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Inelastic transport theory from first principles: Methodology and application
to nanoscale devices

Thomas Frederiksen,* Magnus Paulsson, Mads Brandbyge, and Antti-Pekka Jauho

MIC-Department of Micro and Nanotechnology, NanoDTU, Technical University of Denmark, Qrsteds Plads, Building 345E,

DK-2800 Lyngby, Denmark
(Received 31 October 2006; published 9 May 2007)

We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies,
electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two
metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA
and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the
nonequilibrium Green'’s function formalism, and the electron-phonon interaction is addressed with perturbation
theory up to the level of the self-consistent Born approximation. While these calculations often are computa-
tionally demanding, we show how they can be approximated by a simple and efficient lowest order expansion.
Our method also addresses effects of energy dissipation and local heating of the junction via detailed calcu-
lations of the power flow. We demonstrate the developed procedures by considering inelastic transport through
atomic gold wires of various lengths, thereby extending the results presented in Frederiksen et al. [Phys. Rev.
Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also
calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the
wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the

system-specific mode selectivity and local heating.

DOI: 10.1103/PhysRevB.75.205413

I. INTRODUCTION

Electron transport in atomic-scale devices is an important
research area where both fundamental physics and techno-
logical opportunities are simultaneously addressed.! Ex-
amples of novel structures include molecules in self-
assembled monolayers (SAMs),> carbon nanotube based
components,® nanowires,* and single-molecule junctions.>™
Also conventional lithography-based semiconductor elec-
tronics is rapidly being pushed towards the scale where
atomic features become important. For example, the transis-
tor gate oxide is now only a few atomic layers thick.'”

The interaction between electrons and nuclear vibrations
plays an important role for the electron transport at the na-
nometer scale,'"'? and is being addressed experimentally in
ultimate atomic-sized systems.!3!” Effects on the electronic
current due to energy dissipation from electron-phonon
(e-ph) interactions are relevant, not only because they affect
device characteristics, induce chemical reactions,?® and ulti-
mately control the stability; these may also be used for spec-
troscopy to deduce structural information—such as the bond-
ing configuration in a nanoscale junction—which is typically
not accessible by other techniques simultaneously with trans-
port measurements.

The signatures of e-ph interaction have been observed in a
variety of nanosystems. In the late 1990s inelastic electron
tunneling spectroscopy (IETS) on single molecules was suc-
cessfully demonstrated using a scanning tunneling micro-
scope (STM).!® Later, in the quantum dot regime, measure-
ments on a single Cg, transistor showed features indicating a
strong coupling between center-of-mass motion of the mol-
ecule and single-electron hopping.'# Point contact spectros-
copy has also revealed phonon signals in the high-
conductance regime, e.g., in atomic wires'>'® and individual
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molecules.'” Most recently, inelastic measurements have also
been reported on SAMs of alkyl- and m-conjugated molecu-
lar wires.?!~?3 These developments show the need for fully
atomistic quantitative theories to accurately model structural,
vibrational, and transport properties of nanoscale systems.

The density functional theory (DFT) approach offers an
atomistic description of total energy properties of nanosys-
tems without system specific adjustable parameters. Further-
more, in combination with the nonequilibrium Green’s func-
tion (NEGF) method®*? it has recently become a popular
approach to quantum transport in atomic structures.?6-34
From the comparison with experimental data it has been es-
tablished that total energy properties such as atomic structure
and vibrations in general are well described by DFT with
the local or gradient approximations for exchange and
correlation.® However, while transport properties may also
be calculated from DFT this is not rigorously justified.3%3
On the other hand such an approach can serve as a good
starting point for more sophisticated approaches correcting
for errors in, e.g., the excitation spectrum, such as time-
dependent DFT,® the GW approximation,®*!' or self-
interaction corrected DFT.*>*3 In weakly coupled molecular
conductors electron-electron interaction effects play a sig-
nificant role. While some Coulomb blockade effects have
been described using spin-density functional theory,** the
correlation effects are more complicated to treat. In this di-
rection the addition of a Hubbard-like term on top of the
DFT Hamiltonian has been used.*> These more advanced de-
velopments often come at the price of limitations to the size
of the systems that feasibly can be handled. It is therefore
interesting to investigate to what extent the conventional
DFT-NEGF can be used to model various transport proper-
ties.

In this paper we present a scheme for including the effects
of e-ph interaction into one such DFT-NEGF method for
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electronic transport. Specifically, we describe in detail our
implementation of methods based on a combination of the
SIESTA% and the TRANSIESTA?” DFT computer codes. SIESTA
provides the fundamental implementation of Kohn-Sham
DFT in an atomic basis set for systems described in a super-
cell representation (periodic boundary conditions). TRANSI-
ESTA, on the other hand, uses the SIESTA framework to solve
self-consistently the Kohn-Sham DFT equations for the non-
equilibrium electron density in the presence of a current flow,
taking into account the full atomistic structure of both device
and electrodes (no periodicity in the transport direction). We
describe how the SIESTA and TRANSIESTA methods have been
extended for inelastic transport analysis, which involves the
calculation of (i) relaxed geometries, (ii) vibrational frequen-
cies, (iii) e-ph couplings, and (iv) inelastic current-voltage
characteristics up to the level of the self-consistent Born ap-
proximation (SCBA). We also describe approximations lead-
ing to a lowest order expansion (LOE) of the SCBA expres-
sions, which vastly simplifies the computational burden.*’48

While there have already been many studies devoted to
transport with e-ph interaction based on model Hamiltonians
emphasizing various aspects of the transport,**-%3 there has
only been a handful based on a complete first-principles de-
scription of all aspects of the e-ph transport problem (de-
scribed below). By this distinction we intend to emphasize
approaches where structural, vibrational, and transport prop-
erties are derived from the knowledge of the elemental con-
stituents only, i.e., without any system-dependent adjustable
parameters. So far these have almost entirely been based on
DFT for the electronic structure.

In the tunneling regime the atomic resolution of the STM
has been used to investigate spatial variations of the inelastic
tunneling process through adsorbed molecules on metallic
surfaces. Corresponding inelastic STM images were simu-
lated theoretically by Lorente and Persson with DFT and the
Tersoff-Hamann approach.®+% Also controlled conforma-
tional changes, molecular motion, and surface chemistry in-
duced by the inelastic tunnel current in STM have been
addressed.%6-68

More recently the regime where an atomic-scale conduc-
tor is more strongly coupled to both electrodes has also been
investigated. Based on a self-consistent tight-binding proce-
dure with parameters obtained from DFT,3® Pecchia et al.
considered vibrational effects in octanethiols bonded to gold
electrodes using NEGF and the Born approximation (BA) for
the e-ph interaction.®® Solomon et al. further used this
method to simulate the experimental IETS spectra of Wang
et al.?>’" Sergueev et al. studied a 1,4-benzenedithiolate
molecule contacted by two aluminum leads.”! This study ad-
dressed the bias dependence of the vibrational modes and
e-ph couplings, but not the inelastic current itself. While the
vibrational spectrum was found to be almost unchanged, a
significant change in the e-ph couplings was found at high
bias voltages (Vpips=>0.5 V). Chen er al. studied inelastic
scattering and local heating in an atomic gold contact, a
thiol-bonded benzene, and alkanethiols.”>7* The inelastic
signals were calculated using a golden-rule-type of expres-
sion and the DFT scattering states where calculated using
jellium electrodes.” However, contrary to experiments and
most calculations on molecules—for example, Refs. 21, 22,
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FIG. 1. Schematic of two generic system setups. (a) To calculate
vibrational frequencies and e-ph couplings with SIESTA we use a
supercell setup with periodic boundary conditions (BCs) in all di-
rections. The cell contains the device region D and possibly some
additional atom layers to come closer to a representation of bulk
electrodes. The dynamic atoms are a relevant subset of the device
atoms for which we determine the vibrations. (b) In the transport
setup we apply the TRANSIESTA scheme where the central region D
is coupled to fully atomistic semi-infinite electrodes via self-
energies, thereby removing periodicity along the transport direction
(the periodic BCs are retained in the transverse plane).

69, 70, and 76-78—they predict conductance decreases by
the phonons for alkanethiols. Jiang et al. used a related
golden-rule approach for molecular systems.”® Troisi et al.
suggested a simplified approach from which IETS signals
can be calculated approximately based on ab initio calcula-
tions for an isolated cluster and neglecting the electrodes.””””
This scheme was shown to be suitable for the off-resonance
regime, i.e., when the molecular levels are far away from the
Fermi level. Their results compare well with experiments by
Kushmerick et al.?! During the development of the scheme
presented here, we studied the same molecular systems with
similar results.*”-7® We also used it to model inelastic effects
that can be observed in atomic gold wires.%’

The paper is organized as follows. In Sec. II we commu-
nicate our first-principles approach to obtain a Hamiltonian
description of a vibrating atomic-scale device bridging two
metallic contacts, such as schematically shown in Fig. 1.
Specifically we describe the use of SIESTA to calculate vibra-
tional modes and e-ph couplings. Section III addresses the
NEGF formalism used to calculate the inelastic electron
transport in steady state as well as the SCBA and LOE
schemes for the e-ph interaction. Electrode self-energies are
obtained using the TRANSIESTA scheme. We further discuss
local heating effects and how various broadening mecha-
nisms of the inelastic signal can be addressed. The main
steps of the method presented in Secs. II and III, and how
these depend on each other, are schematically clarified in
Fig. 2. In Secs. IV and V we illustrate our approach by cor-
roborating and extending our previous studies of atomic gold
wires and hydrocarbon molecules. Section IV gives results
for an extensive set of calculations for atomic gold wires of
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FIG. 2. Flow diagram for the complete analysis of the inelastic transport properties of an atomic structure.

varying length and strain conditions. From these calculations
we identify a number of physical effects, e.g., the evolution
of a vibrational selection rule that becomes more pronounced
the longer the wire is. Section V illustrates that our method is
applicable to a wide range of systems, here exemplified by
different hydrocarbon molecules between gold surfaces.
Both applications also underline the usefulness of the LOE
scheme, which we validate by a comparison the full SCBA
calculation. Finally in Sec. VI we provide a summary of the
paper and an outlook.

II. ELECTRONIC STRUCTURE METHODS

In this section we describe our first-principles method to
obtain a Hamiltonian description of a vibrating atomic-scale
device bridging to two metallic contacts. The framework is
DFT and its numerical implementation in the computer code
SIESTA.*6

A. Vibrational Hamiltonian

The physical situations which we typically want to de-
scribe can schematically be represented as a central device
region D which is coupled to semi-infinite electrodes to the
left (L) and right (R). This generic setup is shown in Fig.
1(b).

We assume that the whole system under consideration can
be described by the following Hamiltonian

ﬁ=ﬁ2+ﬁgh+ﬁe_ph, (1a)
o .
HS—Echic_,-, (1b)
L]
H), = haoybb,, (1c)
A
H, =2 2 MYETE(b) + b)), (1d)
N i

where ¢} and B; are the electron and phonon creation opera-
tors, respectively. Here Hg is the single-particle mean-field

Hamiltonian describing electrons moving in a static arrange-
ment of the atomic nuclei, ﬁgh is the Hamiltonian of free

uncoupled phonons (oscillators), and fle_ph is the e-ph cou-
pling within the harmonic approximation. For simplicity, we
present in this paper a formulation for spin-independent
problems. The generalization to include spin-polarization is
straightforward.

The Hamiltonian (1) naturally arises from the adiabatic
approximation of Born-Oppenheimer in which the time
scales of electronic and vibrational dynamics are separated.'?
Since the electrons move on a much shorter timescale than
the heavy nuclei, the adiabatic approximation states that
the electronic Hamiltonian depends parametrically on the
nuclear coordinates, i.e., that I:IE=I:IE(Q), where Q=R-R’
is a displacement variable around the equilibrium configura-
tion RY. Next, limiting ourselves to small displacements we
can expand the electronic Hamiltonian to lowest order in Q

P oH
H~H+2 —*
v 99| o=0

Qlw (2)

where index [ runs over all dynamic nuclei and v=x,y,z
over spatial directions. Imposing a transformation into nor-
mal mode coordinates (and the usual canonical quantization
of position and momentum operators) we can rewrite Eq. (2)

into
oH, o e
2y (b5 +by). (3)
Q| g=0 2M o,

where M, is the mass of ion 7 and v*={v)} is the ionic
displacement vector of normal mode N with frequency w,
normalized according to v*-v*=1. From Eq. (3) we identify
the e-ph coupling matrix elements of Eq. (1d) as

H,~H+2>

Iv
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oH, h
M =S G122 VA —— . 4
ij % <l|(9Q1V|J>Q_OV1V ZMIQ) ( )

In the following sections we describe how we determine the
detailed geometry, the vibrational modes, and the e-ph cou-
plings from DFT.

B. SIESTA approach and geometry optimization

In our numerical approach we use the SIESTA implemen-
tation of DFT.*® This code treats exchange and correlation
within the local density approximation (LDA) or the gener-
alized gradient approximation (GGA). The core electrons are
described with pseudopotentials.

The main reason why SIESTA is particularly suitable start-
ing point for transport calculations is that the valence elec-
trons are described in a localized basis set that allows for an
unambiguous partitioning of the system into leads and de-
vice, cf. Fig. 1(b), thereby making it possible to calculate the
flux of electrons (the necessity of this partitioning for trans-
port calculations is discussed further in Sec. III). The basis
orbitals {|i)} are strictly localized approximations to atomic
orbitals with a given cutoff radius and centered at the posi-
tions of the nuclei of the structure. Importantly, this local
electronic basis is nonorthogonal with overlap matrix ele-
ments S;;=(i| ).

In this tight-binding-like basis we use the Kohn-Sham
Hamiltonian from SIESTA as the mean-field Hamiltonian in
Eq. (1b). We initially construct a periodic supercell [Fig.
I(a)], and use it as an approximation to the full transport
setup [Fig. 1(b)] for relaxing the device atoms, and to obtain
vibrational frequencies and e-ph couplings. We note that this
step leads to a determination of the quantities in equilibrium.
In principle, these could also be calculated under nonequilib-
rium conditions by retaining the full transport structure of
Fig. 1(b). Recently, Sergueev et al. showed this to be impor-
tant for relatively high voltages (eV>fiw,).”! However, for
the low-bias regime considered in this paper the equilibrium
calculation is sufficient.

A fairly accurate relaxation is an important prerequisite
for the subsequent calculation of vibrational modes. The at-
oms in the device region are therefore typically relaxed until
the forces acting on the dynamic atoms all are smaller than
F(RO)<F,. =0.02eV/A. Compared with other error
sources in the calculations little is gained by lowering this
criteria.

C. Vibrational modes

The starting point for our description of the nuclear vibra-
tions is the Born-Oppenheimer total energy surface E(R)
(BOS) and its derivatives with respect to the nuclear coordi-
nates. For a thorough review on phonons from DFT we refer
the reader to the paper by Baroni et al.*> From the BOS we
define the matrix of interatomic force constants (usually
called the Hessian or dynamic matrix) as

_ PER)
e &RIV&RJ,LL R=R0’

(5)

where R={R,} denotes the full set of nuclear coordinates
and R;={R,,} the coordinates of nucleus / with mass M (not

PHYSICAL REVIEW B 75, 205413 (2007)

to be confused with the e-ph coupling elements M ,’;) Within
the harmonic approximation we can write the time-
dependent displacement variable as

Q1) =Ry(1) - R? = Q. (6)

Inserting Eq. (5) and (6) into Newton’s second law of motion

PR, JE(R)
M~—"=F,R)=-——, 7
1 c?tz 1( ) ¢9R1 ( )
we have
- M 01,=~ 2 Cr1u 01 (8)
Ju

Introducing boldface notation also for matrices we can re-
write Eq. (8) to the following ordinary eigenvalue problem

(0’1 =W)v=0, 9)

where the mass-scaled matrix of interatomic force constants
is

= e (10)

and v;= v’MQ ;- Thus, the vibrational frequency w, and mode
v'={v}} belong to the eigensolution (w},v") to Eq. (9) where
we normalize the vectors as v*- v =1.

Atomic forces F,={F,,} are directly obtained by SIESTA
along with the total energy calculation.*® This allows us to
approximate the dynamic matrix by finite differences (“fro-
zen phonons”), either by

_ Flv(iQJ,u,) - FIV(O)

)
CIV;JM_ inM (11)
or, numerically more accurately, by
- F;, - F(-
6., = T =Fu=0y) 1)

2QJ/.L

where the overbar denotes the finite difference approxima-
tion. The quantities in Eq. (11) and (12) are thus readily
determined. Typically we use a finite displacement of the
dynamic atoms in each spatial direction of Q,,=+0.02 A.

While the SIESTA calculations for C',,,; ju are generally
straightforward, we have observed that SIESTA has difficulties
in estimating the change in force on the atom that is being
displaced. This problem relates to the so-called egg-box ef-
fect, i.e., the movement of basis orbitals (which follows the
nuclear positions) with respect to the real space integration
grid.*® As a result, phonons cannot be accurately obtained

directly from E’,,,; s To circumvent this technicality we im-
pose momentum conservation (in each direction v) via
2/AF;,=0, which then determines the diagonal elements ac-
cording to
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FIG. 3. (Color online) Vibrational frequencies calculated for
some simple molecules (Au, and Pt,, acetylene C,H,, ethylene
C,H,, and ethane C,Hg). The results obtained directly from SIESTA
are shown together with those of our scheme (typical/accurate)
based on the correction (13). The different calculational settings are
described in the text. For comparison the experimentally measured
values of the frequencies are also given (Refs. 81-83) To indicate
the accuracy of the calculations the numerical values for the zero-
frequency modes (translation/rotation) are included, where negative
values correspond to imaginary frequencies.

) Crosts 1#J,
Crrsn = - 13
IviJu _ 2 CIV;K,w I=J, ( )
K#1

where the K sum runs over all atoms in the supercell. Finally,
since *E/dR;,0R;,=EIdR;,JR;, we apply a numerical
symmetrization of the force constants in the dynamic region.
As a check we always verify that the frequencies calculated
from the dynamic matrices with forward, backward, and
combined displacements [Egs. (11) and (12)] are roughly the
same, indicating that the harmonic approximation is not vio-
lated with the given displacement amplitude Q.

The eigenvalues {wi} corresponding to the symmetric ma-
trix W are real numbers. Some of these may, however, be-
come negative leading to imaginary frequencies {w,}, indi-
cating that the atomic configuration R® is, in fact, not
describing a true energy minimum of the BOS. We shall
denote such imaginary phonon frequencies by negative val-
ues in Figs. 3 and 9.

A comparison between calculated and experimentally
measured vibrational frequencies for some simple molecules
is shown in Fig. 3. Specifically we include both the frequen-

cies obtained directly with SIESTA (from C,, ) as well as
those of our scheme based on the correction (13). In the
calculations for the dimers the important settings correspond
to either a 200 Ry cutoff for the real space grid integration
and a single-{ plus polarization (SZP) basis set (SIESTA/
typical), or a 400 Ry cutoff and a double-{ plus polarization
(DZP) basis set (accurate). For the hydrocarbon molecules
the settings are 200 Ry cutoff and DZP basis set. In all cal-
culations the displacement amplitude is Q,,=0.02 A. The
figure illustrates that our scheme presented above leads to a

PHYSICAL REVIEW B 75, 205413 (2007)
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FIG. 4. (Color online) Convergence of calculated vibrational
frequencies for a four-atom Au wire with the most important DFT
settings. For each of the two choices for the vibrational region (as
indicated with boxes) the reference calculation—carried out with
SZP, a 200 Ry real space grid energy cutoff, and 0.02 A finite
displacements—and other three separate calculations (with one of
the settings improved at a time) yield essentially the same results
for the phonon energy fiw, versus mode index \.

quite accurate description of the vibrational frequencies. We
thus see no need to resort to a frequency scaling which is
sometimes invoked in DFT calculations. Further, the figure
shows that the use of momentum conservation for correcting
elements in the SIESTA dynamic matrix improves the calcu-
lation, in particular the determination of low frequency
modes (including the zero-frequency rotation/translation
modes of isolated molecules).

As an illustration of the convergence of the phonon ener-
gies with respect to some important DFT settings for larger
systems, we show in Fig. 4 the calculated phonon energies
for two different sizes of the dynamic region of a four atom
gold wire (shown in the insets). We obtain almost identical
frequencies by increasing the real space integration grid cut-
off from 200 to 300 Ry, by using a DZP basis set instead of
a SZP, or by changing the finite displacements Q;, from
0.02 to 0.01 A. We expect the overall accuracy of these cal-
culations to be representative not only for isolated molecules
but also for larger periodic systems as well as systems in-
volving other elements.

D. Electron-phonon couplings
In order to compute the e-ph coupling matrices M
={{M Z}}} we have modified SIESTA to output the Kohn-Sham

Hamiltonian matrices H(Q) = {{(i|H,|)}} for each of the dis-
placed configurations. The complicated part of the e-ph cou-
plings in Eq. (4) is the evaluation of matrix elements of
gradients of the Hamiltonian operator. Following the ideas of
Head-Gordon and Tully®* we rewrite this part as

o, . KAL) _
0r, a0r,

where |i")=d|i)/ dQ,, represents the change in basis orbitals
with displacements, and using the identity

(il G'H) -G, (14)

205413-5
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2 sl =1, (15)
ij

where S={{(i|})}} is the overlap matrix, we arrive at a form
suitable for numerical evaluation

. (91:16 N ﬁ<l|1:1e|]> . -1 Oyl
<zlﬁQlV|J>— 0. —%a (S™) (1AL
= > GRS ™1 (16)
ki

The first term on the right-hand side in Eq. (16) can be ap-
proximated by finite differences of Hamiltonian matrices.
The factors (i'|k) and (/|j') are derivatives of the orbital
overlaps, which we determine from finite differences via six
separate runs that include both the original structure as well
as the whole structure displaced by +Q,, along each spatial
direction. We note that with the calculation of {i’|k) and
(1]j"y we avoid the further approximations for the e-ph cou-
plings that we have used previously.’

In some cases, if one works with a relatively small super-
cell, the calculated Fermi energy may change slightly be-
tween the displaced configurations of a given system. Since
the real physical systems are essentially infinite, such shifts
in the Fermi energy are artificial finite-size effects. To com-
pensate for this we choose to measure all energies with re-
spect to the Fermi energy of the relaxed structure 8%
=g(RY), i.e., to shift the displaced Hamiltonians according
to

I_'I(Qly) =H(Q;,) - [r(Q1,) - S%JS(QIV)~ (17)

The finite difference approximation to the first term in Eq.
(16)—the derivative of the Hamiltonian matrix—may thus
be written as
JH 1
— | =5 {HQ,) -H(-0,)
9Ol o0 20 ! !
—[ep(Qp) — (= Qlu)]SO}, (18)

thereby completing the necessary steps to evaluate the e-ph
coupling matrix elements. We note that this finite difference
scheme is based on the self-consistent electron density cor-
responding to the ionic displacements, i.e., electronic screen-
ing effects in the Hartree and exchange-correlation terms in
the Kohn-Sham Hamiltonian are included.

III. ELASTIC AND INELASTIC TRANSPORT:
THE NEGF FORMALISM

In this section we describe how the NEGF formalism is
used to calculate the stationary electron transport through a
region in space with an e-ph interaction. The basic ideas go
back to the seminal work by Caroli et al.® but we shall use
the later formulation by Meir and Wingreen.?>-8687

The starting point in the NEGF approach is a formal par-
titioning of the system into a central device region (where
interactions may exist) and noninteracting leads.!3! This par-
titioning was sketched in Fig. 1(b). The e-ph interaction is

PHYSICAL REVIEW B 75, 205413 (2007)

treated with diagrammatic perturbation theory. Below we de-
scribe the SCBA as well as further approximations leading to
the computationally inexpensive LOE scheme. In addition,
we discuss local heating effects and how various broadening
mechanisms of the inelastic signal are addressed.

A. System partitioning

The physical system of interest sketched in Fig. 1(b) is
infinite and nonperiodic. For this setup let us initially con-
sider the electronic and vibronic problems separately and re-
turn later to the treatment of their mutual interaction.

The use of a local basis in SIESTA allows us to partition
the (bare) electronic Hamiltonian HE{{Hg}} and overlap
matrix S ={{S;;}} into

H= HDL HD HDR P (19)
0 Hip H;
S. Sip O

S={Sp. Sp Spr | (20)
0 Sgp S

in which the direct couplings and overlaps between leads L
and R are strictly zero (provided that the central region is
sufficiently large).

In a similar fashion, since interatomic forces are short
ranged, the mass scaled dynamic matrix W [Eq. (5)] can be
partitioned into

W, Wy, 0
W=|{Wp, Wp Wi |, (21)
0 Wip Wi

where the direct coupling between leads L and R is ne-
glected.

The infinite dimensionality of the electronic and vibra-
tional problem can effectively be addressed with the use of
Green’s function techniques. For the electronic part we de-
fine the retarded electronic single-particle Green’s function
G’ (¢) as the inverse of [(e+i7)S—H] where 7=0". It is
then possible to write its representation in the device region
D as

Gp'(e)=[(e +imSp—Hp—-2j(e) - 2p(e)]”", (22)

where the self-energy due to the coupling to the left lead is
37 (e)=(Hp,—&Sp;)gr(e)(H,p—eS;p) and similarly for the
right lead. Here, g/ () is the retarded electronic “surface”
Green’s function of lead a=L,R which can be calculated
effectively for periodic structures by recursive techniques.®®
The quantities X/(e) are directly available from
TRANSIESTA.?” Note that Green’s functions calculated with-
out the e-ph interaction are denoted with a superscript “0.”

Similarly, for the vibrational part we can define the re-
tarded phonon Green’s function D’ (w) as the inverse of
[(w+i7)*1-W], and write its representation in the device
region D as
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DY (0) =[(w+in*1-Wp -1} () - Hi(w)]", (23)

where the self-energies due to the coupling to the left and
right regions are Ilj(w)=Wp,d;(0)W;, and Ili(w)
=Wprdi(w)Wgp, respectively. Here, d/(w) is the retarded
phonon “surface” Green’s function which again can be cal-
culated by the recursion techniques mentioned above.

Note that the boldface matrix notation used for both elec-
tronic and vibrational quantities refers to different vector
spaces: Indices in the electronic case refer to the basis orbit-
als and in the phonon case to real space coordinates. In ad-
dition, the electronic problem is treated directly in a non-
orthogonal basis. The validity of the nonorthogonal formula-
tion has been discussed for the elastic scattering problem in
Refs. 89 and 90 and more recently including interactions in
Ref. 91.

Since we are interested in the interaction of the electronic
current with vibrations localized in the device region, we
invoke the ansatz that—to a first approximation—we can
disregard the phonon lead self-energies Il (w) and only de-
scribe the device region by

DY (0) = [(w+i7)*1 - W], (24)

which in terms of the eigensolutions (wi,v)‘) to Eq. (9) can
be written in a spectral representation

N N r
V'V do(\, w
D%r(w)z E — 5 = E V)‘®V}‘M,
A

x (0+in)’ - o 2w,
(25)
where the free phonon Green’s functions are?
1 1
dy(N,0) = - (26)

0-0,tin o+o,xin

d?()\,w) ==27i[{ny) 8w F w)) + ((ny) + 1) w £ w,)],
(27)

with (n,) being the expectation value of the occupation in
mode N. The lesser and greater Green’s functions stated
above are used in Sec. III D (transformed into energy domain
via w—fw).

The validity of the approximation (24) can be investigated
by calculating the correct phonon Green’s function according
to Eq. (23), and then project the corresponding local density
of states (per energy via w”>— ¢) onto each eigenmode v* of
the dynamic region (with fixed electrodes), i.e., to determine

By (g) = — 4e Im[(v) DY (e)v}], (28)

satisfying the sum rule

f d—SB)\(s) =1. (29)
0 2
If the mode v* is a true localized modes for the extended
system, then the projection B,(g) resembles a sharp reso-
nance around the phonon energy fiw,. In practice, {v*} are
not exact eigenmodes of the extended system, and the reso-
nances hence acquire finite widths. This broadening charac-
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terizes the damping (within the harmonic approximation) of
the modes by the coupling to the electrodes. If the broaden-
ing is small compared with the phonon energy (weak cou-
pling to the bulk), then the projection can be described by a
Lorentzian

2ﬁ”})\damp
(8 - ﬁw)\)z + (ﬁ’})(\iamp)2 |

where ﬁ)/‘damp is the half width at half maximum (HWHM)
value that transforms in time domain into an exponential
decay of the phonon population with an average lifetime
Tgh=1/ )/d‘amp. We will return to the question of a finite pho-
non lifetime in Secs. III F and IV E.

B\(e) = (30)

B. Calculation of the current

Our transport calculations are based on NEGF techniques
and in particular the Meir-Wingreen formulation.?>-36:87.92
The steady-state (spin-degenerate) electrical current 7, and
the power transfer P, to the device from lead a=L,R can
generally be expressed as

X —2e (7 de
[, =2¢e(N )=—" — s 31
=2y = | i) (1)
X 2 (% d
Pu=-2d)= f B ieta(e), (32)

te) = T2 (e)Gp(e) -2 (e)Gp(e)]l,  (33)

where ]Q’a is the electronic particle number operator of lead
a, Gi(s) the full lesser (greater) Green’s function in the
device region D (including all relevant interactions), and
3>(e) the lesser (greater) self-energy that represents the rate
of electrons scattering into (out of) the states in the device
region D. We assume that the leads are unaffected by the
nonequilibrium conditions in the device (this may be tested
by increasing the device region). We can then use the
fluctuation-dissipation theorem to write the lead self-energies
2525

56— {ims - 1T, »

i[nF(S - lu’a) - 1]Fa(8)v

where np(g)=1/[exp(e/kgT)+ 1] is the Fermi-Dirac distribu-
tion, w, the chemical potential of lead «, and

L, (e) =i[X(e) - Xie)]=i[2, () -2 (e)],  (35)

describes the broadening of the device states by the coupling
to the lead.

The lesser and greater Green’s functions are generally re-
lated to the retarded and advanced ones via the Keldysh
equation

G;(e) = Gh(e) 2 ()G (8), (36)

where 2= (g) is the sum of all self-energy contributions
(leads, interactions, etc.). Further, in steady-state situations
time reversal symmetry relates the advanced Green’s func-
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(a)

FIG. 5. The lowest order diagrams for the phonon self-energies
to the electronic description. The “Hartree” (a) and “Fock” (b) dia-
grams dress the electron Green’s functions (double plain lines). The
phonon Green’s functions (single wiggly lines) are assumed to be
described by the unperturbed ones, i.e., we ignore the e-ph renor-
malization of the phonon system.

tion to the retarded one via G§,(g)=G/(g)".?

C. Elastic transport

If we consider a two-terminal setup with no interactions
in the device region D, then the current expression simply
reduces to the Landauer-Biittiker formula where Eq. (33) be-
comes

t1(e) =[np(e — puy) — np(e — ug)]
X Ti[T(e)G (e)Tx(e)GH(e)].  (37)

TRANSIESTA allows one to calculate the transmission func-
tion under finite bias conditions, i.e., with an electrostatic
voltage drop over the device and different chemical poten-
tials of the two leads. Due to the electrostatic self-
consistency, this implies that the lead self-energies, e.g.,
3" (¢), and Hamiltonian H depend parametrically on the ex-
ternal bias voltage V. These charging and polarization effects
caused by the electrostatic voltage drop®? are fully treated in
TRANSIESTA at finite bias. Although it is relatively straight-
forward to include these effects, it is computationally de-
manding for the inelastic calculation presented below. We
have therefore neglected the voltage dependence and used
the zero-bias self-energies and Hamiltonian in our inelastic
calculations in the low-bias regime. In the case of metallic
leads and a small applied bias (of the order of vibrational
energies) we expect this approximation to be accurate. How-
ever, sufficiently large biases have been shown to influence
the atomic structure® as well as the e-ph couplings.”!

D. Self-consistent Born approximation

Let us turn to the problem of the e-ph coupling. In order
to use Eq. (31) and (32) we need the full Green’s functions
Gf(s) taking the e-ph interaction into account. Our approach
is the SCBA where the phonon self-energy to the electronic
system is described by the diagrams shown in Fig. 5.2 We
note that in this work we ignore the phonon renormalization
(pair bubble diagram) by the e-ph coupling.

We write the phonon self-energies from mode \ as*’%?

= [ e’ = NGS(s!
3o =i f ;M*do (\,e—¢&")G,(e")M", (38)
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1
Eﬁh,A(S) = 5[2513\(8) - 2p<h,>\(8)]

- HAS ) - S, ), 69)

where the retarded self-energy has been written in terms of
the lesser and greater self-energies using the Kramers-Kronig
relation H,{G"(¢")}(¢)=iG(¢). The functional H represents
the Hilbert transform described in Appendix A.

The Hartree diagram Fig. 5(a) does not contribute to the
lesser and greater phonon self-energies; this is because en-
ergy conservation implies that the wiggly line corresponds to
a factor d=(\, &’ =0)=0." It does, however, lead to constant
term for the retarded self-energy which can be understood as
a static phonon-induced change in the mean-field electronic
potential.>>*2 From Eq. (39) we note that our retarded self-
energy has the limiting behavior lim, .. %7, ;(¢)=0. This is
also the limits of the Fock diagram Fig. 5(b) if one calculates
it directly with the Langreth rules.?>°> We therefore conclude
that Eq. (39) gives exactly the Fock diagram. Ignoring the
Hartree term is reasonable since its small static potential shift
might be screened (at least partially) if it had been included
on the level of the DFT self-consistency loop. Further, the
Hartree diagram does not lead to a signal at the phonon
threshold voltage.

The full device Green’s functions G;f(s) are related to
G)'(e), 2"=(e), and Elrf(s) EE;\Eg’hi(s) via the Dyson and
Keldysh equations®

G (e) =GY'(e) + G%’(s)El’)h(s)Gf)(s), (40)

G5 (2) = Gp(e)[Z] (e) + 25 (e) + 2 (8)]G(e).  (41)

The coupled nonlinear Egs. (38)—(41) have to be solved it-
eratively subject to some constraint on the mode population
(n,) appearing in d; (\, &), see Eq. (27). For weak e-ph cou-
pling we thus approximate the mode occupation (n,) by the
steady-state solution to a rate equation describing the heating
of the device

(i) = % — Vhaml () = (i), (42)

where ng(e)=1/[exp(e/kgT)—1] is the Bose-Einstein distri-
bution, p, the power dissipated into mode X\ by the electrons,
and )/\damp= 1/ Ti:h a damping parameter related to the average
lifetime of the phonon, e.g., by coupling to bulk vibrations.

In steady state the power transferred by electrons from the
leads into to the device must balance the power transferred
from the device electrons to the phonons, i.e.,

Pp+ Pr=2, py. (43)
A
From the particle conservation condition’?

T2 ()G (e) — 2 (8)G(e)] =0, (44)

we can define the quantity p, as
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1("d < > > <
PN=-— %J iSTI‘[Eph,)\(S)GD(S) - Eph,)\(s)GD(S)]»

(45)

which consequently obeys Eq. (43). We note that in this way
we basically define 3N quantities from a single equation for
2, py only; different definitions could in principle also fulfill
the power balance. However, to lowest order in the e-ph
coupling our definition Eq. (45) is unambiguously the power
transferred to mode A.

From Eq. (42) we can identify two regimes: (i) the exter-
nally damped limit [)/(}amp much larger than electron-hole
(e-h) pair damping 7),], where the populations are fixed
according to the Bose-Einstein distribution (n,)=nz(fw,)
and (ii) the externally undamped limit [)/‘damp=0 and hence
from Eq. (42) that p,=0], where the populations vary with
bias such that no power is dissipated in the device, i.e., P,
+ Pr=0. It is instructive to note that p, includes both phonon
emission and absorption processes, which is the reason why
a steady-state solution always exists.

A typical situation that come close to the externally un-
damped limit is when the device vibrations fall outside the
phonon band of the bulk electrodes, i.e., when there is a
significant mass difference between the device atoms and the
electrode atoms. In this case the vibrations cannot couple
directly (resonantly) to the bulk, and the damping, e.g., by
anharmonic means, is likely to be much smaller than the
coupling to the electrons. One important example is the hy-
drogen molecule clamped between platinum contacts.!”1?

To solve the SCBA equations (38)—(42), we have devel-
oped an implementation in the programming language PY-
THON where the Green’s functions and self-energies are
sampled on a finite energy grid. The main technical chal-
lenges are discussed in Appendix B. Finally we note that
with the phonon self-energies (38) and (39) the current is
conserved. This can be proven using the identity Eq. (44).%2

E. Lowest order expansion

The solution of the SCBA equations is a daunting numeri-
cal task for systems consisting of more than a handful of
atoms. However, for systems where the e-ph coupling is
weak and the density of states (DOS) varies slowly
with energy, we have previously derived the LOE
approximation.*’ Here we elaborate on these results.

The main computational burden of the SCBA originates
from the numerical integration over energy needed in the
evaluation of the current and power expressions (31) and
(32). The LOE approximation assumes that the retarded and
advanced single-particle Green’s functions G%’/“ and lead
self-energies EZ“ are energy independent. We can then ex-
pand the current and power expressions to the lowest order
(second) in e-ph couplings M* and perform the energy inte-
grations analytically. These integrals consist of products of
Fermi-Dirac functions and their Hilbert transforms. The LOE
thus retains the Pauli exclusion principle for fermionic par-
ticles, which is necessary to model the blocking of phonon
emission processes at low bias.

PHYSICAL REVIEW B 75, 205413 (2007)

In the LOE approximation, the total power dissipated into
the phonon system P-CE= P, + P, can, after lengthy deriva-
tions, be written as*’

PYOP=2 pF, (46)
N

P E = hodlng(fioy) = ()1 + Yan(V. DY (47)

A
P, = %Tr[M)‘AM"A], (48)

eV hwy . eV
fiwy| cosh| — | =1 [coth —eVsinh| —
kgT 2kpT kgT
f 1%
wﬁ{cosh(ﬂ> - cosh(e—”
kyT kT

X TI'[M)\ALM)\AR], (49)

em

where the Bose-Einstein distribution ng(e) appears in Eq.
(47) due to the integration of Fermi-Dirac functions describ-
ing the electrons in the contacts. Here G=G%'(gp), T,
=I' (e5), and A=i(G-G") are the noninteracting retarded
Green’s function, the broadening by contact @=L, R, and the
spectral function at &g, respectively. For convenience we
have also defined the quantities A,=GI',G" such that A
=A;+Ay.

The first term in Eq. (47) describes the equilibrium energy
exchange between the vibrational and electronic degrees of
freedom (e-h pair damping )/e\_h of the vibrations); it tend to
drive the phonon system towards the Bose-Einstein distribu-
tion. The second term appears in nonequilibrium and is re-
lated to an effective emission rate 9}, of vibrational quanta
under finite bias. At low temperatures (kz7— 0) this rate is
given as

Vem

where 6(x) is the step function; i.e., the net emission of
phonons above the threshold grows linearly with the bias
voltage. Furthermore, since Tr[M”AaM)‘Aﬁ]ZO, we find
that

_ |eV| —ﬁw)\

o 0(|€V| - hw)\)Tr[M)\ALM}\AR], (50)

Ti{MMMM ] = 2Ti{M*A ;M A ]. (51)

We can use this inequality to derive an upper bound on the
phonon occupation by solving the steady-state condition
prP%=0 [cf. Eq. (42) with no external damping]. It simply

becomes®®97

l |eV| - ﬁ(l)}\

(ny) < 5 0(leV| - tiw)). (52)

hw}\

To provide an intuitive understanding of Egs. (46)—(52)
consider the following arguments: The energy phase space
available for phonon emission and absorption processes is
limited by the Pauli principle, as sketched in Fig. 6. We
divide the electronic phase space in two, corresponding to
scattering states incoming from either the left or the right
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a)

Left Right

FIG. 6. (Color online) Schematic representation of the energy
phase space available for scattering processes due to the Pauli prin-
ciple. Phonon emission (a) and absorption (b) between scattering
states originating from the left and right contacts. (c) and (d) cor-
respond to phonon absorption between scattering states in the same
contact.

contact. Without e-ph scattering these states are assumed to
be populated up to the Fermi level g (we take ;> ug
+%w, and kzgT— 0). Within this picture phonon emission can
only take place from a populated state originating in the left
contact to an empty state originating in the right contact, see
Fig. 6(a). Similarly, phonon absorption can be described by
three different processes sketched in Figs. 6(b)-6(d), again
corresponding to scattering from populated initial states to
empty final states.

The scattering rates for these processes are proportional to
the energy window in which they can take place. Denoting
the scattering rate per energy as dv,, /de, where a=L,R
(a'=L,R) indicates the propagation direction of the initial
(final) scattering state, we can write the spontaneous plus
stimulated emission power as pkgi:ﬁw)\«n)\ﬂ 1)(eV
—fhw,)dyg/de and the absorption power as pk%‘f:hwﬁnx)
X[(eV+hwy)dy gl de+hw,(dy, /de+dygg/de)]. The net
power transfer from the electronic system to the phonon
mode \ is therefore

dyir  dyu 4y,
PO = P = PXGE = = () )| 2= H8 4 = 4 =
de de de
d
+hawy(eV-tfoy) ik (53)

de

A comparison with Eq. (47) reveals that the term propor-
tional to the occupation (n,) is bias independent due to a
cancellation of phonon absorption by stimulated emission.
Furthermore, the upper bound in Eq. (52) is directly moti-
vated by equating Eq. (53) to zero (steady state) and by
ignoring scattering processes with initial and final states
propagating in the same direction (dy,,/de). In addition, a
steady-state solution to Eq. (42) always exists because the
phonon emission rate is always smaller than the total phonon
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absorption rate, and that emission processes are restricted to
a smaller energy window than absorption processes.
The LOE approximation, which above was applied to the

power, also allows us to write the current through the device
JLOE 4748

ILOE = GOVTr[GFRGTFL]
+ 2 TV, T ) T G T, G{M A ;M
A
+ é(FRG?M)‘AM)‘ - Hc)}]
+ 2 IV, DTG'T,G
A

X{I'xG"™™M Az - A;)M* + H.c.}], (54)
: e hwy, —eV hwy + eV
"= E(%V{n}\} + phor=eV)ikgT _ |~ (hwy+eV)ikgT _ | ) )
(55)

: “d
= %f i[nF(s) —np(e —eV)]

XHAnp(e" + hwy) —np(e’ —hwy)}He), (56)

where the bias is defined via eV=ug—u;, and Gy=2¢?/h is
the spin-degenerate conductance quantum. This expression is
current conserving, i.e., calculating the current at the left and
right contacts give the same result.

The LOE expression for the current (54) contains three
terms: (i) the Landauer-Biittiker term corresponding to the
elastic conductance, (ii) the “symmetric” term corresponding
to symmetric conductance steps at the vibrational energies,
and (iii) the “asymmetric” term corresponding to peaks and
dips in the conductance which are asymmetric with voltage
inversion, see Fig. 7. For geometrically symmetric junctions,
it can be shown that the asymmetric term vanishes exactly.
Even for geometrically asymmetric systems we typically find
that it is a very small contribution compared with the sym-
metric term. Furthermore, the sign of the conductance step
for the symmetric term in general shows an increase (de-
crease) in the conductance for low (high) conducting sys-
tems, e.g., vibrations usually help electrons through mol-
ecules while they backscatter electrons in atomic wires. This
is discussed further for a one-level model in Ref. 98.

The LOE approximation is computationally simple and
can be applied to systems of considerable size. Although the
approximation is not strictly valid for systems with energy-
dependent DOS, comparison with the full SCBA calculations
shows good agreement even for systems that have a slowly
varying DOS (on the scale of vibrational energies), e.g., the
organic molecules connected to gold electrodes described be-
low in Sec. V. The LOE approximation will certainly fail
when sharp resonances (compared to the vibrational ener-
gies) are present within the order of phonon energies of the
Fermi energy. However, in this case Coulomb blockade
physics is also expected, which thus makes any DFT mean-
field approach (including ours) questionable.
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FIG. 7. (Color online) Universal functions (55) and (56) giving
symmetric and asymmetric phonon contributions to the conduc-
tance in the LOE, respectively. The differential conductance dI/dV
and the second derivative d°I/dV? are shown (in arbitrary units) for
one phonon mode for three different temperatures (a) kgT/hw)
=0.02, (b) kgT/hwy,=0.06, and (c) kgT/hw\=0.10.

F. Broadening mechanisms

The width of the experimentally measured phonon signal
in the conductance is a combination of (at least) three broad-
ening mechanisms, namely, the intrinsic ones from a finite
temperature and a finite phonon lifetime, as well as the one
related to the modulation voltage used in lock-in measure-
ments (to improve the signal-to-noise ratio) of the second
derivative of the current with respect to the bias. These con-
tributions do not add up trivially. However, as we show be-
low, one can provide estimates for each of the different con-
tributions which thus help to understand what effect is the
dominant one.

As can be seen in Fig. 7, the electronic temperature gives
rise to a broadening of the vibrational signal. From Eq. (55)
the full width half maximum (FWHM) in the second deriva-
tive of the current can be shown to be approximately
5.4kBT.47’99’100

The effects of a finite phonon lifetime Tl};hz 1/){1‘amp istoa
first approximation described by a convolution of the free
phonon Green’s functions with a Lorentzian with a HWHM
width of ﬁ)/(\iamp. Consequently, this convolution propagates
to the phonon self-energies Eq. (38) and to the inelastic LOE
corrections to the current, see Egs. (55) and (56). The
FWHM broadening in the second derivative of the current is
thus 27 Ygump- The intrinsic linewidth of the phonon signal
has also been discussed in a simple SCBA model by Galp-
erin et al.'"!

The broadening from the lock-in technique for measure-
ments of the first or second derivatives of the current can be
estimated in the following way. With a small harmonic
modulation signal (with amplitude A=12V,,..) applied on top
of the bias voltage one can measure derivatives of the cur-
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(a) (b) (c) (d)

FIG. 8. (Color online) Generic gold wire supercells containing 3
to 7 atoms bridging pyramidal bases connected to stacked Au(100)
layers. As indicated on the figure, the electrode separation L is
defined as the distance between the plane in each electrode contain-
ing the second-outermost Au(100) layer.

rent. As shown in Appendix C the FWHM width induced by
the lock-in measurement technique is 2.45V,, and 1.72V
for the first and second derivatives of the current, respec-
tively (neglecting intrinsic broadening). In other words, if
d*1/dV? is a & function, the experimentally measured
FWHM width will be either 2.45V,,c or 1.72V ., depending
on whether the lock-in measurement is on the first or second
harmonic.

IV. ATOMIC GOLD WIRES

Since the discovery in the late 1990s that gold can form
free-standing wires of single atoms'*>'% the mechanical,
chemical, and electrical properties of these atomic-scale sys-
tems have been extensively studied.!>16-50-80.106-123 Ror this
reason we illustrate in this section our method described in
Secs. II and III by applying it to model inelastic scattering in
atomic gold wires. We compare directly the results of our
theoretical developments with the high-quality experimental
data by Agrait and co-workers.!>!® They used a cryogenic
STM to first create an atomic gold wire between the tip and
the substrate surface, and then to measure the conductance
against the displacement of the tip. From the length of the
observed conductance plateau around G,—the signature that
an atomic wire has been formed—it was possible to deter-
mine the approximate size as well as the level of strain of the
created wire. Under these conditions Agrait ef al. then used
point-contact spectroscopy to show that the conductance of
an atomic gold wire decreases a few percent around a par-
ticular tip-substrate voltage (symmetric around zero bias)
presumably coinciding with the natural frequency of a cer-
tain vibrational mode of the wire. With this inelastic spec-
troscopy method they could further characterize the conduc-
tance drop as a function of wire length and strain.

To simulate these experiments, we study wires containing
different number of atoms and under varying stretching con-
ditions. The generic supercells used in the SIESTA calcula-
tions are illustrated in Fig. 8 and consist of 3 to 7 gold atoms
bridging pyramidal bases connected to stacked Au(100) lay-
ers. We use a 4 X4 supercell size in the plane transverse to
the transport direction and define the electrode separation L,
as indicated on Fig. 8, as the distance between the plane in
each electrode containing the second-outermost Au(100)
layer. The face-centered cubic (fcc) lattice constant for the
bulk gold atoms is taken to be a=4.18 A.132
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We generally use (unless otherwise specified) the Perdew-
Burke-Ernzerhof version of the GGA for the exchange-
correlation functional,'?* a split-valence single- plus polar-
ization (SZP) basis set with a confining energy of 0.01 Ry
[nine orbitals corresponding to the 5d and 6(s,p) states of
the free Au atom], a cutoff energy of 200 Ry for the real
space grid integration, and the I'-point approximation for the
sampling of the three-dimensional Brillouin zone. The inter-
action between the valence electrons and the ionic cores are
described by a standard norm-conserving Troullier-Martins
pseudopotential'?® generated from a relativistic atomic calcu-
lation (including core correction). We have found that these
settings yield a reasonable compromise between accuracy
and computational cost.

A. Geometry relaxation

For a given electrode separation L the first calculational
step is to relax the geometry to obtain a local energy mini-
mum configuration R®. With the settings described above we
relax both the outermost electrode layers, the pyramidal
bases, and the wire atoms until all forces acting each of these
atoms are smaller than F,,,=0.02 eV/A.

Figure 9(a) shows the relative differences in the Kohn-
Sham total energy (cohesive energy) as the wires are elon-
gated. We also show the numerical derivatives of these bind-
ing energy curves as a measure of the forces acting on the
wire. The breaking force, defined as the energy slope of the
last segment before breaking, is found be of the order
1 eV/A ~1.6 nN. This agrees well with the experimental
results which have shown the break force for atomic gold
wires to be close to 1.5 nN.+113.114

In Fig. 9(b) we summarize the geometrical findings of the
relaxation procedure by plotting the wire bond lengths and
bond angles as a function of electrode separation L. The
figure shows that the short wires containing three or four
atoms adopt a linear structure over a wide range of electrode
separations. The longer wires, on the other hand, are gener-
ally found to have a zigzag geometry only approaching a
linear form when they are stretched close to the breaking
point.'?

From the plot of the bond lengths between nearest neigh-
bors in the wire one notices that the four and six atom wires
have a more pronounced tendency to dimerize than the wires
with an odd number (due to left/right symmetry of the struc-
tures only wires with an even number of atoms should be
able to dimerize). In three test calculations with a 3 X3 X3
k-point sampling of the three-dimensional Brillouin zone we
generally achieve very similar atomic arrangements as com-
pared to the I' point only. However, these calculations, which
are indicated with black crosses in Fig. 9(b), seem to reduce
the dimerization tendency somewhat.

B. Vibrational analysis

We calculate the vibrational frequencies and modes as
described in Sec. II C. With N vibrating atoms we thus find
3N modes for a given structure. The phonon spectrum for the
wire is plotted in Fig. 9(c), where negative values indicate
modes with imaginary frequency implying the breaking of an
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FIG. 9. (Color online) Energetic, geometric, and conductive
properties of atomic gold wires: (a) Kohn-Sham total energy (cohe-
sive energy) vs electrode separation, (b) bond angles and bond
lengths, (c) phonon energies, and (d) elastic transmission at the
Fermi energy calculated both for the I' point (colored open sym-
bols) as well as with a 5X35 Kk-point sampling of the two-
dimensional Brillouin zone perpendicular to the transport direction
(black stars).

unstable wire. The general trend is that the phonon energies
diminish as the wires are elongated. This can be understood
by considering that the effective “springs” between ions in
the wires are softened as the bonds are stretched, which in
turn result in lower energies.

In the results to follow we generally take the wire and
pyramidal base atoms as the dynamic region (as indicated in
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FIG. 10. (Color online) Generic transport setup in which a re-
laxed wire geometry—here a seven-atom wire with L=29.20 A—is
coupled to semi-infinite electrodes. As indicated on the figure the
vibrational region is taken to include the atoms in the pyramidal
bases and the wire itself, whereas the device region (describing the
e-ph couplings) includes also the outermost surface layers.

Fig. 10), i.e., these atoms are allowed to vibrate. For the
three- to seven-atom wires this leave us with 33 to 45 vibra-
tional modes. The corresponding e-ph couplings are calcu-
lated in a slightly larger device region containing also the
outermost surface layer. This inclusion of an extra layer is
necessary to represent the vibrational modulation of the hop-
ping between the pyramidal base atoms and the first surface
layers.

C. Elastic transmission

In order to determine the transport properties of the wire
geometries described above, we construct from the supercells
shown in Fig. 8 new wire geometries which are coupled to
semi-infinite electrodes as schematically illustrated in Fig.
1(b). The resulting setup is shown in Fig. 10 for the case of
a seven-atom long gold wire. As indicated on this figure we
consider the device subspace to include the top-most surface
layer, the pyramidal bases, and the wire itself.

The elastic transmission evaluated at the Fermi energy ep
is calculated using TRANSIESTA described in Ref. 27. The
results are shown in Fig. 9(d) both for the I" point (open
symbols) as well as with a 5X 5 k-point sampling of the
two-dimensional Brillouin zone perpendicular to the trans-
port direction (black stars). In correspondence with previous
work, e.g., Refs. 89, 106, 109, and 119, we find that the total
transmission is close to unity, except for the very stretched
configurations where the transmission goes down somewhat.
From Fig. 9(d) one observes a reasonable agreement between
the I' point and the k-point sampled transmissions, particu-
larly when the transmission is close to one. Worst are the
discrepancies for the four- and six-atom wires, which also
are the cases where the transmission deviates most from
unity. We subscribe these signatures to the so-called odd-
even behavior in the conductance of metallic atomic wires,
in which perfect transmission is expected only for an odd
number of atoms in a chain. For an even number of atoms
the conductance should be lower.+!'%126 Further, the ob-
served dimerization is also expected to reduce the conduc-
tance (the Peierls instability for infinite metallic wires results
in the opening of a band gap at the Fermi energy). We also
note that on an energy scale of the typical phonon energies
the transmission function is to a very good approximation a
constant around the Fermi energy.

D. Inelastic transport

Having determined the vibrational frequencies, the e-ph
couplings, and the elastic transmission properties, we are in
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FIG. 11. (Color online) Elastic and inelastic differential conduc-
tance calculated at 7=10.0 K in a reduced device region for the
seven-atom wire shown in Fig. 10. The small variation in elastic
conductance with bias (dotted curve) relates to a weak energy de-
pendence of the elastic transmission function at the I" point around
ep. The full SCBA calculation (circles) follows this trend and shows
on top of it symmetric drops characteristic for phonon scattering.
The LOE calculation (line) does not include the elastic variation but
gives basically the same predictions for the inelastic signals as the
SCBA with the elastic background signal subtracted (dashed curve).
This illustrates the agreement between the LOE and SCBA ap-
proaches for the inelastic contribution.

position to calculate the inelastic current as described in Sec.
IITI B. We start out by showing that the LOE and SCBA ap-
proaches essentially predict the same inelastic signals for
atomic gold wires, thereby reducing the computational ex-
pense in the detailed analysis to follow. For this purpose only
we consider a computationally reduced problem where the
device and dynamic atoms regions are minimized as com-
pared with those generally adopted in this section. We will
thus simply allow the wire atoms to vibrate and take the
device space as the wire plus pyramidal bases only. Com-
pared with the electronic structure and phonon energies the
thermal energy typically sets the smallest energy scale for
variations in the Green’s functions, etc. Instead of using the
experimentally relevant temperature of 7=4.2 K (or even
less) we further simplify the calculations by taking T
=10.0 K for the moment since this requires fewer points on
the energy grid, see Appendix B.

The differential conductances as resulting from evaluating
Eq. (31) with and without SCBA phonon self-energies as
well as evaluating the LOE expression (54) are shown in Fig.
11. The dotted curve is the purely elastic result (no phonon
self-energy) and the circles the full SCBA (including all vi-
brational modes in the externally damped limit Ygamp> Ve-n
of Sec. I D). The red line corresponds to the LOE. The
elastic conductance displays a slight variation with bias that
relates to the weak energy dependence in the zero-bias trans-
mission function at the I" point. The full SCBA calculation
clearly shows two symmetric conductance drops which are
due to inelastic scattering against vibrations (we will return
later to a discussion of the physics). The LOE calculation
does not include the elastic variation but gives basically the
same predictions for the inelastic signals. This is clear from a
comparison with the SCBA where the elastic background
signal has been subtracted (dashed curve). Based on a num-
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FIG. 12. (Color online) The differential conductance G and its derivative dG/dV calculated with the LOE approach for the three- to
seven-atom gold wires in the externally damped limit. The electrode separation L is indicated next to the conductance curves. As shown in
Fig. 10 the device region includes the outermost electrode layer whereas the dynamic atoms are pyramidal bases plus wire. The temperature

of the leads is 7=4.2 K.

ber of such tests, and the fact that the e-ph couplings are
weak (or more precisely, that the inelastic signal is a small
change in conductance of the order 1-2 %), we conclude that
the approximations leading to the LOE expressions are valid
in the case of atomic gold wires. To appreciate this fact, we
note that the SCBA curves in Fig. 11 required approximately
40 CPU h in a parallel job running on four processors
whereas the LOE results only required a few s on one pro-
cessor. The LOE approach is thus justified for a full analysis
of the three- to seven-atom gold wires.

Figure 12 shows the calculated differential conductance of
the three- to seven-atom wires under different electrode sepa-
rations L and in the externally damped limit. The device
region and dynamic atoms are here as indicated in Fig. 10,
and the temperature of the leads is 7=4.2 K. The curves
display symmetric drops at voltages corresponding to par-
ticular phonon energies. The dominant inelastic signal moves
towards lower energies and increase in magnitude as the
wires are elongated. Furthermore, sometimes also a second-
ary feature is found below 5 meV, e.g., Figs. 11 and 12.

These observations are also characteristic for the
experiments,'>!'® and in agreement with previous
calculations.*$:80

To extract the general trends on how the inelastic signal
depends on details in the atomic arrangement we present in
Fig. 13 our calculated data in different forms. In these plots
we represent each phonon mode by a dot with an area pro-
portional to the corresponding conductance drop. The ab-
scissa corresponds to the electrode separation whereas the
ordinate is used to highlight certain properties of the vibra-
tional modes. In this way, Fig. 13(a) illustrates the mode
frequency change with electrode separation. From a linear fit
to the strongest signals we predict a frequency shift of
-8.45 meV/A for the five-atom wire falling off to
—6.34 meV/A for the seven-atom long wire. Further, to un-

derstand the nature of the modes that influence the electronic
transport we can try to quantify some important characteris-
tics. As it has previously been shown, longitudinal modes
with an alternating bond length (ABL) character are expected
to be the dominating ones.'>3%127 To measure the longitudi-
nal part of a given vibrational mode v* we define a sum over
Z components E](V;\Z)2$ 1, where I runs over all dynamic
atoms (the upper bound is due to the eigenmodes normaliza-
tion v*-v*=1). This quantity is shown in Fig. 13(b). The plot
clearly expresses that the modes with the largest signals
(large dot area) also have a strong longitudinal component.
Further, to show that these modes also have ABL character,
we also define a sum >~ J|v;‘z—v;‘Z , where I and J are nearest
neighbor atoms in the chain. This second quantity is shown
in Fig. 13(c), from which we learn that the important modes
also have the largest ABL measure (the absolute scale is
irrelevant).

Another important aspect is whether the modes are really
localized in the wire or not. Remember that our approach
assumes that atoms outside the dynamic region are fixed.
Therefore, if we have eigenvectors with significant ampli-
tude near the boundary of the dynamic region, this assump-
tion does not seem to be valid (most likely the eigenvector is
not a true eigenvector of the real system). In other words, we
want to make sure that the modes which are responsible for
the inelastic scattering are sufficiently localized “deep” in-
side the dynamic region. To show this we calculate
S,v}-v} <1, where I runs over the three- to seven-wire at-
oms. This quantity is represented in Fig. 13(d) and confirms
that indeed the important modes are localized in the chain;
particularly for the five-, six-, and seven-atom wires the lo-
calization is almost perfect.

In conclusion, from the results presented in Fig. 13, we
learn that the inelastic signal in the conductance is effec-
tively described by a simple selection rule in which longitu-
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FIG. 13. (Color online) Inelastic signals plotted as a function of the electrode separation L. Each mode is represented by a dot with an
area proportional to the corresponding conductance drop. On the y axis we show (a) the phonon mode energy, (b) a measure of the
longitudinal component of the mode, (c) a measure of the ABL character, and (d) a measure of the localization to the wire atoms only. The
straight lines in plot (a) are linear interpolations to the most significant signals (the slopes are given too).

dinal vibrational modes with ABL mode character—
localized in the wire—are the main cause of the inelastic
scattering. We are further able to quantify the frequency
down shift and signal increase with strain.

E. Vibrational lifetimes and local heating

From Fig. 13(d) we get a hint about the damping of the
modes from the coupling to bulk phonons. If a mode is lo-
calized “deep” inside the dynamic region this coupling is
negligible and the mode is expected to have a long lifetime,
i.e., to be weakly damped by the coupling to the bulk. As
discussed in Sec. III A we can estimate this damping from
the width of the phonon density of states projected onto the
mode vector.

As an illustration of this approach, we calculate the damp-
ing of the dominating ABL mode according to Eq. (30) in the
case of the seven-atom wire with electrode separation L
=29.20 A. This mode, shown in Fig. 14(a), has a localization
quantity (as defined above) of value 0.987, i.e., it is 98.7%
localized in the wire. We begin by determining the dynamic
matrix of the whole wire supercell [Fig. 8(e)] as described in
Sec. II C. To describe the bulk properties of gold we pick the
intralayer and interlayer elements (inside the slab) in the dy-
namic matrix along the transport direction, and use recursive
techniques to calculate bulk and surface phonon Green’s
functions. Because of periodicity in the transverse plane—
which gives rise to artificial sharp resonances in the

spectrum—we broaden the phonon Green’s functions by tak-
ing 7=1.0 meV. This approach leads to the total phonon
density of states (full black line) shown in the inset of Fig.
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FIG. 14. (Color online) ABL-mode broadening due to coupling
to bulk phonons. The spectrum B, (&) corresponds to the important
ABL-mode for a seven-atom wire (L=29.20 A). By fitting the cal-
culated points with a Lorentzian we extract a full-width half maxi-
mum (FWHM) broadening of Z)Gamp=8 peV and a frequency shift
of dwy=-6 ueV. The inset shows the calculated total density of
states for bulk Au (full line), as well as a decomposition in the
direction of the transport (dashed red curve), and in the transverse
direction (dotted blue curve).
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14. This shape compares reasonably well with other calcula-
tions and experiments.'?®12° The inset also shows the phonon
density of states decomposed in the direction of the transport
(dashed red curve) as well as in the transverse directions
(dotted blue curve); the observed isotropy that is expected
for bulk is actually quite satisfactory. Finally, we calculate
the projected phonon density of states By(w) for the ABL
mode of interest according to Eq. (30). This projection on a
discrete energy grid is shown in Fig. 14 (open circles). By
fitting a Lorentzian to the calculated data points we obtain a
FWHM of 8 peV and a shift in frequency by —6 ueV. Based
on these calculations we thus estimate the phonon damping
to be of the order ﬁ)/samp=4 peV (for comparison, the e-h
pair damping of this mode is ﬁ)/z_h=42 peV). In fact, this is
rather a lower bound, since we have not included anhar-
monic contributions, etc.> However, compared with the pho-
non energy we see that indeed )/d‘amp< w), and thus that the
use of free phonon Green’s functions in the SCBA self-
energy (38) is justified.

Let us next investigate the implications of a finite phonon
lifetime on the local heating. This is done by solving the rate
equation (42) for the mode occupation at a fixed bias voltage.
For instance, the inelastic conductance characteristics (in-
cluding heating) for our seven-atom wire are shown in Fig.
15 for different values of the phonon damping ')/‘damp (smooth
colored lines). As seen in the figure, and as we have shown
previously,3® the effect of the heating is to introduce a slope
in the conductance beyond the phonon threshold voltage.
This is because the nonequilibrium mode occupation in-
creases the number of scattering events of the traversing
electrons. Consequently the conductance goes down as the
bias (and hence the occupation level) increases. The smaller
the damping, the more the mode occupation is driven out of
equilibrium, i.e., to a larger average excitation level. In the
extreme case of no damping ;ﬁamp:o (dotted curve) (the
externally undamped limit in Ref. 80) the local heating is
maximal. On the other hand, a sufficiently large damping
may effectively prevent phonon heating (the externally
damped limit in Ref. 80). From Fig. 15 we see that with a
phonon damping as large as 200 pweV/# the slope has van-
ished.

Figure 15 also compares our theoretical results to the
original experimental measurements by Agrait et al.'> (noisy
curves). The four experimental characteristics (aligned with
the calculated zero-bias conductance) corresponds to a pre-
sumably seven-atom long gold wire under different states of
strain recorded at low temperatures 7=4.2 K. From this plot
it is clear that theory and experiment are in excellent agree-
ment with respect to the position of the phonon signal and
the magnitude of the dominant drop. One also notices the
indication of a secondary phonon feature below 5 meV in all
curves. But what is particularly interesting is that the mea-
sured conductance slopes beyond the threshold seem to agree
well with a phonon damping of the order 5-50 ueV, which
is further quite reasonable according to our estimate above.
The only feature which is not perfectly reproduced is the
experimental width of phonon signal line shape—as seen
from the derivative of the conductance dG/dV in the lower
part of Fig. 15—which is somewhat wider than the calcu-
lated ones (which for comparison also includes the instru-
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FIG. 15. (Color online) Comparison between theory and experi-
ment (Ref. 15) for the inelastic conductance of an atomic gold wire.
The measured characteristics (noisy black curves) correspond to
different states of strain of wire (around 7 atoms long). The calcu-
lated results (smooth colored lines) are for the seven-atom wire at
L=29.20 A using different values for the external damping as indi-
cated in the right side of the plot (in units of ueV/#). The dashed
curve is the calculated result in the externally undamped limit
(Vd‘amp=0). The lower plot shows the numerical derivative of the
conductance. Note the indication of a secondary phonon feature
below 5 meV in all curves. The temperature is 7=4.2 K and the
lock-in modulation voltage V,,;=1 mV (in both theory and
experiment).

mental lock-in broadening corresponding V=1 meV).

V. HYDROCARBON MOLECULES BETWEEN
GOLD CONTACTS

The general method described in Secs. II and III is appli-
cable to many other systems than atomic gold wires. Ex-
amples of systems where it is interesting to apply this
method include wires and contacts of other metals as well as
individual molecules. In fact, we have already used the
present method to study conjugated and saturated hydrocar-
bon molecules in between gold surfaces, see Ref. 78. The
purpose of this section is to illustrate that our method is
general enough to apply to many systems; especially that the
LOE approximation is likely to be valid for a range of sys-
tems where, at first glance, it is not expected to work.

We start with a brief description of our previous results’®
motivated by the recent experiments by Kushmerick et al.?!
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FIG. 16. (Color online) Calculated IETS spectrum for an OPE
molecule compared to the experimental data from Ref. 21 (scaled
by a factor of 2). Each of the three inelastic scattering peaks arise
from different kinds of vibrations localized on the molecule.

They measured the inelastic scattering signal through three
different molecules (C11, OPV, and OPE) connected to gold
electrodes by means of a cryogenic crossed-wire tunnel junc-
tion setup. Since the number of molecules present in the
experimentally realized junctions is unknown it is advanta-
geous to look at the inelastic electron tunneling spectroscopy
(IETS) signal defined as

IETS = , (57)

which—if the current / simply scales with the number of
molecules—is independent of the number of molecules in
the junction.

In Ref. 78, we used the present LOE method to model the
IETS spectra for each of these three molecules. As an ex-
ample, Fig. 16 shows the calculated and measured IETS
spectrum in the case of the conjugated OPE molecule [inset
of Fig. 17(b)]. Tt is seen that our theory reproduces the posi-
tions and relative heights of the inelastic scattering peaks.
The three main peaks are given by four types of vibrations;
one type is affecting the C-S stretch whereas the other three
involve the distortion of the C backbone of the molecule. In
our calculation the region of dynamic atoms includes 54 at-
oms corresponding to 162 vibrational modes (18 Au surface
atoms and 36 atoms in the molecule). We thus see that the
IETS spectrum must be related to certain selection rules that
describe why only a few vibrational modes affect the current.
These selection rules may be understood from studying the
electron scattering states and the symmetry of the e-ph
interaction.'3 For the other two molecules (OPV and C11)
we found a similar good agreement with the experiments by
Kushmerick er al. However, the transmission 7(g) through
these three molecules is actually varying significantly with
energy, since the electron conduction process involves states
around the Fermi energy that lie in the gap between the mo-
lecular levels. For instance, in an energy window of 0.4 eV
this variation is of the order T(gz—0.2 eV)/T(gp+0.2 eV)
~4 for the OPE molecule. Accordingly the use of the LOE
approximation might seem inappropriate for these systems.
With a detailed comparison between LOE and full SCBA
calculations (including this energy dependence) we can nev-
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FIG. 17. (Color online) Calculated IETS spectra for (a) an OPV
molecule and (b) an OPE molecule. The chemical structure of these
hydrocarbon molecules are shown in the insets. The two plots show
that the simple LOE scheme predicts the same IETS spectrum as
the full SCBA (if one neglects the elastic variation).

ertheless show that the LOE approximation provides effec-
tively the same prediction for the IETS spectrum. This com-
parison is found in Fig. 17.

Since the SCBA is computationally expensive it is not
realistic to use the same high accuracy as for LOE calcula-
tions. We therefore reduce the device subspace and the re-
gion of dynamic atoms to include only the molecule. Further-
more we use a smaller SZP basis set describing the OPE
(OPV) molecule reducing the device subspace to 264 (280)
atomic orbitals. Finally we include only the 5 (3) most im-
portant vibrational modes (selected from a LOE calculation).
With these simplifications we calculated the current for 81
(61) bias points using an average of 9 (8) iterations to con-
verge the SCBA on an energy grid of approximately 500
points. These SCBA calculations required 40 (18) h on 10
Pentium-4 processors working in parallel. For comparison,
the corresponding LOE calculations can be performed in less
than 1 min on a single Pentium-4 processor.

The results shown in Fig. 17 reveal that the LOE approxi-
mation captures the inelastic scattering signal with a very
satisfactory accuracy. The main discrepancy between LOE
and SCBA is directly related to the elastic part of the trans-
port which can easily be corrected for without solving the
full SCBA equations, see Sec. IV D. We have thus used our
implementation of SCBA to justify that the simpler LOE
scheme can actually be applied for the IETS spectra of the
hydrocarbon molecules. This is not a trivial result because
the energy variation in the transmission around the Fermi
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energy for these systems seems to violate one of the funda-
mental assumptions of the LOE.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have presented a first-principles method
for calculating the effects of vibrations and e-ph couplings in
the electronic transport properties of an atomic-scale device.
Our implementation that extends the SIESTA implementation
of Kohn-Sham DFT and the TRANSIESTA scheme for elastic
transport is described in detail, highlighting the important
computational steps for the complete analysis. The inelastic
transport problem is addressed using the NEGF formalism
with the e-ph interaction treated up to the level of SCBA. We
also describe the computationally simple LOE scheme. As
illustrations of the methodology we have applied it to model
the phonon signals in the conductance of atomic gold wires
and hydrocarbon molecules between gold surfaces. In both
cases the comparison with experimental results is very satis-
factory. While we expect our method to be successful for a
wide range of nanoscale systems, there are also some impor-
tant aspects where further research and development may
lead to improvements. We therefore close this paper with an
outlook of some of the challenges we believe are important.

While we have argued that the vibrations for the systems
considered here are reasonably well described by free pho-
non Green’s functions, there might also be situations where
the phonon system has to be treated beyond free dynamics,
e.g., by including self-energies from e-4 pair damping, an-
harmonic phonon-phonon couplings (inside the device), and
resonant phonon-phonon couplings (between device and
electrodes). As we have also shown in this work, these pre-
cise damping conditions of the phonons are governing the
device heating. Another issue is the bias-induced changes in
geometry and e-ph couplings. Further development along
these lines might thus lead to a better understanding of trans-
port in the high-bias regime. On the more technical side, it
would be interesting to extend the present scheme to describe
the interplay between e-ph couplings and other delicate ef-
fects such as spin-polarized currents, spin-orbit couplings,
etc. For instance, phonon heating could mediate an important
effective interaction between the two spin channels.

In conclusion, the present paper contributes to the evolv-
ing understanding of phonon scattering and local heating in
nanoscale systems. These effects are important to elucidate
the structural properties from the electronic transport charac-
teristics and ultimately for the stability of devices.
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APPENDIX A: HILBERT TRANSFORM

The purpose of this appendix is to discuss efficient nu-
merical ways to approximate the Hilbert transform of a con-
tinuous function f(x), here defined as'

7uvnwzipj m§%§

where P denotes the Cauchy principal value integral.

We approximate the function f(x) by a linear interpolation
f1(x) to the values f;=f(x;) known at the discrete grid points
{x;}. This we can write in the following way:

(A1)

N
f) = f1(x) = 2 fith(x) (A2)
i=1

where the kernel function associated with the linear interpo-
lation is

ST g, - x) — B,y — )]

i Ai-1

wl (x)

Xiyl —

[0(xl+1 x)=6x;-x)].  (A3)

Xi+l —

On this form we implicitly assume that the function falls off
to zero at the ends of the grid, i.e., that the function has finite
support. We can then approximate the Hilbert transform of
f(x) by the Hilbert transform of f(x), i.e.,

N

Hx{f[}(xj) = }Tpf fl(X) E K Lfn
—0 i=1

(A4)

Hx{f}(xj) =

where we have identified a transformation kernel

1 * - 1| x;—x;_ X;—X;
K;; _Pf dx Yilx) = _{x, il ln< aJi >
’ T % X—Xj T X — X Xi—1 —)Cj

Xig1 = X; 1n<xi+1 ~ xj) } -
Xir1 =X Xj = Xj
Having determined the matrix Kj; corresponding to a given

grid {x;}, the Hilbert transform amounts to a matrix-vector
product operation. With N grid points this scales as O(N?).

(AS)

205413-18



INELASTIC TRANSPORT THEORY FROM FIRST...

A typical situation is that of an equidistant grid x;—x;_;
=A (for all i), where a more effective algorithm can be de-
vised. In this case we can write x;—x;=(i—/)A, and the ker-
nel function, that becomes a function of the index difference
m=j—i only, reduces to

Kﬁ,zj—T[- (m—DIn(m—1)+2m Inm— (m+ 1)In(m +1)].

(A6)

The Hilbert transform Hx{f,}(xj)zﬁﬁlKjA_ifi has then taken
the form of a discrete convolution which effectively can be
calculated with the fast Fourier transform (FFT) algorithm.
This scales only as O(N In N).

APPENDIX B: NUMERICAL IMPLEMENTATION
OF SCBA

Calculating the current numerically using the SCBA is
highly nontrivial for large systems. This appendix discusses
our solutions to the main difficulties encountered within the
SCBA. We exemplify the size and scope of the calculations,
e.g., the sizes of matrices and the energy grid, with values
taken from the SCBA calculation presented in Sec. V on the
OPE molecule.

The current and power expressions (31) and (32) are in-
tegrated numerically using a third order polynomial interpo-
lation. Since the inelastic signal is typically small, the current
has to be determined with a high accuracy, which implies a
fine resolution of the energy grid for the integration. Further,
the range of this grid has to include not only the bias window
but also additional energies due to the nonlocal character (in
energy) of the Hilbert transform, cf. Eq. (39). These limita-
tions make a nonuniform grid preferable. We thus construct a
dense grid around each of the important energies €
=pur g, M r+ho),. .., and a coarser one elsewhere. The reso-
lution of the fine grid is determined by the temperature and
should have a point separation around e <0.5kpT. For the
OPE molecule we found it adequate at 7=40 K to use a fine
grid with de=1.7meV and a coarse grid with Ae
=10.0 meV spanning the energy range [-0.5,0.5] eV. With a
nonuniform grid the necessary number of energy points may
thus be reduced.

The solution of the SCBA approximation requires sub-
stantial amounts of CPU time and memory. Analyzing the
memory requirements we find that we need to retain G="(g)
and th’r(s) in memory. Each of these matrices requires a
memory allocation of O(NgridNﬁasis) bytes, where Nyq is the
number of grid points, and N,,q, the size of the electronic
basis. For the OPE calculation in Sec. V each matrix
takes up 500 Mbytes of memory (500 energy points
X 2507 matrix size X 16 bytes/complex number). In addition
to the demanding memory requirement, significant computa-
tional time (400 CPU h in total) is needed.

The computationally heaviest part is the calculation of Eq.
(38), which we rewrite as
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Ei(é‘) =2 M, [(1)G= (& * frw,)
A

+({ny) + 1)G= (e F hwy) IM,. (B1)
From this equation we see that the CPU time scales as
O(N N i aNpgsisNicer) [since each matrix multiplication scales
as O(Npyg) ], where Ny, is the number of vibrational modes
and Nj, the number of iterations needed for self-consistency
of the SCBA.

We have overcome the memory and computational re-
quirements by a parallelization of our computer code by di-
viding the energy grid over the available processors. The
only significant complication is the evaluation of Eq. (B1),
where quantities couple across the energy division. To over-
come this, we first redistribute the Green’s functions G=(¢)
over the processors by changing from energy division to ma-
trix indices division. Then the energy-shifted Green’s func-
tions can be added for each matrix index. Next we transform
the outcome back to energy division and carry out the matrix
multiplications with M,. We have implemented this proce-
dure efficiently in a way that lets the necessary communica-
tion occur while other calculations are running, i.e., while the
lesser part of the equation is being communicated between
processors, the matrix multiplications for the greater part are
being computed and vice versa. In practice, this paralleliza-
tion works very well and the computation time scales almost
linearly with the number of processors.

APPENDIX C: SIGNAL BROADENING BY LOCK-IN
MODULATION VOLTAGE

As discussed in Sec. III F the lock-in technique for mea-
suring the differential conductance (and derivatives) intro-
duces a broadening of the intrinsic current-voltage character-
istics due to a finite modulation voltage. The basic idea is to
measure the frequency components of the current at mul-
tiples of the applied harmonic modulation, since these relates
to the derivatives of the current. Following Hansma,'? we
can analytically write the frequency components as the fol-
lowing averages over an oscillation period:

27w
I,= £ I[V + A cos(wt) ]cos(wt)dt
mA J
2 (M dl(V+Ax) ——
——f AVHAY) =5 (C1)
T av
and
4o 27w
L,=—5 I[V + A cos(wt)]cos(2wt)dt
7TA 0
8 (' PI(V+A
= —f %(l - x2)3/2dx, (C2)
377 —1 dV

where the modulation amplitude is A=\EVrms. The partial
integrations carried out above show that the components
I, and I,, are convolutions of the exact first and second
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derivatives of the current with certain functions proportional
to yV1-x? and (1-x%)2, respectively. If we assume that the
inelastic signal has no intrinsic width, the inelastic conduc-
tance change is proportional to a step function #(eV-fiw,)

PHYSICAL REVIEW B 75, 205413 (2007)

and the second derivative to a delta function &eV-fiw,).
With these functional forms the integrals can be evaluated,
leading to a modulation broadening of the first (second) de-
rivative of approximately 2.45 V¢ (1.72 Vo).
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