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Abstract 

The general approach for the consideration of the magnetoelectric effects in ferroic 

nanorods is proposed in the framework of the phenomenological theory. The intrinsic surface 

stress, magneto- and electrostriction as well as piezoelectric and piezomagnetic effects are 

included into the free energy. The intrinsic surface stress under the curved nanoparticle surface is 

shown to play an important role in the shift of ferroelectric and ferromagnetic transition 

temperatures and built-in magnetic and electric fields appearance, which are inversely 

proportional to the nanorod radius.  

We consider the case of quadratic and linear magnetoelectric coupling coefficients. The 

linear coupling coefficient is radius independent, whereas the quadratic ones include terms 

inversely proportional to the nanorod radius and thus strongly increase with decrease of the 

radius. The predicted giant relative dielectric tunability in the vicinity of ferromagnetic and 

ferroelectric phase transition points induced by quadratic magnetoelectric coupling increases by 

2-50 times. The quadratic magnetoelectric coupling dramatically changes the phase diagrams of 

ferroic nanorods when the radius decreases. In particular the second order phase transition may 

become a first one, the triple point state characterized by continuous set of order parameters 

appears at zero external electric and magnetic fields and the tricritical points appear under 

external fields. 
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1.Introduction 

The magnetoelectric (ME) effect where the application of either a magnetic field or an 

electric field induces an electric polarization as well as magnetization attracted much attention in 

the last years. Although it was predicted by P. Curie [1] in 1894 on the basis of symmetry 

consideration and firstly observed in 1961 in an antiferromagnetic Cr2O3 crystal [2] the observed 

ME effect was small (about a few percents) that retarded its broad investigation and especially 

technical applications. The latter is related to the fact that ME materials must exhibit high ME 

coefficients for such important applications as magnetoelectric sensors in radioelectronics, 

optoelectronics, microwave electronics, transducers, magnetically tuned capacitors etc. Recently 

the revival of the ME effect has been observed due to discovery of high (several hundred 

percents) ME effects both in single phase and composite materials (see [3], [4, 5], [6] review [7] 

and ref. therein). Most of the composites exhibit a high extrinsic ME effect resulting from 

interaction between the magnetic and electric components via e.g. their magnetostriction and 

piezoelectric properties, as well as piezomagnetic-piezoelectric interaction [8, 9, 10]. The 

physical reason of the high ME effect is still unclear in single-phase materials, where the ME 

effect is intrinsic (see e.g. [11]). The description of this effect in microscopic theory based on a 

Hamiltonian with spin-orbit interaction frequently uses the idea that spin current symmetry 

belongs to the same class as the electric polarization and so it is natural to expect the coupling 

between them [12, 13]. Here however one could hardly expect a high ME coefficient. 

The phenomenological theory approach of the description of the ME effect obligatory 

uses the interaction of magnetization and electric polarization with mechanical tension both in 

composites [8, 14] and single-phase materials [15, 16]. However no indication on the possibility 

to obtain high ME coupling was revealed for conventional type of mechanical conditions in the 

bulk materials. 

It can be expected that because these conditions are completely different under the 

confinements of nanomaterials the probability to obtain high ME coupling would appear. Some 

evidence in favour of this supposition follows from the observation of dramatically higher ME 

coefficients in epitaxially (001) oriented BiFeO3 films on a SrTiO3 substrate than in the bulk 

crystals. This effect was suggested to be related to the influence of boundary conditions in the 

consideration performed in [17]. The authors of [17] came to the conclusion that the ME effect 

and other properties might be understood in terms of the appearance of a homogeneously 

magnetized state in the film. The same striking phenomenon was reported recently in the paper 

[18] about the observation of ferromagnetism in spherical nanoparticles (size 7–30 nm) of 
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nonmagnetic oxides such as CeO2, Al2O3, ZnO etc. Extremely strong superparamagnetic 

behaviour down to 4 K has been found in gold and palladium nanoparticles with mean diameter 

2,5 nm with no magnetization in bulk and narrow sizes distribution [19]. The appearance of 

ferroelectricity was shown to take place in nanorods and films of the incipient ferroelectrics 

which stay paraelectric up to zero K in bulk [20, 21]. In these papers it was shown that the 

possible physical origin of electrical polarization and magnetization can be due to mechanical 

conditions in restricted geometry of nanomaterials and the influence of surface tension in 

particular. Therefore it is not excluded that new secondary ferroics with M and P might appear 

among oxide nanomaterials. This type of secondary ferroics is known to be a possibility for 

obtaining high ME effects [7]. However up to now no calculations were performed to find out if 

the restricted geometry and related mechanical boundary conditions could influence the value of 

ME effect coefficients. 

In this paper we performed such calculations for the first time. We applied a 

phenomenological theory approach for oxide materials in the form of nanorods. Below one can 

see the details of the used model. 

 

2. Theoretical approach 

2.1. Model of calculations 

We will consider the secondary ferroic with two order parameters, magnetization M and electric 

polarization P in the form of nanorods. These order parameters can be either inherent in the bulk 

material or induced by confinements of nanorods. Keeping in mind that ferromagnetism has been 

observed at room temperature in nanoparticles of 7–30 nm size [18] and the sizes about 50 nm 

are suitable for the appearance of ferroelectricity [20] we suppose to consider nanorods with the 

sizes 5–50 nm. For such small sizes the influence of surface and related boundary conditions 

including surface tension are known to be high. Thus the properties are expected to be more 

close to those near the surface than in the bulk. While for larger sizes e.g. more than 100 nm the 

properties are known to change gradually from those on the surface to those in the bulk (see e.g. 

[22, 23]) for the considered sizes less than 50 nm the properties can be supposed to be 

homogeneous and under the strong influence of surface tension. The main mechanism of the 

mechanical tension relaxation is known to misfit dislocation. But the considered small sizes 

which are usually smaller than the critical size dh∆  of dislocation appearance [24], the tension 

and thus the properties can be considered as homogeneous. As a matter of fact such an approach 

is in agreement with so called shell and core model of the nanoparticles [25] where the core is 

the inner part of a particle, that contrary to shell (outer part) does not “feel” the influence of 
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surface. The core properties are thus practically the same as those in the bulk. Investigation of 

ferroelectric nanoparticles by ESR method had shown [26] that the shell sizes are in the region of 

several to tens nm. The characteristic feature of the shell has to be the absence of spatial 

inversion symmetry and so the existence of piezoelectric effect even for cubic symmetry in the 

bulk. Under the condition of appearance of ferromagnetism in the small nanoparticles [18] one 

can suggest the disappearance of time inversion symmetry and so piezomagnetic effect existence 

in nanoparticles. In what follows we will consider long nanosize cylindrical nanorods with 

electrical polarization along z axis and magnetization along one of three equivalent axes with the 

external electric and magnetic fields along z and x directions correspondingly (see Fig. 1). The 

nanorods are supposed to be clamped and long enough ( ). For the considered geometry 

the depolarization field is absent. Also it is possible to make the demagnetization field negligible 

Rh >>

[27]. Under such conditions single domain state will be the most preferable. The electro- and 

magnetostriction effects as well as mechanical stress tensor with boundary conditions at the 

curved nanoparticle surface must be taken into account. The nanorods are supposed to be 

separated from one another and so they are not interacting. 
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Fig.1. (Color online) Geometry of cylindrical particle, x is one of the three equivalent weak 

magnetic anisotropy axes; z is the polar ferroelectric axis. The external electric field  is 

directed along polar axes, magnetic field  is directed along the x axes. The geometry 

 is typical for the majority of experiments.  
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The text of the paper contains several chapters which include the most general form of 

free energy M, P, striction and piezocoefficients and ME linear and nonlinear interaction are 
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obtained after minimization of free energy with respect to stress components (section 2.2). 

Sections 3-4 are devoted to built-in electric and magnetic field and ME coupling coefficients 

with size effect calculations. The consideration of electric, magnetic and magnetoelectric 

susceptibility one can find in section 5. In section 6 the calculations of the transition temperature 

with and without ME interaction are presented. The size effects in the phase diagrams are 

considered too. In the section we consider the most widely spread case of existence of the 

squared ME effect only to show that even in this case size effects become very strong . 

 

2.2. Gibbs energy renormalization caused by intrinsic surface stresses 

Let us consider a rather long cylindrical ferroic nanorod with free sidewalls ( R=ρ ) 

clamped between the wafer ( ) and top electrode (2/hz −= 2/hz += ) (see Fig.1).  

In what follows we will consider one set of parameters for the nanoparticle. Such a 

situation is possible for a nanorod of small radius. However it is not excluded that the numerical 

values and symmetry of material tensorial constants differ from the ones tabulated for bulk 

material, e.g. there are “shell” constants inter-grown through the nanoparticle “core”. For this 

important case several electro- and/or magneto-mechanical coupling phenomena absent in the 

bulk may appear from the symmetry breaking in the vicinity of surface (see below). 

Let us suppose that polarization is directed along the polar axis z and magnetization along 

weak magnetic anisotropy axis x, i.e. ),0,0( 3P=P  and )0,0,( 1M=M . So, the Gibbs energy 

expansion of the  homogeneous polarization , the magnetization component  and 

the stress σ  has the form: 
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Subscripts 1, 2 and 3 denote Cartesian coordinates x, y and z respectively, we use Voigt notation 

or matrix notation when necessary (xx=1, yy=2, zz=3, zy=4, zx=5, xy=6). Coefficients  

and  explicitly depend on temperature T in the framework of the Landau-Ginzburg 

)(1 Ta

)(1 Tb
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approach. All the higher order expansion coefficients are supposed to be temperature 

independent. Since we supposed that the order parameters and elastic stress spatial distribution 

are homogeneous inside the nanorod, we should neglect the gradient energy. Note that for the 

film on the substrate this supposition is valid when the film thickness is less than the critical 

thickness of misfit dislocation appearance that is known to be dozens of nm [24]. 

In Eq.(1) Q  and  are respectively the electro- and magneto-striction tensor 

coefficients;  are components of elastic compliance tensor [28]. Hereinafter we suppose the 

symmetry of piezoelectric ( ) and piezomagnetic ( ) effects due to the surface influence 

are different from the cubic phase as follows: 

ij ijZ

e
jkg3

ijs

m
jkg3

( ) ...3333332211313 +σ+σ+σσ PgPgg ee
jk

e
jk

...

3 =P  and 

.. ( ) 133132211 +σσσ=σ MgMg m
jk

m
jk 1 +11 +11g m M

The distribution of stress  should satisfy the conditions of mechanical equilibrium as 

well as appropriate boundary conditions at the curved nanoparticle surface:  
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Here  is the intrinsic surface stress tensor coefficients [29, 30] which have nontrivial 

components only on the nanorod surface. The surface stress µ is strongly dependent on the 

ambient material. 

ijij µδ=µ

The minimization of the free energy (1) with respect to the stress components  leads to 

the equations of state 

ijσ
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klijijklf σσ

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )













σ=σ=σ=
=++σ++σ++σ+σ+σ

=++σ++σ++σ+σ+σ

=++σ++σ++σ+σ+σ

.2,2,2
,

,

,

124412134413234423

33113333
2

1333311
2

33333111122123311

22111331
2

1221112
2

32211123311122211

11111331
2

1111112
2

31111123322121111

sususu
uMgPgMBZPAQss

uMgPgMBZPAQss

uMgPgMBZPAQss

me

me

me

 (3) 

Here ( ) 2ijjiij xuxuu ∂∂+∂∂=  are strain tensor components (u  is the displacement vector 

components).  

i

The homogeneous solution of Eqs.(3) for the stress and strain tensor components ijσ  in 

Cartesian coordinates has the form: 

,0, 2313122211 =σ=σ=σ
µ

−=σ=σ
R

      (4a) 
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Rigorously speaking, solutions (4) are valid for nanorods of radius R  less that the critical 

thickness  of surface stress relaxation (e.g. dislocation appearance [24]). For the case dh∆

dhR ∆>~  a rather complex inhomogeneous elastic problem with elastic stress and polarization 

gradients should be considered, that is far beyond the scope of the paper. Approximate solution 

could be obtained within the framework of conventional core and shell model [23]. Elastic stress 

 given by Eqs. (4a,b) is mainly concentrated in the shell region, whereas the core is almost 

unstressed (i.e. ).  

ijσ
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Typically nm. We thus mainly consider the case  (i.e. all the 

particles are in shell in sections 3-6), since it is the most interesting one for surface and size 

effects manifestation. Effects related with the shell influence on the dielectric and 

magnetoelectric properties of thick nanorods will be qualitatively considered in the Discussion. 

505~ −∆ dh dhR ∆<

Hereinafter we suppose that the terms  and  are small, so we neglect 

their higher powers. Substituting Eq.(4a-b) into Eq. (1) we obtain the Gibbs energy with 
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The renormalized coefficients before  and  in the free energy (5) have the form: 2
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The internal “built-in” fields induced by the piezoelectric and piezomagnetic effects are 

introduced as  
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The nanorod (i.e. shell) magnetoelectric energy density is introduced as: 
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Linear and quadratic magnetoelectric coupling coefficients in the magnetoelectric energy (8) are: 
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Both nonzero values  and  are necessary to obtain nonzero linear coupling 

coefficient 
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011 ≠γ  that may be possible in some special cases. For instance, 

Wb/N and Wb/N in Terfenol-D [9], but piezoelectric coupling 

is absent in the bulk. However it may appear inside the nanorod of radius  (or the 

corresponding shell region for ) allowing for the symmetry breaking on the surface. The 

coefficient 
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For the case  the core (i.e. bulk) magnetoelectric coupling coefficients are 

radius independent and the magnetoelectric energy coincides with the one of laterally clamped 
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3. Built-in fields thickness dependence 

The built-in electric (7a) and magnetic (7b) fields dependence on nanorod radius are 

shown in Fig.2 for typical material parameters. It is clear from the log-log dependencies that 

built-in fields increase with a radius decrease and could overcome the bulk coercive field values 

 and  (see solid and dashed lines). CE CH

Built-in electric field leads to the horizontal shift of all hysteresis loops and electret-like 

state appearance in ferroelectric films with thickness less than the critical one. It  facilitates thin 

film the self-polarization as predicted in Refs.[31, 32]. Beside trivial hysteresis loop horizontal 

shifts (see insets 2c,d), we predict ordering effects caused by built-in magnetic fields, radius 

dependent  effect may induce ferromagnetism or irreversible magnetization in small 

nanorods absent in the bulk material. This is similar to the ferroelectricity in incipient 

ferroelectric nanorods [20] and electret state in ultrathin films [32]. Under the absence of 

external magnetic field, the built-in magnetic field smears the magnetic, dielectric and the 

magnetoelectric susceptibility temperature maximum, increases their values in paramagnetic 

phase and essentially increases magnetoelectric tunability. 

)(RH p
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Fig.2. (Color online) Built-in electric (a) and magnetic (b) fields dependence on nanorod radius 
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CHH . All values are normalized on their 

bulk values at zero fields without electromagnetic coupling. The electric field is assumed to be 

zero. 
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4. Size effect on magnetoelectric coupling coefficients  

Let us rewrite Eqs.(9) as 
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. Usually 

bulk material magnetoelectric coupling constants  are small or identically zero depending on 

material symmetry.  

The linear coupling coefficient is radius independent, whereas the quadratic ones include 

terms inversely proportional to the nanorod radius. They thus strongly increase with radius 

decrease. Linear magnetoelectric coupling  breaks the symmetry  and 11γ PP −→ MM −→  as 

well as smears the transition point even at zero magnetic and electric fields. So, Eq.(11) allows 

the strong renormalization and even sign change of  caused by intrinsic surface stress, since 

characteristic parameters  could be positive or negative. In accordance with estimations made 

in Appendix A, usually 

11≠γ ij

ijR

nmnm 12 ≤≤ R 501 , nm50nm5 21 ≤≤ R  and so their sum 

nm10022 ≤R . Size dependence of the normalized coupling coefficients is shown in Fig.3. It is 

clear from Fig.3, that at small radiuses 1<<R ijR  coefficients  are much greater than their 

bulk values . 

11≠γ ij

b
ij 11≠γ
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Fig.3. (Color online) Size dependence of the normalized coupling coefficients b
ijijij γγ=γ~  via 

the nanorod radius 22RR : 22
~γ  (solid curves “22”), 12

~γ  (“12” long-dashed curves for 

75.02212 ±=RR  and dotted curves for 5.72212 ±=RR ), 12
~γ  (“21” short-dashed curves for 

25.02212 ±=RR  and dash-dotted curves for 5.6±=2212 RR ) and constant 1~
11 =γ  (“11” 

circles). To generate the plots we used the identity 22122221 RRRR 1= − . 

 

Below we demonstrate the effects related with magnetoelectric coupling coefficients 

 and their influence on ferromagnetic and ferroelectric transition temperatures. We show the 

increase of the ferroelectric and ferromagnetic transition temperatures with the decrease of the 

nanorods radius in comparison with the bulk material.  

11≠γ ij

 

5. Generalized susceptibilities calculations  

Using renormalized coefficients (6, 7, 9), one can rewrite the free energy (5, 8) density 

),(~ TRg  as follows: 
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( ) ( )











γ+γ+γ+γ+

++−+−β+α+β+α
=

2
3

2
1223

2
121

2
31123111

1030
4

111
4

311
2

11
2

31),(~
PMPMPMPM

MHHPEEMPMP
TRg pp  (12) 

The conditions of the free energy minimum 0~
3 =∂∂ Pg  and 0~

1 =∂∂ Mg  lead to the 

coupled equations of state: 







+=β+γ+γ+γ+γ+β

+=α+γ+γ+γ+γ+α

0
3
1111

2
3223121

2
31231111

0
3

311
2

1322
2

121311211131

4222

4222

HHMMPPMPPM

EEPMPMPMMP

p

p      (13) 

After elementary transformations listed in Appendix B, the electric and magnetic susceptibilities 

can be found from the system (14) along with the magnetoelectric coupling coefficient: 

( )
( )31

2
111

2
3223211

0

3

,

62

PM

MPP
E
P

E
∆

β+γ+γ+β
=

∂
∂

=χ ,   (14a) 

( )
( )31

2
311

2
1221121

0

1

,

62

PM

PMM
H
M

M
∆

α+γ+γ+α
=

∂
∂

=χ ,   (14b) 

( )31

312212131211

0

1

0

3

,

422

PM

PMMP
E
M

H
P

ME
∆

γ+γ+γ+γ
−=

∂
∂

=
∂
∂

=χ  (14c) 

Where: 

( ) ( )( )
( ) 











γ+γ+γ+γ−

−β+γ+γ+βα+γ+γ+α
=∆ 2

312212131211

2
111

2
3223211

2
311

2
1221121

31
422

664
,

PMMP

MPPPMM
PM  (15) 

Built-in fields (7) lead to the order parameter and susceptibility hysteresis loop horizontal shift, 

i.e. the loop horizontal scale is determined by the sum  as shown in Figs.2c,d. 0)( HRH p +

 The temperature dependence of susceptibilities Eχ  and MEχ  are presented in Figs.4a-b at 

zero electric field and increasing magnetic field  for positive coupling coefficient 0H

0)(22 >γ R , zero coefficients 0111221 =γ=γ=γ  and neglecting size effects of the transition 

temperatures. The corresponding ferroelectric order parameter  is shown in Fig.4c. The 

temperature dependence of dielectric tunability 

3P

( ) )0()0 EE H χ() E(E χ−χ=δχ  for zero electric 

field  and different values of magnetic field  (in coercive field units) is shown in 

Fig.4d. 

0=E 0H

When generate the plots we put coefficients ( )b
ceT TT −α≅1α , ( )b

cmT TT −β≅β1 , where 

 and T  are the bulk ferroelectric and ferromagnetic transition temperatures. Note that the 

condition 

b
ceT b

cm

21 012 =γ=γ  leads to zero built-in fields in accordance with Eqs.(9). 
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Detailed consideration of the size-induced transition temperature shift will be presented 

in the next section. Here we demonstrate that under the condition bR 2222 )( γ>>γ  the influence of 

the quadratic ME coupling term  on susceptibilities and order parameters may be 

strong itself. 

2
3

2
122 PMγ

It is clear from Fig.4a that the dielectric inverse susceptibility χ  decreases (so its direct 

value  increases) and smears with  increase. At relatively small magnetic fields 

1−
E

Eχ 0H

10 HH <<C  the susceptibility jump-like peculiarity appears at temperature lower than the bulk 

ferromagnetic phase transition temperature T  (see curve 1). The jump diffuses and shifts to 

higher temperatures with magnetic field strength increase (see curves 2-3). The shift from the 

bulk transition temperature T  depends on the ME coupling as β  (see also Eq.(14-

15)). So, ME coupling increases the ferromagnetic transition temperature at negative 

b
cm

b
cm

2
3221 Pγ+

22γ  and 

decreases it at positive 22γ . We predict that high enough ME coupling 

( bRR 222222 )(,0( γ>>γγ

0)0(1 ≥=T

) < ) may lead to the condition β  in some temperature 

range even at β  and thus induces a ferromagnetic phase in small nanorods. It is 

absent in the bulk material (similarly to the appearance of ferroelectricity in incipient 

ferroelectric nanorods [20]).  

022 P)(1 γ+T 2
3 ≤

At high magnetic fields 10 >CHH

T<<

2
3

2
122 PMγ

 the ME coupling induces ferroelectric-paraelectric 

phase transition at low temperatures T  (see the point χ  at curve 4 in Fig.4a). ME 

coupling-induced ferroelectric phase transition appeared under the condition , 

i.e. when positive coupling term  suppresses the ferroelectric phase as shown in Fig.4c 

for the polarization . No such ferroelectric-paraelectric phase transition is observed at negative 

b
ce 01 =−

E

02
1221 ≥γ+α M

3P

22γ , in contrast, the bulk phase transition T  moves to the higher temperatures. b
ceT=

It is clear from Fig.4b that magnetolectric susceptibility MEχ  is almost absent in 

paramagnetic phase at small magnetic field. Its maximum diffuses with increasing magnetic field 

strength. Thus the χ  temperature behavior is similar to the pyroelectric coefficient one. ME

It is clear from Fig.4d, that the dielectric tunability increases under the magnetic field 

increase. The jump on the tunability appeared at lower temperatures than T . It is related with 

the ferromagnetic phase transition shifted by the ME coupling. The jump height increases with 

magnetic field increase. Giant tunability appearance at high enough magnetic fields 

b
cm

10 >CHH  
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(see divergence on curve 4 in Figs.4d) is caused by the ME coupling-induced ferroelectric-

paraelectric phase transition taken place at positive 22γ  values (see the point, where  at 

curve 4 for in Figs.4a and  in Fig.4c). The dielectric tunability is colossal (2-50 times) in 

the vicinity of the phase transition (compare with 500% effect shown in Fig.2 from Ref.[11]). 

The size effects are absent in the bulk material allowing for negligibly small bulk ME coupling 

coefficients. 

01 =χ−
E

03 =P
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zero electric field 0111221 =γ=γ=γ , 502222 =γγ b , 111111 )0(5.1)0( αα=ββ , bulk 

ferromagnetic to ferroelectric transition temperatures ratio =b
ce

b
cm TT 0.1 and increasing values of 

magnetic field =CHH 0 0.01; 0.5; 1; 2 (curves 1, 2, 3, 4). The values χ  and E MEχ  are 

compared with corresponding bulk values (dotted curves) at zero fields and typical 

electromagnetic coupling. 
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6. Size effect on phase diagrams 

6.1. Size effect on transition temperatures without ME coupling 

The coefficients α  and β  are temperature and radius dependent in accordance with Eqs.(6a,b). 

They can be rewritten as 

1

( ))(Rce , (1 Tβ=β . The temperatures T  

and T  are: 

)(R

)(Rcm

( )
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In order to consider the case of T ,  (i.e. when bulk material has no ferroic 

properties), one should use the following dependencies: 

0 0=b
ceT
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 The temperatures (T  and T  determine the points of corresponding paraphase 

instability. Under the negligibly small magnetoelectric energy (8), T  and T  determine 

the second order ferroelectric and ferromagnetic phase transition points correspondingly.  

)Rce )(Rcm

)(Rce )(Rcm

Schematic dependence of the temperatures T  and T  via the nanorod radius )(Rce )(Rcm R  

is shown in Fig.5. Note, that both signs of characteristic constants  and ρ  are possible. 

Estimations [20] proved that the contribution of terms ~1/R becomes essential at radiuses less 

than 5-50nm at the reasonable values of surface stress tensor 

ZQ,R BA,

N/m505 −=µ  [34]. At positive 

characteristic constants size-induced phase transition exists, while the temperature enhancement 

is possible at their negative values. The inequality 1* <ce
*

cm TT  is typical for to the majority of 

bulk multiferroic materials such as BiFeO3, Pb(Fe,Nb)O3, Eu(Ba,Ti)O3 [15]. However it is not 

excluded 1)()( <RTRT cecm  for nanorods of definite radius R allowing for the considered size 

effects as shown in Figs.5(a-d). 

Also it is important for further consideration that characteristic parameters  (as well 

as parameters ), which determine the size-induced transition temperature shift in accordance 

with Eqs.(16), and parameters , which determine the magnetoelectric coupling coefficients 

size effects in accordance with Eq.(11), depend on the different material constants (e.g. piezo- 

constants), have different numerical values and thus should be tuned independently. In fact we 

deal with double-scale size effect. 

ZQR ,

BA,ρ

ijR
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Fig.5. (Color online) Schematic dependence of the temperatures T  (solid curves) and 

 (dashed curves for 

)(Rce

)(RTcm 2±=QZ RR  and dash-dotted curves for 5.0=QRZR ) via the 

nanorod radius QRR  for 1.0** =cecm T

2
Q 25.0B ⋅=

T  and (a) ρ ; (b) ρ ; (c) 

; (d) ρ , ρ .  

0, =BA
2

, 1.0 QBA R⋅=

21.0 QR⋅,BA −=ρ 1.0A R⋅−= 2
QR

 

6.2 Size effect on phase diagrams with ME coupling 

Below we mainly considered the most widely spread case of existence of the squared ME 

effect only (i.e. piezoeffect is absent and so 011 =γ , 012 =γ , 021 =γ , 022 ≠γ , , 

, ) to show that even in this case its influence allowing for size effects becomes 

0== pp EH

b
cmcm TT =* b

cece TT =*
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very strong. Numerical analyses of Eqs.(13-15) proved that quadratic magnetoelectric coupling 

term  acts as ferroelectricity and ferromagnetism suppressing or enhancing factor 

depending on 

2
3

2
122 PMγ

22γ  sign. Positive 22γ  values decrease the phase transition temperature, while the 

negative ones increase it. Hereinafter we consider positive 22γ  values. 

≠P M

0

1 >

α

1

2−221γα 221γ 11 −

 

6.2.1. Phase diagrams without external fields  

For the case when magnetic and electric fields are absent ( , ), analysis of 

the free energy (12) is essentially simplified. In the Table I we summarized general conditions 

for the stability and existence of the four different phases, namely paraphase ( , 

00 =H 00 =E

=P 0 0=M ), 

ferroelectric ( , ), ferromagnetic (0 0=M 0=P , 0≠ ) and mixed ferroelectric - 

ferromagnetic phase (secondary ferroic phase 0≠P , ≠M ) denoted as PP, FE, FM and FEM 

respectively. 

 

Table I. The conditions of phases existence and stability in the absence of external fields 

Phase Conditions 

PP  0α ,   01 >β  

FE 01 <α ,   02 111221 <αβ−γ  

FM 01 <β ,   02 11122 <βα−γβ  

FEM 0111 >αβ ,   02 111 >βα−β ,    04 2
2211 >γβα

(Secondary Ferroic Phase) 

 

Since the free energy (12) renormalized coefficients (6), (7), (9) depend on the rod radius, 

Table I allows to construct phase diagrams in different coordinates. As one can see from the 

table, there are no ranges of coexistence between PP and FE, FM phases, or FEM and FE, FM, 

PP phases. At the same time there is some possibility for FE and FM phases to coexist. In this 

case the phase transition between FE and FM would be of first order. The phase transition 

between other phases (PP with FE or FM; or FEM with FE or FM or PP) is of the second order. 

The conditions of the phase transitions are summarized in the Table II. 

 

Table II. The boundaries between different phases (if any) in the absence of external fields 

Transition Order Condition 
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PP - FE II 01 =α    (i.e. T ) )(RTce=

PP - FM II 01 =β    (i.e. T ) )(RTcm=

FE - FM I 
11

2
111

2
1 ββ=αα  

FE - FEM II 
111221 2 αβ=γα    (i.e. ( )RTPRRT

T
cm ,)()( 2

3
22

β
T γ

−= ) 

FM - FEM II 
111221 2 βα=γβ    (i.e. ( )RTMRRT

T
ce ,)()( 2

1
22

α
T γ

−= ) 

 

Phase diagrams of the considered system for different values of ratio b
ce

b
cm TT  and QZ RR  and 

small bulk value Γ  are presented in Fig. 6.  2
22 10−=b

 Hereinafter the ferroelectric to ferromagnetic energy ratio ( ) ( )1111 βααβ= b
ceT

b
cmT TTW  

and dimensionless quadratic magnetoelectric coupling coefficient 11112222 4)()( βαγ=Γ RR  are 

introduced. Also we introduce normalized electric and magnetic fields CEEE 0
~

=  and 

CHHH 0
~

=  respectively, where the values  and re 

proportional to the thermodynamic coercive fields. 

S S
b

cmTC MTH β= 2  ab
ceTC PTE α= 2
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Fig. 6. (Color online). Phase diagrams for parameters , , , 2
22 10−=Γb 5.1=W 0>QR

10022 =QRR , , ,  and (a) 0, =ρ BA 0~
=H 0~

=E 3=QZ RR , 1.0=b
ce

b
cm TT ; (b) 3.0=QZR R , 

1.0=b
ce

b
cm TT ; (c) 3=QZ RR , 1b

cm =b
ceTT ; (d) 3.0=QZ RR , 1=b

ce
b

cm TT . 

 

Phase diagrams of the considered system for different values of ratio b
ce

b
cm TT , different 

sign of  and QR QZ RR >  and large bulk value  are presented in Fig. 7. 5.022 =Γb
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Fig. 7. (Color online). Phase diagrams for parameters Γ , , 5.022 =b 5.1=W 3=QZ RR , 

3022 =QRR , , ,  and (a) , 0, =ρ BA 0~
=H 0~

=E 0>QR 1=b
ceTb

cmT ; (b) , 0>QR 5.0=b
ce

b
cm TT ; 

(c) , 0<QR 1=b
ceTb

cmT ; (d) , 0<QR 5.0=b
ceTb

cmT . Circles denote triple points. The second and 

the first order phase transitions are shown by solid and dashed lines, respectively. Dotted lines 

denote the limits of different phases stability. 

 

Comparing Figs. 7a with 7c or 7b with 7d, one can see the change of  sign drastically 

changes the transition line between FE and PP phase, so that the transition temperature trend 

changes from the decrease to the increase with decreasing radius. At the same time, other 

transitions dependences on radius qualitatively remain the same. 

QR

It should be noted that the regions of FE and FM phase coexistence are situated between 

dotted lines in Fig. 7. In this case equilibrium phase transition between these phases will be of 
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first order, when the free energy values for coexisting phases are equal. Thus, the region of 

coexistence that corresponds to the secondary ferroic appearance is divided into sub-regions 

where one of phases has the deeper minima and is absolutely stable, while the other is 

metastable. Hereinafter mFE, mFM and mFEM denote metastable FE, FM and FEM phases 

respectively. 

To illustrate the triple point properties and compare this state with the other ones, we 

presented free energy contours for triple point in Fig. 8a along with contours FE, FEM and FM 

phases in Figs. 8b, c and d respectively for the parameters corresponding to Fig. 7a.  

It is seen from Fig. 8a that the triple point state is characterized by a continuous set of 

order parameters, since any point ( P , M ) lying on the dotted circle in Fig.7a corresponds to the 

free energy minimum.  
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Fig. 8. (Color online). Free energy contours for parameters , , 5.022 =Γb 5.1=W 3=QZ RR , 

3022 =QRR  ( ), 0>QR 1=b
ce

b
cm TT , , ,  and (a) 0, =ρ BA 0~

=H 0~
=E 77.0=b

ceTT , 30=QRR  
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(triple point); (b) 77.0=b
ceTT , 20=QRR  (ferroelectric phase); (c) 77.0=b

ceTT , 60=QRR  

(secondary ferroic phase); (d) 5.0=b
ceTT , 30=QRR

0=b
ceT

 (ferromagnetic phase). Crosses denote 

maxima positions. Dotted and dashed contours correspond to the free energy minima and zero 

values respectively. 

 

In order to consider the case of T ,  (i.e. when bulk material has no ferroic 

properties), one should use Eqs.(16c,d) and introduce 

0=b
cm

1111 βα=W . Phase diagrams for the 

case of T ,  and different values of ,  and 0=b
cm 0=b

ceT ZR b
22γ TT αβ  is shown in Figs. 9 for the 

typical case 210=αTβT  (for the majority of ferroic materials 1>>αβ TT ). In this case ferroic 

phase could exist only at small radii, the transition temperatures increase with radius decrease. 

PP phase transit into the phase with higher transition temperature, FE or FM phase. As it is seen 

from Figs. 9, the region of FEM phase existence is wider for the case 0<22γ  than for 022 >γ  

(compare panels (a) and (b), (c) and (d)) as anticipated. 

Phase diagrams corresponding to the cases 1=αβ TT and 210−=αβ TT  are shown in 

Appendix C. 
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Fig. 9. (Color online). Phase diagrams for following parameters 210=αTTβ , , T , 

, , 

0=b
cmT 0=b

ce

5.1=W 0>QR 3022 =QRR , , ,  and (a) , 0, =ρ BA 0~
=H 0~

=E 3
22 10−−=Γb 1.0=QZ RR ; 

(b) , 310−
22 =Γb 1.0=QRZR ; (c) , 3

22 10−=Γb − 10=QRZR ; (d) , 310−=22Γb 10=QZR R . 

 

6.2.2. Phase diagrams under external fields  

The application of the electric or magnetic field induces corresponding order parameter 

(polarization or magnetization), so that formally paraphase could not be introduced (although the 

reversibility of the state could help to distinguish it from paraphase). At the same time mixed 

phase FEM could exist. Typically two limiting cases 00 =E  and 00 =H  have been considered, 

namely: 
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(a)   In the absence of electric field ( 00 =E

4 1111βα

) the system under magnetic field could be either in 

FM or in FEM phases. For the case , 02
22 >γ− 02 111221 >βα−γβ ,  FEM is stable 

only for the magnetic fields , where  is the first critical magnetic field. For the fields 

above critical value  FEM phase transforms into FM one. The critical value of the field 

along with the aforementioned necessary conditions of its existence can be written as 

01 <α

I IHHH <0

IHH >0









β

γ
α

−β
γ
α

−= 11
22

1
1

22

1 22IH .   (17) 

For the case  FEM phase is stable only at , where the second critical 

value of the field can be written as: 

04 2
221111 <γ−βα IIHH >0

( ) 







α

α
γ

−β
γ−βα
αβ−γα

= 1
11

22
12

221111

111221 2
43

2
3
2

IIH .   (18) 

In the region where first order phase transition takes place both expressions (17-18) make sense 

and there is hysteresis for the fields III HHH << 0 . 

(b)   In the absence of magnetic field ( 00 =H

4 11βα

) the system under electric field could be in either 

in the FE or FEM phases. For the case , 02
2211 >γ− 02 111221 >αβ−γα ,  FEM is 

stable only for the fields , for the field above critical value  FEM phase transforms 

into FE one: 

01 <β

IEE <0 IE









α

γ
β

−α
γ
β

−= 11
22

1
1

22

1 22IE .   (19) 

For the case  FEM phase is stable only at , where critical value of the 

field can be written as: 

04 2
221111 <γ−βα IIEE >0

( ) 







β

β
γ

−α
γ−βα
βα−γβ

= 1
11

22
12

221111

111221 2
43

2
3
2

IIE .   (20) 

For the region where first order phase transition takes place, both expressions (19-20) make 

sense and there is hysteresis for the fields III EEE << 0 . 

Using the expressions (17)-(20), one can consider how the typical zero-fields phase 

diagram from Fig. 6b and 6d changes under the presence of external fields as presented in Figs. 

10a, c and Figs. 10b, d for the cases of electric and magnetic field respectively. It is seen that 

under the field increase in the region of FEM phase existence is narrowed (compare Figs. 10a 

with 10b or Figs. 10c with 10d), e.g. corresponding transitions/stability limits temperatures shift 

to lower values. 
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Fig. 10. (Color online). Phase diagrams for parameters , , , 2
22 10−=Γb 5.1=W 0>QR

10022 =QRR , 3.0=QZ RR , . (a) 0, =ρ BA 1.0=b
ce

b
cm TT , , 0 10~

=H 3,1,3.0,~ 4−=E  (curves 1, 

2, 3, 4); (b) 1.0=b
ce

b
cm TT , 3,1,3.0,10~ 4−=H ,  (curves 1, 2, 3, 4); (c) 0~

=E 1=b
ce

b
cm TT , , 0~

=H

3,1,3.0,10~ 4−=E  (curves 1, 2, 3, 4); (d) 1=b
ceTb

cmT , 3,1,3.0,10~ 4−=H ,  (curves 1, 2, 3, 

4). 

0~
=E

 

The changes of zero-fields phase diagram from Fig. 7a under the presence of external 

fields are presented in Figs. 11a-b and Figs. 11c-d for the cases of magnetic and electric field 

respectively. It is seen that under the field increase the region of FEM phase existence is 

narrowed slightly (compare Figs. 11a with 11b or Figs. 11c with 11d), i.e. corresponding 

transitions/stability limits temperatures shift to lower values. 
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Fig. 11 (Color online). Phase diagrams for parameters , , 5.022 =Γb 5.1=W 3=QZ RR , 

3022 =QRR  ( ), 0>QR 1=b
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b
cm TT

0~
=H ~E

,  and (a) , ; (b) , ; 

(c) , ; (d) , . Triangles denote tricritical points. The second- and 

first-order phase transitions are shown by solid and dashed lines, respectively. Dotted lines 

denote the limits of different phases stability. 
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Conclusion 

• We predict the effects related with the renormalization of the magnetoelectric coupling 

coefficients caused by intrinsic surface stress in ferroic nanorods. The linear coupling coefficient 

is radius independent, whereas the quadratic ones include terms inversely proportional to the 

nanorod radius and thus strongly increase with radius decrease.  

• The renormalized magnetoelectric effect increases the relative dielectric tunability 3-50 

times. At small magnetic field the magnetoelectric tunability increases under the magnetic field 

increase up to 2-5 times. A jump of the relative dielectric tunability is related with ferromagnetic 

phase transition shifted by the ME coupling. The jump height increases with magnetic field 

increase. Giant tunability (more than 50 times) appearance at high enough magnetic fields is 

caused by the ME coupling-induced ferroelectric-paraelectric phase transition taken place at 

positive coupling coefficient.  

• The quadratic magnetoelectric coupling dramatically changes the phase diagrams of ferroic 

nanorods with a decrease of the radius. The method to construct different phase diagrams by 

changing the nanorod radii is proposed. A ME coupling-induced ferroelectric-paraelectric phase 

transition (absent in the bulk) takes place at high enough magnetic fields. The transition appeared 

at positive coupling coefficients, when the magnetoelectric effect suppresses theferroelectric 

phase. Also the second order phase transition may become a first one. The triple point appears at 

zero external electric and magnetic fields tricritical points appear also under the external fields.  

• The intrinsic surface stress under the curved nanorod surface shifts the ferroelectric and 

ferromagnetic transition temperatures. The corresponding transition temperature shift (unrelated 

with ME effect) and negative magnetoelectric coupling may induce ferromagnetism in small 

nanorods absent in the bulk material. Similar mechanism could explain recently observed room 

temperature ferromagnetism in small nanoparticles of non-magnetic oxides. 

• Under the presence of piezomagnetic and piezoelectric effects, the intrinsic surface stress 

induces built-in magnetic and electric fields correspondingly. Built-in fields are inversely 

proportional to the nanorod radius. The fields smear magnetic, dielectric and magnetoelectric 

susceptibility temperature maxima, and increase their values in the paraphase. Built-in fields 

may overcome the coercive fields and thus essentially increase dielectric tunability even in the 

absence of external fields. 
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Appendix A. Estimations 

1). Let us estimate the coefficient  involved in (1). This could be done from the jump of 

elastic compliance  in the point of the bulk ferroelectric phase transition at T  [35], since 

33A

11s ceT=

( ) 2
311

,
11

,
11 sss EPEP −=∆

33 4 ⋅PA

~ P

−=

, namely . In accordance with data for BaTiO2
333PA=∆

1210−⋅=

33
EA

,
12s EP

6.1−

3 in Fig.4.3 

of Ref.[36] one obtains that ∆ Pa and Pa; whereas C/m11
Ps

11

12
11 106 −⋅=∆ Es

1110−⋅

2.0=2
3P 2 

at 1000C. Thus m10− 4/C2 Pa and m15+= 4/C2Pa.  

Then let us estimate the relative shift of the magnetoelectric coefficient 12γ  determined 

by the radius 
1111

,
3312

12 2
Qs
AsR

EP

µ= . Using typical parameters 11.011 =Q m2/C2, the surface stress 

N/m and ( 505 −=µ ) 3.0−=

455. −

1112 ss

) 412 −=ER

 (since  for cubic perovskites) we obtained 

nm and nm. 

012 <s

( 2.112 −=PR 12 ( )
2). Let us estimate the coefficient  involved in (1) and magnetoelectric coefficient 33B 21γ  

determined by the radius 
1111

3312

Z
B

.01÷

21 2
s
s

R µ=

1~2
1M

. Using the relation ship  and typical 

values T (Tesla),  ( M ) T

2
133

,
12 MBs HM =∆

1210~ −3.01~1 ÷M

( ) 11101.0 −⋅÷

ijZ

1 12∆s
4

.010~2
1 ÷

≅

2,  Pa one obtains that 

 Pa/T33 1=B 2 Si units. The estimation for µ din/cm, bulk magnetostriction 

coefficients ~

105 ⋅

ergcm39−11 10−10  typical for rare-earth alloys [8] and − 3.01112 −=ss  leads to 

the values ( )50521 −=R nm. 

 

Appendix B. Generalized susceptibilities calculations. 

Using Eq. (14), the following relations for full differentials can be written: 
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where 2
311

2
12211212

3

2

12222
~

PMM
P

g
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∂
∂ , 2

111
2

32232112
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∂
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312212131211
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PMMP
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∂ . After elementary transformations electric and 
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magnetic susceptibilities can be found from the system (B.1) as the inverse matrix in the form of 

Eqs.(15). 

In the paramagnetic phase (  and infinitely small magnetic fields) expressions (14) 

acquires the form: 

01 →M

( ) ( ) (( ))2
3223211

2
31211

2
3111 2262

1
PPPP

E
γ+γ+βγ+γ−α+α

=χ ,  (B.2a) 

( ) ( ) ( )2
3111

2
31211

2
3223211 12222

1
PPPP

M
α+αγ+γ−γ+γ+β

=χ ,  (B.2b) 

( )
( )( ) ( )2

31211
2

3223211
2

3111

31211

264

2

PPPP

P
ME

γ+γ−γ+γ+βα+α

γ+γ−
=χ .  (B.2c) 

In the paramagnetic and paraelectric phase (  and ) at infinitely small magnetic 

and electric fields one obtains from Eqs.(B.2) that 

01 →M 03 →P

2
1111
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4
2

γ−βα
β

=χ E , 2
1111

1

4
2
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It is follows from Eq.(B.3) that magnetoelectric coupling coefficient divergence corresponds to 

the condition . 04 2
1111 =γ−βα

Bulk susceptibilities in the case of quadratic magnetoelectric coupling: 
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Appendix C. Phase diagrams. 
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Fig. C1. (Color online). Phase diagrams for following parameters 1=αβ TT , , , 

, , 

0=b
cmT 0=b

ceT

5.1=W 0>QR 3022 =QRR , , 0, =ρ BA 0~
=H , 0~

=E  and (a) , 3−
22 10−=Γb 1.0=QZR R ; 

(b) , 310−
22 =Γb 1.0=QRZR ; (c) , 3

22 10−=Γb − 10=QRZR ; (d) , 310−=22Γb 10=QZR R . 
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Fig. C2. (Color online). Phase diagrams for following parameters 210−=αTTβ , , 

, , , 

0=b
cmT

0=b
ceT 5.1=W 0>QR 3022 =QRR , , 0, =ρ BA 0~

=H , 0~
=E  and (a) , 310−−=22Γb

1.0=QZ RR ; (b) , 3−
22 10=Γb 1.0=QZ RR ; (c) , 310−−=22Γb 10=QZ RR ; (d) , 3

22 10−=bΓ

10=QZ RR . 
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