in
Fig. 13, where the global DOS averaged over several con-
figurations of disorder is shown for different potential
strengths and concentrations.

The presence of the local term clearly destroys the
particle-hole symmetry, leading to the asymmetric curves
in the figure. As Fig. 13(a) makes clear, among the fea-
tures seen locally for a single impurity (Fig. 11), the ones
that carry to the global DOS of the thermodynamic sys-
tem with a finite concentration of impurities are the res-
onant enhancement of the DOS in the vicinity of the
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FIG. 13: (Color online) DOS of the honeycomb lattice with

a finite density of local impurities. (a) shows the DOS for
U = 12t and different concentrations of impurities (notice
the truncation in the horizontal axis). (b) shows a detail of
the low energy region for different U and x as noted in the
different graphs.

Dirac point, and the high energy features that dominate
beyond the band edge, and are associated with the im-
purity states. One verifies that a finite concentration, z,
generates a sort of impurity band at scales of the order of
U, in accordance with the results in Fig. 12(b). This im-
purity band has an interesting splitted structure as can
be seen in the figure and is completely detached from the
main band for U 2 4¢. In Fig. 13(b), we amplify the low
energy region and display what happens as U and x vary.
At small z and U the the DOS changes only through a
simple translation of the band with the concomitant shift
in the Dirac point, Ep. This rigid shift of the band at
low disorder is simply a consequence of the rigid band
theorem?®?: it states that the form of the DOS in an al-
loy system does not change with alloying, other than via
a simple translation as given by first-order perturbation
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FIG. 14: (Color online) (a) Variation of the “Dirac point”

energy Ep with impurity concentration and strength. The
inset shows Ep/EU as a function of U, in which the curves
with U < 3 roughly collapse onto each other. (b) Spectral
weight transfer to the impurity band in the presence of local
impurities. The values shown correspond to integration of the
global DOS beyond E = 4t (above the main band edge, cfr.
Fig. 13).

theory. In our case the magnitude of this shift is given
by

AFE = <UZCLCP> ~zU, (33)
P

where an average over disorder is implied. We can
confirm that the exact numerical results satisfy quan-
titatively this expectation by inspection of the data in
Fig. 14(a). There we plot the position of the minimum
in the DOS, Ep, for several U and x, being evident that,
for the concentrations analyzed, the relation (33) is quite
accurately satisfied up to U ~ 3. For local potentials
higher than U ~ 3 the rigid shift of Ep breaks down and,
in fact, the position of Ep becomes slightly ill defined.
We point out that concurrently with the shift of Fp (and



the band), there is a marked increase in the DOS at Ep,
unlike the single impurity case (cfr. Fig. 11). This, again,
is expected and appears already in approximate methods
like the CPA approximation®?. Nonetheless, whereas Ep
shifts linearly for moderate potential strengths, the po-
sition of the resonance does not vary significantly with
concentration, and is only enhanced with an increasing
number of impurities (Fig. 13(b)).

Another noteworthy aspect of this model has to do
with the impurity band that emerges at high energies.
Besides the effects just described, a change in the con-
centration of impurities implies a concomitant redistribu-
tion of spectral weight between the main band and the
impurity band. This is plainly shown in Fig. 14(b) which
displays the spectral weight in the impurity band against
the concentration of impurities. This spectral weight is
calculated by integrating the DOS in the region [4¢, ool.
As the figure shows, for U 2 5t the spectral weight of
the impurity band saturates at the value z, signaling the
detachment of the impurity states from the main band.
For those cases the spectral weight coincides with the
concentration x. It certainly had to be so because with
increasing U the impurity band drifts to higher energies,
eventually disappearing from the problem in the unitary
limit. As discussed previously in section IT A, the spec-
tral weight of the main band is decreased by precisely z,
in the presence of a concentration of vacancies of . This
is totally consistent with the fact that the local impu-
rity interpolates between the clean case and the vacancy
limit.

Finally, is also clear how the vacancy limit (U — o0)
emerges from the data in Fig. 13 as the resonance ap-
proaches F = 0 and becomes more sharply defined. At
the same time, the impurity band is displaced toward
higher and higher energies, eventually projecting out of
the problem in the vacancy limit.

D. Non-Diagonal Impurities

Another effect expected with the inclusion of a sub-
stitutional impurity in the graphene lattice is the modi-
fication of the hoppings between the new atom and the
neighboring carbons. This happens because the host and
substituting atoms have different radii, because the na-
ture of the orbitals involved in the conduction band is
different, or, most likely, a combination of both. Custom-
ary impurities in carbon allotropes are nitrogen, working
as a donor, and boron, working as an acceptor?’. In fact,
the selective inclusion of nitrogen and/or boron impuri-
ties in carbon nanotubes is a current practice in the hope
to tune the nanotubes’ electronic response®!42:43,

In general the study of a perturbation in the hopping
is much less studied in problems with impurities than the
case of diagonal, on-site, perturbations. In the context
of our investigations, the perturbation in the hopping
can, again, be interpreted as an interpolation between
a vacancy and an impurity. To be more precise, let us
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FIG. 15: (Color online) Effect of a single substitutional im-

purity in the LDOS. In panel (a) we plot the LDOS calculated
at the site of the impurity for the four different values of ¢
indicated in each frame. In (b) the situation is identical but
the LDOS is calculated at the nearest neighboring site of the
impurity.

introduce the relevant Hamiltonian:

H=—t Z cIciJﬂ; +to Z ’c;cp_H; +h.c.. (34)
7,0 p,0

In this case, only nearest neighbor hopping is consid-
ered. Without the second term, H above is the Hamil-
tonian for pure graphene. The last sum is restricted to
the impurity sites, p, and ty represents a perturbation
in the hopping amplitude to its neighbors. Is plain to
see that, when ty = ¢, all the impurity sites turn into
vacancies since the hopping thereto is zero. As a result
of that, this model provides another type of interpolation
between pure graphene and diluted graphene. An impor-
tant difference is that this model can be disordered when
the impurities are placed at random, without breaking
particle-hole symmetry, and, in this sense, is qualitatively
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LDOS in question is the LDOS calculated at the impurity
site.

much different from the case of local disorder discussed
in the preceding section.

We first look at the LDOS in Fig. 15, which contains
typical results for the local DOS near the impurity, and at
the impurity site itself. Irrespective of whether the LDOS
is calculated at or near the impurity, the resulting curves
display a strong resonance in the low energy region, no
bound states are formed and the curves are symmetrical
with respect to the origin. As ty increases from zero,
two simultaneous modifications in these resonances take
place. The first is that they are clearly enhanced as tg
approaches t. The second is its shift in the direction of
the Dirac point, in such a way that, when ty = 0.9¢, the
peak is already very close to £ = 0. With regard to this
last point, we systematically investigated the variation
of the peak position in the LDOS at the impurity site
with the value of ty. This dependence, which can be
seen in Fig. 16, is approximately linear and, for ¢g = 0.6,
is reasonably well approximated by the linear function
€max =~ t — tg. The apparent saturation for smaller ¢, is
due to the proximity to the van Hove singularity. The
study of a single substitutional impurity has been also
undertaken in ref. 44, with identical results.

The double-peak structure close to the Dirac point can
be qualitatively understood from the results regarding a
vacancy. Suppose that one completely severs the hop-
ping between a given atomic orbital and its immediate
neighbors (i.e: set top = ¢). In this case we are left with
an isolated orbital with energy F = 0 and a vacancy in
the honeycomb lattice, which we know also has a zero
energy mode. If now t( is changed slightly, it will cause
the hybridization of the two zero energy modes with the
consequent splitting of the energy level, and hence the
double peaked structure of the LDOS close to the Dirac
point.

When we go from one impurity to a finite density of
impurities, x, we obtain a measurable influence in the
thermodynamic limit. Our method in this case, consists
in placing impurities at random positions in the lattice,
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FIG. 17: (Color online) The DOS corresponding to the model
Hamiltonian (34), with a finite density of impurities. The
three panels correspond to different values of the perturb-
ing hopping (to = 0.5, 0.8, 0.9 and 0.95), and within each
panel the three curves were obtained at different concentra-
tions (z = 0.01, 0.05 and 0.1). The inset of the bottom panels
is a magnification of the region near £ = 0.

keeping their concentration constant. The global DOS,
averaged over several realizations of disorder, is presented
in Fig. 17. For intermediate values of ¢y, the perturba-
tion in the hopping induces a resonance appearing at
roughly the same energies as the ones found in Fig. 16.
The resonance is enhanced at higher concentrations of
impurities, and becomes more sharply defined as tog — t.
Interestingly, as can be seen in the last panels of Fig. 17
and its inset, the resonant peak splits at higher pertur-
bations. This splitting depends on the concentration of
impurities being more pronounced for larger concentra-
tions and is a new feature introduced by the finite number
of impurities. As happened already in the case of local
impurities, the exact numerical results have qualitative
and quantitative features that could not be anticipated
from calculations with a single impurity within the usual
approximation methods. We would also like to point out
the fact that, from inspection of the above figures, the
DOS remains zero at E = 0, notwithstanding the sharp
resonances in its vicinity. Since this model of disorder
interpolates between clean graphene and graphene with
vacancies, we are led to a situation similar to the one en-
countered in sec. II B for uncompensated vacancies. As
before, it seems that, as the vacancy limit is approached,
the DOS remains zero at the Fermi energy, despite di-
verging arbitrarily close to this point, and so the ques-
tion of the DOS exactly at £ = 0 for vacancies lingers.
Furthermore, unlike what happens with local impurities,
there is no impurity band nor any high energy features
appearing as tyg — t: the action is all on the low energy re-
gions. Strictly speaking, in the limit ¢o = ¢, the impurity
sites become isolated from the carbon network. Hence
those sites have to be removed from the Hilbert space for



a meaningful physical description of the vacancy case as
the limit ¢9 — ¢ (for local impurities the removal of the
impurity sites is akin to the drift of the impurity band
to infinity, carrying the spectral weight associated with
the number of the impurities, which projects out of the
problem).

Before closing, just a comment on the physical origin
of this perturbation. In effect, the presence of a substi-
tutional impurity like N or B will introduce, simultane-
ously, a perturbation in the hopping, and in the local
energy. However, it is more or less clear from the discus-
sions in the previous section that the clearest resonances
near Er occur when the local potential, U, is moderate
or high, which is not the case for boron or nitrogen sub-
stituents. Hence, the perturbation in the hopping should
perhaps be more significant in dictating the changes in
the low-energy electronic structure in the real physical
system.

III. CONCLUSIONS

In this paper we have studied the influence of local
disorder in the electronic structure of graphene, within
the tight-binding approximation of eq. (1). We focused
on vacancies in an otherwise perfect graphene plane and
the not so extreme cases of local (diagonal) impurities
and substitutional (non-diagonal, or both) impurities. In
all cases we saw that disorder brings dramatic alterations
of the spectrum in the vicinity of the Fermi level. This
is highly significant since many of the peculiar physical
properties of graphene stem from the vanishing of the
DOS at the Dirac point.

In the case of vacancies, the DOS features a strong di-
vergence at and close to F = 0, which is associated with
the formation of quasi-localized states decaying as ~ 1/r
around the vacancies, which remain even in the presence
of next-nearest neighbor hopping. Rather interesting is
the particular case of lattices with uncompensated va-
cancies, in which case we found the appearance of a gap
at low energies proportional to the concentration x, and
the coexistence of localized zero modes in the middle of
this gap. For the extreme limit of dilution among sites
of a given sublattice only, we showed that the gap is ro-
bust, and that a macroscopic number of quasi-localized
zero modes dominates the spectral density in the middle
of the gap. Moreover, these zero modes are strictly non-
dispersive as imposed by symmetry, and give a contribu-
tion x d(E) to the gapped DOS. This is very interesting,
in particular if one reasons in terms of magnetic insta-
bilities and formation of local magnetic moments. Such
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states might be at the origin of local magnetic moments,
which would explain the magnetism seen experimentally
in the irradiation experiments?!.

We showed how the vacancy case emerges as the lim-
iting case of a local impurity. In this case the exact cal-
culation with a single impurity problem was presented,
taking into account the full dispersion of the honeycomb
lattice. The results of approximate methods such as CPA
were subsequently compared with the exact numerical
solution of the problem with finite concentrations of im-
purities, and we identified the values of the parameters
for which these approximations qualitatively break down.
The discussion of non-diagonal impurities provided yet
another alternative view of the interpolation between
clean graphene and vacancies, with relevance for systems
with dopants that replace the host carbon atoms in the
honeycomb lattice. One important aspect of the results
with a finite concentration of these impurities regards the
splitting of the low energy peaks (insets of Fig; 17), which
is not captured at a single particle level. The effect has
to do with situations in which substitutional impurities
appear close to each other, causing interference and hy-
bridization effects that lead to the re-splitting of the low
energy resonances.

Finally, the results provided for the DOS and LDOS
are directly testable in real-life samples through scanning
tunneling spectroscopy techniques and, moreover, the ef-
fects on the global DOS should reflect themselves in the
electric transport. For example, one might be able to
distinguish whether the main effect of a substitutional
impurity occurs through the modification of the hopping
to its neighbors, or through the introduction of a local
potential.

Note added — The results described here have been
originally presented in reference 26 during 2006. While
preparing this manuscript we became aware of the
preprint 45 with some overlapping results regarding local
impurities.
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