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Abstract 
 

Heating and heat conduction in molecular junctions are considered within a general NEGF 

formalism. We obtain a unified description of heating in current carrying molecular junctions as 

well as the electron and phonon contributions to the thermal flux, including their mutual 

influence. Ways to calculate these contributions, their relative importance and ambiguities in 

their definitions are discussed. A general expression for the phonon thermal flux is derived and 

used in a new “measuring technique”, to define and quantify ‘local temperature’ in 

nonequilibrium systems. Superiority of this measuring technique over the usual approach that 

defines effective temperature using the equilibrium phonon distribution is demonstrated.  Simple 

bridge models are used to illustrate the general approach, with numerical examples. 
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1. Introduction 

Research in molecular electronics, in particular the study of electron transport through a 

molecular system coupled to metal and/or semiconductor leads, is motivated both by scientific 

challemges and by its potential for complementing existing Si based electronics by new 

molecular size devices. An intriguing issue in this field is the interplay between electron 

transport and nuclear motions in the non-equilibrium junction. Inelastic effects in the 

current/voltage response are directly observed in inelastic electron tunneling spectroscopy 

(IETS) experiments and provide an invaluable diagnostic tool for junction composition and 

structure, most importantly for confirming the presence of molecule(s) in the junction. They also 

manifest themselves in current-induced chemistry and/or molecular motion in single-molecule 

STM junctions. Vibrational features were reported both in the Coulomb blockade and Kondo 

regimes of junction transport. The field continues to be very active in both experimental and 

theoretical studies.  

 An important consequence of electron-vibration interaction in junction transport is heat 

generation, i.e. energy transfer to the underlying nuclear motions. In balance with the process of 

heat dissipation – conduction of thermal energy away from the junction - this has important 

implications on the issue of junction stability. These processes have attracted much 

experimental1-6  and theoretical.7 8-15 16 attention.  

The problem of heat generation in a current carrying junction is concerned with the 

fraction of available power, IΦ (for a junction carrying current I under a potential bias Φ), that is 

left as heat in the junction.7-9, 17-20 In junctions where the molecular wire is suspended between 

the source and drain leads, when the heating issue is most acute, heat dissipation is directly 

related to the process of heat conduction through the wire. In another guise, heat transport 

through a chain of coupled oscillators connecting two thermal baths, this problem has attracted 

much attention on its own,6, 13, 14, 21-35 focusing on issues of dimensionality, the validity of the 

heat equation in transport through harmonic chains and the effects of the quantum nature of the 

conducting modes. The latter issue is of particular interest because quantum mechanical 

considerations imply a limited number of vibrational modes available for heat conduction and 

the existence of a quantum of heat conduction. Applications to molecular wires10-16 address this 

issue independently from the problem of heat generation. A unified semiclassical approach is 

provided by using phenomenological kinetic equations.36-43 Indeed, the two issues should be 

addressed together for several reasons. First, in contrast to heat transport in coupled oscillator 

chains connecting two boson baths, heating in current carrying molecular wires is a transport 

phenomenon involving electrons, phonons and their mutual coupling. Even the definition of 

heating should be addressed carefully, with the need to distinguish between energy transfer from 
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the electronic to the nuclear subsystems and energy randomization within the electronic 

subsystem due to electron-electron interaction.† Second, heat dissipation in such systems can 

result from coupling not only to external phonon baths but to the thermal manifolds of metallic 

electron states. Third, a system with coupled electron and phonon transport processes is 

characterized also by cross-correlations, manifested in thermoelectric transport phenomena. 

Finally, for a molecule connecting two metallic leads at different temperatures, it is of interest to 

ask whether the contributions of the electron and phonon subsystems to the overall heat 

conduction are separable, and to examine their relative magnitudes. 

Following Landauer, most of theoretical work on nanojunction transport is done within a 

scattering theory approach, which disregards the contacts and their influence on the scattering 

channels as well as the mutual influences of the electron and phonon subsystems on each other. 

This approach is known to fail in particular cases.44, 45 A more general non-equilibrium Green 

function (NEGF) approach for thermal transport, which takes care of the aforementioned issues, 

was pioneered in work by Datta and coworkers.17-19 In particular, as shown below, it can deal 

with both electron and phonon assisted thermal transport in a unified way. The importance of 

such a self consistent approach is expected to be especially pronounced in the strongly non-

equilibrium junction (large source-drain voltage) situation, when the electron flux has enough 

energy to strongly excite vibrational modes, and in the case of strong electron-phonon coupling 

that is often encountered in resonant tunneling situations. This paper introduces and develops 

such a NEGF based approach to describe thermal transport through molecular junctions and 

applies it to the issues mentioned above using simple model calculations.  Section 2 introduces 

the model used to simulate the metal-molecule-metal junction and its relevant interaction 

parameters and Section 3 describes the procedure used to calculate electron and phonon assisted‡ 

thermal transport. In section 4 we discuss the relevance and meaning of the ‘junction 

temperature’ under non-equilibrium operating conditions. Results of model calculations are 

presented in Section 5. Section 6 concludes.  

 

2. Model 

We consider a two-terminal junction made of two leads (L for left and R for right), represented 

by free electron reservoirs each in its own thermal equilibrium, interconnected by a bridging 

molecular system. We will implicitly assume the existence of a third lead, a gate, capacitively 

coupled to the junction that can be used to change the energy of molecular levels relative to the 
                                                 
† This process is usually disregarded in molecular wires where only a few electronic states (if any) are delocalized 
and the spacing between electronic levels is often large relative to wire temperature, but can mark the difference 
between small molecular wires and, say, metallic carbon nanotubes. 
‡ We use the term phonon quite generally, to name a quantized vibrational mode. 
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Fermi energy. In what follows, we refer to the molecular bridge (possibly with a few atoms on 

both sides constituting together an extended molecule) as our system. Nuclear motions (of both 

the molecule and solvent) are described as harmonic normal modes and are divided into two 

groups. The primary group includes local vibrations that are driven out of equilibrium in the 

course of the transport process. The secondary phonons represent the environment, taken to be 

coupled linearly to the primary group and assumed to be in thermal equilibrium. The assignment 

of phonons to these groups depends on the problem. For the study of heat generation in a current 

carrying junction we associate with the primary group phonons that directly interact with the 

electronic states of the bridge. They are driven by the non-equilibrium electronic system while 

concurrently relaxing by their coupling to the thermal environment. When discussing heat 

transport through a molecular bridge connecting two thermal baths, all the bridge phonons are 

parts of our system, i.e. in the primary group, irrespective of their coupling to the electronic 

subsystem. The secondary groups include phonons in the two thermal reservoirs. In the present 

discussion these two criteria are assumed equivalent, i.e. it is assumed that the bridge phonons 

are those that couple to the electronic process. 

The model Hamiltonian is divided into zero-order and interaction part 

            (1) 0
ˆ ˆH H V= + ˆ

where  represents the non-interacting subsystems. In the second quantization it reads (here 

and below we use 

0Ĥ

1=  and ) 1e =

  † † † †
0

, , 1 1

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
N N

M ext
k k k ij i j i i i

k L R i j i
H c c H d d V d d a a b †bα α α β β β

α β
ε ω

∈ = =
= + + + +∑ ∑ ∑ ∑ ∑ω

)

 (2) 

( †ˆ ˆb bβ β  and ( )†ˆ ˆa aα α  are annihilation (creation) operators for secondary and primary 

vibrational normal modes respectively. ( )†ˆ ˆk kc c  is annihilation (creation) of electron in the 

leads, and ( †ˆ ˆ )j jd d  is corresponding operator(s) for electron states on the bridge. The five terms 

on the right of Eq. (2) represent electrons in the left and right leads, electrons on the molecule (in 

a representation defined by a basis of N single electron orbitals), an external potential, primary 

vibrations and secondary vibrations, respectively. The lead electrons and the secondary phonons 

are assumed to be in their own equilibrium, defined by the temperature and the electron chemical 

potential of each lead. The molecular system is driven out of equilibrium when the different 

baths are not in equilibrium with each other. The single electron basis chosen to represent the 

molecular electronic system can correspond to atomic or molecular orbitals, lattice points, plane 

waves, or any other convenient basis. The external potential term can represent a gate potential 
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ext
iV V= g . Below we will often use a single-level molecular model that corresponds to the 

molecular orbital of energy 0ε  relevant to the energy range of interest. We will also consider a 

single primary vibrational mode of frequency 0ω , so that † †
0 0 0ˆ ˆ ˆ ˆm m mm a a a aω ω→∑  and 

( )† †
0 0 0,

ˆ ˆ ˆ ˆ ˆ ˆM ext ext
ij i j i i ii j iH d d V d d V d dε+ → +∑ ∑ †

0 . To simplify notation we will disregard   

and assume that 

0
extV

0ε  can be varied. 

The interacting part of the Hamiltonian couples between the above subsystems.  

  ( )† † †

, , , ; ,

ˆ ˆ ˆ ˆˆˆ ˆ ˆ a
ki k i ik i k ij i j

k L R i i j
V V c d V d c M Q d d U Qα ˆ ˆa bQα αβ α β

α α β∈
= + + +∑ ∑ ∑  (3) 

Here ˆ andaQ ˆ bQα β  are vibration displacement operators 

  † ˆ ˆˆ ˆˆ ˆa bQ a a Q b b †
α α α β β β= + = +       (4) 

For future reference we also introduce the corresponding momentum operators 

  ( ) ( )† ˆ ˆˆ ˆˆ ˆa bP i a a P i b bα α α β β= − − = − − †
β      (5) 

In Eq. (3), the first term on the right couples between the free electron reservoirs in the leads and 

the molecular electronic subsystem. The second term is the vibronic coupling between electrons 

on the molecule and the primary vibrations, which is taken to be linear in the vibrational 

displacements. The third term represents bilinear coupling between primary vibrational modes 

and the secondary phonons. Such bilinear coupling is appropriate in a representation where the 

primary modes correspond to vibrations localized on the molecular bridge. 

The physics of the model is dominated by several characteristic parameters: EΔ – the 

spacing between the leads Fermi energies and the energy 0ε  of the closest molecular orbital 

(HOMO and/or LUMO); Γ – the broadening of the molecular level due to electron transfer 

interaction with the leads; M – the electron-primary vibration coupling and ω0 – the vibrational 

frequency of the primary mode. In addition, the bias potential Φ determines the possibility to 

pump energy into vibrational modes by the threshold condition 0e ωΦ ≥ . We expect that the 

effects of electron-phonon interaction on the junctions dynamics will be considerable above this 

threshold, in particular when the timescale for the electron dynamics (that can be estimated as 
1E i −Δ + Γ ) is comparable to that of the primary vibrations, 1

0ω
− , and when the vibronic 

coupling M  is not too small relative to the molecule-lead coupling as determined by Γ. Below 

we will also distinguish between resonant and non-resonant electron transmission, for which 

different levels of mathematical treatment are needed.  
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3. Method 
The mathematical objects of interest in the NEGF approach to electron and phonon transport are 

the corresponding Green functions (GFs) for the electron and the primary phonons  

  ( ) †ˆ ˆ, ' ( ) ( ')ij c i jG i T d dτ τ τ= − τ      (6) 

 ( ) †
'

ˆ ˆ, ' ( ) ( ')a a
cD i T Q Qαα α α 'τ τ τ= − τ      (7)   

where is  the contour-time ordering operator (later times on the left) on the Keldysh contour. 

Approximate ways to calculate these GFs  were described in our previous publications for the 

cases of weak

cT  

46 and strong47 electron-phonon interaction. Once the GFs have been calculated 

they can be used for calculation of thermal transport as described below. 

L R

IL
in

IR
in

IL
out

IR
out

 

Figure 1 Electron fluxes through the junction interfaces. L and R represent the left and right leads, 

respectively. 

 

 Within the NEGF approach one can distinguish between the incoming and outgoing 

electron fluxes at each molecule-lead (L and R) interface (see Figure 1). The net flux into the 

molecule at contact K (K = L,R)  is  

  in out
K K KI I I= −        (8a) 

  ( ), 1
2

in out in out
K K

dE ,I i
π

+∞

−∞

= ∫ E

⎦

      (8b)  

where 

       (9)  
( ) ( )

( ) ( )

Tr ( )

Tr ( )

in
K K

out
K K

i E E G E

i E E G E

< >

> <

⎡ ⎤= Σ⎣
⎡ ⎤= Σ⎣ ⎦

Here ,
K
< >Σ  are the lesser/greater projections of the self-energy due to coupling to the contact K 
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[ ]
( ) ( ) ( )

( ) 1 ( ) ( )
K K K

K K

E if E E

E i f E E

<

>

Σ = Γ

Σ = − − ΓK

)K

     (10)  

with ( )( 1
( ) exp / 1K K Bf E E k Tμ

−
⎡= − +⎣ ⎤⎦  is the Fermi distribution in the contact K and 

  [ ] ( )( ) 2K ik kj kij
k K

E V V Eπ δ ε
∈

Γ = −∑      (11)  

Following Lake and Datta18, 19 we also introduce the corresponding energy current at each 

interface 

  ( ) ( )
, ,

,, 2
in outel in out

E L RL R

dEJ E i
π

+∞

−∞

= ∫ E      (12) 

and the net energy flux into the junction at the interface K 

  ( ) ( ), ; ( )
2

el in out
E K K K K K

dEJ E i E i E i E i E
π

+∞

−∞

= =∫ ( )−

,R

  (13) 

The net rate of energy change in the bridge electronic subsystem can be expressed in terms of 

these fluxes in the form,  

         (14) ,
el el el

E E L EJ J JΔ = +

 (The subscript EΔ  is used to emphasize that that this is the rate of electronic energy change on 

the bridge, not an energy flux through the bridge). This net flux is zero in the absence of 

additional routes for energy dissipation (e.g. phonons) on the bridge. In contrast, the electronic 

heat flux out of the lead , given by,K L R= 48 

  ( ) (, 2
el
Q K K K

dEJ E iμ
π

+∞

−∞

= −∫ )E      (15) 

does not represent a conserved quantity. Consequently away from equilibrium when L Rμ μ≠  

the difference  does not vanish even in the absence of system phonons.,
el el
Q L Q RJ J− ,

                                                

§ It represents 

the net generation rate of Joule heat in the current carrying system. 

 In the presence of bridge vibrations one has to take into account energy and heat transport 

also via the phonon subsystem, as well as the effect of electron-phonon coupling. Two issues are 

of particular interest, one pertaining to heat generation on the junction and the other to heat 

transport through the junction:  

(a) Electron-phonon interaction causes energy exchange between the electron and the (primary) 

phonon subsystems on the bridge. In a biased junction the applied voltage is the energy source, 

and we can regard the net energy flux from electrons to primary phonons as the rate of heat 

 
§ One still assumes the existence of a dissipation mechanism that keeps the leads in their corresponding equilibrium 
states. 
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generation on the bridge. Energy conservation implies that this rate is given by  of Eq. el
EJΔ 14. 

We conclude that the heat generation rate on the molecular bridge is given by 

          (16) el
QJ JΔ= E

(b) Phonons obviously contribute to heat transport through the bridge, as do electrons in metal-

molecule-metals contacts. Electron-phonon interaction can play an important role in this heat 

transport process, as indicated by the fact that the only applicable conservation law is that of the 

total (electronic and nuclear) energy.  

Note that for transport by phonons energy and heat fluxes are equivalent, because in the 

absence of particle conservation there is no chemical potential for phonons. A general quantum 

expression for phonon thermal flux within NEGF can be derived in complete analogy with 

original derivation for electron current;49, 50 the only difference being the carrier statistics. The 

phonon thermal flux at the interface ,K L R=  is obtained in the form (see Appendix A and 

Refs.51, 52)  

( ) ( ) ( ) ( ), ,

0

Tr
2

ph ph ph
K K K

dJ Dω Dω ω ω ω ω
π

∞
< >>⎡ ⎤= − Π −Π⎣ ⎦∫ <  (17) 

where Tr stands for summing over all primary phonons,  and  are the greater and 

lesser self energy (SE) matrices of the primary vibrations due to their coupling to the thermal 

bath of the contact   

,ph
K

>Π ,ph
K

<Π

K

  
( ) ( ) ( )

( ) ( ) ( )

,
''

,
''

ph K
KK

ph K
KK

i F

i F

αααα

αααα

ω ω ω

ω ω ω

<

>

⎡ ⎤Π = − Ω⎣ ⎦

⎡ ⎤Π = − Ω⎣ ⎦ −
    (18) 

with 

  
( )

( )
( )

( ) ( )' '

0

1

2

K
K

K

K

K

N
F

N

U U

0

αα αβ βα
β

ω ω
ω

ω ω

βω π δ ω
∈

⎧ >⎪= ⎨
+ <⎪⎩

Ω = −∑ ω
    (19) 

and where  

( ) ( ) ( ) 1, exp / 1K eq K B KN N T k Tω ω ω −
= ≡ −⎡ ⎤⎣ ⎦     (20) 

is the Bose-Einstein distribution in the contact .  K

 The bilinear form (last term in Eq. (3)) of the coupling between system (primary) and 

bath (secondary) phonons is convenient in that it leads to expression (17) which is exact within 

the non-crossing approximation for any order of the bridge-bath interaction. It holds in principle 

also in the presence of electron-electron and nuclear anharmonic interactions on the bridge. This 

 8



form is however not very realistic for the molecule-metal contact, where the Debye frequency in 

the solid is often smaller than characteristic molecular vibrational frequencies. In this case 

creation or annihilation of a phonon in the bridge is accompanied by a multiphonon process in 

the thermal bath. A possible workaround is to introduce an effective exponential density of the 

thermal bath modes which, coupled bilinearly to the molecule, mimic the effect of the 

multiphonon process. We do it by using the following model for ( )K ωΩ : 

 ( )
2

0 exp 2 1K K
K
c c

ω ωω
ω ωK

⎧ ⎫⎡ ⎤ ⎛ ⎞⎪ ⎪Ω = Ω −⎜⎢ ⎥ ⎟⎨ ⎬⎜⎢ ⎥ ⎟⎪ ⎪⎣ ⎦ ⎝ ⎠⎩ ⎭
     (21) 

where 0
KΩ and K

cω  are constants. In particular K
cω  is the cutoff frequency for the reservoir K. 

The results given and discussed below were obtained using this model. Alternatively one can 

consider more realistic molecule-bath interactions, e.g.,  

 { }( ) { }( ) ( )ˆ ˆ ˆ ˆ;b a b bU F Q Q F Q F Qα β α β β β
α β

≡∑ ∏     (22) 

where ( ˆ bF Q )β β  is a physically motivated function of the thermal phonon coordinates53 that 

reflects the short range nature of inter-nuclear interaction. Such model can not be solved exactly, 

however, and a possible way to handle it is discussed in Appendix B. 

 Eq. (17) is exact within the non-crossing approximation, limited only by the requirement 

that the reservoirs can be represented as collections of independent harmonic modes coupled 

bilinearly to the molecular bridge. In particular it can be used for the thermal phonon current at 

the interface between the molecular bridge and the contact K in the presence of anharmonic as 

well as electron-phonon interactions on the bridge. Consider first a purely harmonic bridge with 

no electron-phonon interactions. In this case the Keldysh equation for the lesser and greater 

phonon GFs reads 

 ( ) ( ) ( ) ( ) ( ), , ,r
L RD D Daω ω ω ω> < > < > <⎡= Π +Π⎣ ω⎤

⎦     (23) 

Using this and Eqs. (18)-(20) in  (17) leads to 

 ( ) ( ) ( ) ( ) ( ) ( )( )
0 2

ph L r R a
L R

dJ Tr D D N Nω ω ω ω ω ω ω ω
π

∞
⎡ ⎤= Ω Ω −⎣ ⎦∫  (24) 

This is a Landauer-type expression that was obtained and studied previously for the phonon 

mediated heat current in a harmonic junction, without electrons and electron-phonon coupling, 

by several workers.12, 28, 54. 

Next consider the effect of electron-phonon interaction on the phonon heat current, 

starting again from Eq. (17) and including the effect of this interaction in the calculation of the 
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GFs. In general no further simplification is possible, however a simple result can be derived in 

the special (usually unrealistic) case where electron-phonon interaction is present and, e.g., may 

cause decoherence within the electron and phonon sub-spaces, however no energy exchange 

between these subsystems takes place on the bridge. In this case at steady-state the phonon 

thermal flux is the same throughout the junction including the L and R interfaces. This can be 

used to symmetrize Eq. (17) following a procedure similar to that used by Meir and Wingreen in 

the electronic case,49 (using the additional assumption ( ) ( )L Rxω ωΩ = ⋅Ω  for any ω; see 

Appendix C) which leads to 

 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

0

0

1
2

1
2

ph L r R a
L R

L R
r a

el L R

dJ Tr D D N N

d Tr D D N N

ω ω ω ω ω ω ω ω
π

ω ωω ω ω ω ω ω ω
π ω

∞

∞

⎡ ⎤= Ω Ω −⎣ ⎦

⎡ ⎤Ω Ω
+ Ω⎢ ⎥

Ω⎢ ⎥
−

∫

∫
(25) 

⎣ ⎦

where L RΩ =Ω +Ω  and where ( ) ( )2Imel el
rω ω⎡ ⎤Ω = − Π⎣ ⎦  is the imaginary part of the retarded 

projection of the contribution to the primary phonons SE associated with their coupling to the 

electronic subsystem. This contribution to the primary phonons SE was argued to be dominant in 

the lifetime broadening of these phonons as observed by inelastic electron tunneling 

spectro

e more

scopy at low temperatures.55  

The result (25) extends Eq. (24) with additive contribution(s) associated with these 

interaction(s). Note that the same formal form, Eq. (25), is obtained in th  general case that 

includes anharmonic interactions between bridge phonons, except that ( )el ωΩ  is replaced by a 

more general function that includes also the effects of such interactions. We will not discuss this 

sue fu

 fluxes as well 

t ow

is rther in this paper.  

 In general, energy exchange between electrons and phonons on the bridge cannot be 

disregarded, and Eq. (17) has to be used directly, treating the mutual influence of these bridge 

subsystems in a self-consistent manner. Procedures for such self consistent calculations that were 

developed by us before,46, 47 yield the corresponding electron and phonon GFs and SEs. They can 

be used to evaluate the electronic current and the electron and phonon energy/heat

as cross correlation effects. Results of such calculations are reported in Section 5. 

 As stated above, mos of the calculations described bel  are done for the simplest 

model of single bridge level 0ε  coupled to one vibrational mode 0ω  with leads taken each at  

own equilibrium characterized by electrochemical potentials 

its

Lμ  and Rμ  and temperatures LT  

and RT . As in Ref. 46 we assume that the source-drain voltage Φ across the junction shif

electrochemical potentials in the leads relative to ε0 according to 

ts the 
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  ,R L
L F R FE e Eμ μΓ Γ e= + Φ = −

Γ Γ
Φ  ;    L RΓ = Γ +Γ   (26) 

where  is Fermi energy of both leads in the unbiased junction. In several calculations a 

multisite bridge model was considered. In this case the electronic subsystem is represented by a 

linear tight-binding model and the primary phonons are modeled by assigning one local 

oscillator coupled to each site and to its nearest neighbor oscillators. These molecular chains are 

coupled at their edges to the leads electronic and phononic reservoirs. The bridge Hamiltonian is 

thus 

FE

( ) ( )∑∑
−

=
+

+
++

+
+

=

+++ +++++=
1

1
11,11,

1
..ˆˆˆˆˆˆˆˆˆˆˆˆ

s

i
iiiiiiii

s

i
ii

a
iiiiiiiiM cHaaUddtddQMaaddH ωε    (27) 

Before presenting results of our model calculations we discuss in the following Sections 

two conceptual issues. First is the ambiguity in defining electron and phonon currents in the 

coupled system. Second is the concept of ‘effective junction temperature’ and its applicability in 

describing the non-equilibrium steady state of a current carrying junction.  

 

4. Electron and phonon energy currents 

Consider Eq. (17)-(19) for the phonon energy current at the molecule-lead interface. As defined 

this current vanishes when the interaction U between primary and secondary phonons is zero. 

This appears contradictory to the well known fact55-57 that energy transfer from molecular 

vibrations to electron-hole pair excitations is often a dominant mechanism for vibrational 

relaxation of molecules adsorbed at metal surfaces. Obviously a chain of coupled springs 

connecting with this coupling mechanism between two free electron thermal reservoirs should 

conduct heat via this mechanism.  

The heat current defined by (17)-(19) does not contain this contribution. Indeed, in the 

representation that defines the Hamiltonian (2)-(3) primary phonons are not coupled directly to 

the outside electron reservoirs. This coupling appears only in the electronic part of the problem 

and should therefore be accounted as part of the electronic energy current defined by Eqs. (9), 

(12) and (13). It is important to realize that regarding this current as electronic or phononic is 

more a matter of representation than a fundamental issue of physics. 

To further elucidate this point consider the model depicted in Fig. 2. 
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{l} {r}
|1> |2>

ω0

V1,l V2,rM

 
Fig. 2. A model for examining the definitions of electron and phonon energy currents 
where a two-electronic sites/one phonon bridge connects between two electronic reservoirs as 
described by the Hamiltonian of Eq.(28). 

( )
( ) ( ) ( )( )

† † † † †
1 1 1 2 2 2 12 2 01

† † † †
1 2 1 21 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆh.c.

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆh.c. h.c.

l l l r r r
l r

l l r r
l r

H d d d d t d d c c c c a a

V d c V d c M d d d d a a

ε ε ε ε ω= + + + + + +

+ + + + + +

†

†ˆ ˆ+

∑ ∑

∑ ∑
(28) 

In particular we focus on the case 12 0t =  in which no electron conduction can take place. 

In the absence of electron-phonon coupling the electronic GFs and SEs have the block diagonal 

forms 

( ) 1 1

2 2

/ 2 0
0 /

r E i
G E

E i
ε

ε
− + Γ⎛

= ⎜ − + Γ⎝ ⎠2
⎞
⎟

,

,     (29) 

, ,
L R

> < > < > <Σ = Σ +Σ ,        (30) 

( )
( )

1

2

0 00
;

00 0
L

L R
R

i f E
i f E

< < ⎛ ⎞⎛ Γ ⎞
Σ = Σ = ⎜⎜ ⎟ Γ⎝ ⎠ ⎝ ⎠

⎟ ,    (31) 

( L
>Σ  and L

>Σ  are similar with if  replaced by –i(1-f) 

( ) ( ) ( ) ( ), ,rG E G E E G E> < > <= Σ a ,      (32) 

and both the electronic current (8a) and the electronic heat flux, Eq. (15), vanish. In the presence 

of electron-phonon coupling the electronic current remains zero, however the heat flux is finite if 

the temperatures in the left and right electronic reservoirs are different. To see this we write the 

phonon GFs in the quasi-particle approximation whereupon they take the form of the free 

phonon GFs for some yet unknown distribution 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )
0 0

0 0

2 1

2 1

ph ph

ph ph

D i N N

D i N N

ω π ω δ ω ω ω δ ω ω

ω π ω δ ω ω ω δ ω ω

<

>

⎡ ⎤= − − + + +⎣ ⎦
⎡ ⎤= − + + + −⎣ ⎦

  (33)  

The phonon contribution to the electron SEs is given in the Born approximation by 

( ) ( ) (, 2 , ,( ) 2 ijph ij
E iM d D G E )ω π ω> < > < > <⎡ ⎤Σ = −⎣ ⎦ ∫ ω . This yields the block diagonal matrices 
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( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

2
0 0 0

2
0 0 0

( ) 1

( ) 1

ph ph ph

ph ph ph

E M N G E N G E

E M N G E N G E

ω ω ω

ω ω ω

< <

> >

⎡ ⎤Σ = − + + +⎣ ⎦
⎡ ⎤Σ = + + + −⎣ ⎦

0

0

ω

ω

<

>
 (34) 

Denoting by  the 11 (K=L) or 22 (K=R) block of the full GF, Eqs. ( )EGK (9), (15) and (34) lead 

to  

( ) ( )( ) ( ) ( ) (
2

0
, 0 01

2
el
Q K K ph K ph K

M dEJ G E N G E N Gω
ω ω ω

π
< > >⎡ ⎤= + − −⎣ ⎦∫ )0 0E ω+  (35a) 

in which the electronic GFs are modified by the phonon interaction, e.g. an additional term in 

(32)arising from (34). It is easy to check that this heat current is not zero. For example, taking in 

(35a) the electron-phonon interaction to the lowest ( 2M ) order leads to 

( )
( ) ( )

( )( ) ( )
( ) ( )

( ) ( )
( ) ( )

22
0

, 2 2

0 0 0 0
2 22 2

0 0

2 / 2

1 1

/ 2 / 2

K Kel
Q K

K K

ph K ph K

K K K K

f EM dEJ
E

N f E N f E

E E

ω
π ε

ω ω ω ω

ω ε ω ε

Γ
=

− + Γ

⎡ ⎤⎡ ⎤+ − − +⎣ ⎦⎢ ⎥× −
⎢ ⎥− − + Γ + − + Γ⎣ ⎦

∫
  

(35b) 

where ( )21 εεε =K  for K = L (R). ( )0phN ω  is now chosen so that . By the 

definitions of Sect. 3 this is an electron assisted heat current. 

el
RQ

el
LQ JJ ,, −=

Now suppose that we first diagonalize the {ℓ}-1 and 2-{r} blocks of the electronic 

Hamiltonian (28). We use the same notation as before, { }l  and { }r  for the new electronic 

manifolds. The Hamiltonian now takes the form 

( )† †† † †
0 '

, ' ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆl l r r r kk kl k
l r k k L R

H C C C C a a a a M Cε ε ω
∈

= + + + +∑ ∑ ∑ 'C   (36) 

where *
' 'kk k kM Mν ν≡  with ( )

22 r
k Kk K kV Gν = ε . Here 1(2)K =  for . This 

representation corresponds to repartitioning the system into a new contact-bridge-contact form, 

obtained by a unitary transformation of the electronic basis of the problem. Within this new 

partitioning the bridge contains only the phonon, hence thermal transport in this picture is purely 

phonon-assisted. The self energy of this bridge phonon due to its coupling to the electron 

reservoirs is (in the Born approximation) 

( )k L R∈

 
( ) ( ) ( )

( ) ( )

1 2 2 1
1 2

2
, 1 2 2 1 1 2

,

2
2 1 1 2

, ,

, ,

el K k k k k
k k K

K K

i M g g

i M G G

,τ τ τ

τ τ τ τ

∈
Π = −

= −

∑ τ τ τ

)

  (37) 

where ( ) ( ) (†
1 2 1 2

ˆ ˆ,k c k kg i T C Cτ τ τ τ≡ −  satisfies 
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( ) (2
1 2 1 2,K k k

k K
G ),gτ τ ν τ

∈
= ∑ τ       (38) 

and where the coefficients kν  are defined by ˆ ˆ
K k kk Kd ν∈= C∑ . Eq. (37) leads to the Born 

approximation expression for the phonon SE projection  

( ) ( ) ( )

( ) ( ) ( )∫

∫
+−=Π

−−=Π

><>

><<

ω
π

ω

ω
π

ω

EGEGdEiM

EGEGdEiM

KKKel

KKKel

2

2
2

,

2
,

     (39) 

Using these SEs in Eq. (17) leads to the (phonon-assisted thermal flux) at each contact K, 

( ) ( ) ( ) ( )[∫
∞

<>>< Π−Π−=
0

,,2
ωωωωω

π
ω DDTrdJ KelKel

ph
K ]    (40) 

At steady state these fluxes satisfy ph ph
L RJ J= − .   

Obviously, Eqs. (40) and (35a) describe the same flux. Indeed, substituting (33) and (39) into 

(40) leads again to (35a). While  (35a) was derived as a thermal flux of electronic origin, 

according to Eqs. (36)-(37) the flux (40) is due to coupling of the bridge phonon to electron-hole 

excitations in the redefined electronic reservoirs. We see that assigning heat current to electron 

or phonon origins can be a matter of representation. 

 

 

5. Effective junction temperature 

Theoretical discussions of junction heating often introduce the concept of ‘effective junction 

temperature’.16, 20, 58. This concept is obviously questionable in non-equilibrium situations, and 

measurable consequences of its failure were predicted.59 On the other hand, the concept is 

convenient as an intuitive measure of junction heating. Usually the ‘local temperature’ Tα  

associated with a mode α of frequency ωα is introduced through the occupancy nα of this mode, 

calculated under the given non-equilibrium conditions, by the relationship 

( ,eqn N T )α α αω= .        (41) 

This definition of the effective mode temperature disregards the fact that the true vibrational 

distribution in the non-equilibrium system, ( )neqN ω , can be quite different from the thermal 

one. The existence of the inequality 

 ( ) ( ) ( ) ( ) ( )
2 2neq eq ph neq ph
d dN N n Nω ωσ ω ω ρ ω ω ρ
π π

≡ − << ≡∫ ∫ ω   (42) 

may be taken as a criterion for the applicability of Eq. (41). Here ( )phρ ω  is the density of 

bridge vibrational states which includes the effect of coupling to the phonon baths and to the 
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tunneling electrons (and more generally, also of anharmonic phonon-phonon interactions). The 

condition (42) is expected to fail far from equilibrium (large source-drain voltage) and/or for 

strong electron-phonon coupling, M > Γ . Figure 3 shows results of a model calculation that 

demonstrates this breakdown. The calculation is done for a model that includes a single-level 

bridge (energy ε0) coupled to one vibrational degree of freedom (frequency ω0), Eq. (27) with 

, using the parameters 1s = 0 2ε = eV, 0.02L RΓ = Γ = eV, 0 0.2ω = eV, 005.0=Ω=Ω RL eV, 

eV, and 0.2M = 100T = K. Perhaps surprisingly (see however point (d) in the discussion of Fig. 

4), the estimate based on Eq. (41) seems to be valid at high bias,  however it fails quantitatively 

at low bias when the junction “temperature” is low. The main source of error arises from the fact 

that the estimate (41) is based on the equilibrium distribution for the free oscillator, which should 

indeed fail when the coupling M is responsible for a substantial part of the junction energy. 
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Figure 3. Vibrational population n (solid line, blue) and deviation σ (dashed line, green) vs. the applied bias. 
The inset shows the low voltage region. See text for parameters. In this calculation the GFs and SEs are 
evaluated within the strong electron-phonon coupling scheme of Ref. 47 

 

 Another way to introduce an effective mode temperature can be proposed, based on the 

observation that experimentally temperature is measured by bringing two systems into contact 

and waiting till thermal equilibrium is achieved, i.e. the thermal flux between the system and the 

thermometer vanishes.  This can be used in the following way: First, the steady state of the 

junction is determined using the self-consistent NEGF-based procedures of Refs. 46 (weak 

electron-phonon coupling) or 47 (strong coupling).  Then the desired mode α is linearly coupled 

to an additional harmonic thermal bath (thermometer) and the temperature of the latter is 
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adjusted so as to zero the thermal flux between the mode and the thermometer. This adjustment 

is made keeping the original system (bridge) and its corresponding GFs fixed. In evaluating this 

flux the GFs  in Eq.,D> < (17) are due to the examined mode, while the SEs   represent the 

coupling of that mode to the thermometer. Note that the strength of this coupling (

,> <Π

( )aαα ωΩ  

from Eq. (19)) is not important since is enters linearly as multiplying factors in the flux 

expression. It is important however that the “thermometer” bath has a non-vanishing mode 

density about the examined mode. We denote this temperature as . thT
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Figure 4. The ‘local temperature’ (left vertical axis) defined by the equilibrium distribution assumption, Eq. 
(41) (dashed line, blue) and by the measurement process explained in the text(solid line, red) plotted against 
the applied bias for the same model and parameters as in Fig. 3. The inset shows the low bias region. The 
dotted line (green) shows the junction current (right vertical axis). In this calculation the GFs and SEs are 
evaluated within the strong electron-phonon coupling scheme of Ref. 47 

Figure 4 compares the effective junction temperatures obtained from Eq. (41) and 

through the  measuring approach described above. The following points are noteworthy: thT

(a) Junction heating, as estimated by the thermometer techniques, is characterized by two 

thresholds. Below the first crossover at the inelastic threshold 0~ 0.2V ωΦ = , the junction 

temperature remains close to that of the leads (100K). It increases moderately above this 

threshold until a sharp crossover to strong heating near Φ~4V, where the molecular level 0ε  

enters the conduction window in accord with Eq. (26).  

(b) The two approaches to estimating  agree with each other for high bias but deviate 

strongly in the low bias regime where the effective temperature derived from the equilibrium 

distribution assumption, Eq. 

effT

(41), is substantially higher than that ‘measured’ by the 
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‘thermometer’ bath , this failure persists when thT 0Φ→ , where the equilibrium junction must 

have the same temperature as that imposed on the leads, 100T K=  

(c) As noted above, the reason for this failure Eq. (41) uses the free oscillator distribution, Eq. 

(20), while in fact the oscillator is not free but coupled to the electronic subsystem. 

(d) Irrespective of the deviation, exemplified by Fig. 3, of the non-equilibrium 

distribution ( )neqN ω  from the corresponding thermal form, estimating the effective temperature 

using Eq. (41) is seen to be successful (in comparison to the measuring technique) at high bias, 

even though the difference between ( )eqN ω  and ( )neqN ω  is expected to be larger. This is 

partially an artifact of the single resonance level/ single vibrational mode model, where results 

depend on properties of the phonon distribution at a relatively narrow frequency range about ω0 

and not on the full non-equilibrium distribution.  

 

 

6. Model calculations 

In this Section we present several model calculations that demonstrate the application of 

the formalism introduced above to the issues of heat generation, heat transport and temperature 

rise in molecular junctions. All figures below use the SCBA scheme of Ref. 46 for the GFs and 

SEs calculation, except Fig. 6 where the strong electron-phonon coupling scheme of Ref. 47 was 

used. 

(a) Heat generation and temperature rise in current carrying junctions. Consider first the heat 

generation rate in a current carrying molecular junction. As discussed in Section 3, this is the net 

rate at which energy is transferred from electrons to primary phonons on the bridge, and can be 

calculated from Eqs. (14) and (16). At steady state this rate reflects the non-equilibrium 

distributions in the electron and phonon subspaces. In the calculation of Fig. 5 we approach this 

issue in a slightly different way, by considering a situation in which the phonon subsystem is 

restricted to be in equilibrium at temperature Tph (that may or may not be taken equal to that of 

the leads) and consider the net energy transfer rate (16) under this condition as a function of Tph 

and of the bias voltage. The junction is again characterized by a single electronic level ε0 and a 

single primary phonon ω0. The electronic GFs and SEs of this coupled electron-phonon system 

are calculated at the self-consistent Born approximation (SCBA)46. We see that the heat 

generation changes sign (negative sign corresponds to net energy transfer from the phonon to the 

electron subsystems) as a function of the imposed phonon temperature. In particular it vanishes 

at the equilibrium temperature (300K) of an equilibrium unbiased junction and is positive at this 

temperature in the biased junction indicating that the electron subsystem is in a sense “hotter”. 
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The temperature (nearly 400K) at which heat generation vanishes in the biased junction can be 

identified as an effective temperature of the non-equilibrium electron subsystem. 
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Figure 5. Heat generation in a current carrying junction characterized by one electronic level and one 
oscillator mode (taken to be at thermal equilibrium), plotted for a zero potential bias (dashed line; blue) 
and for bias (solid line, red) as a function of the mode temperature. Parameters of the 
calculation are 

0.1VV =
0 2ε = eV, eV, 0.5L RΓ = Γ = 0FE = , 0 0.2ω = eV and K.  300L RT T= =

 

The above calculation is similar in spirit to the measuring techniques described in Sect. 5, 

providing a measure of the effective electronic temperature in the non-equilibrium junction by 

zeroing the heat flux between it and a phonon system of known temperature, however important 

technical differences exist: Contrary to a model with bilinear coupling between phonon 

subspaces, here we deal with an approximate calculation (e.g. SCBA), so that the resulting 

effective temperature will depend on both the level of theory and the electron-phonon coupling 

strength. The computed effective temperature is expected to be meaningful only for very weak 

electron-phonon coupling, when the leading (second) order term in the electron phonon coupling 

dominates the system behavior. 
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Figure 6. The heat generation rate, Eq. (16), in a current carrying junction characterized by one electronic 
level and one primary phonon coupled to a thermal bath (solid line, red) and its second derivative (dashed 
line, blue), plotted against the potential bias. Parameters of the calculation are 0 2ε = eV, 

eV, , 02.0=Γ=Γ RL 0FE = 0 0.2ω = eV, 005.0=Ω=Ω RL eV, 2.0=M eV and 100== RL TT K. The 
inset shows an expanded view of the low bias region. The calculation of the needed Green functions was done 
utilizing the strong coupling procedure of Ref. 47 

  

Figure 6 shows the heat generation in the current-carrying junction as a function of 

applied bias. The two thresholds of heat generation discussed with regard to Figure 4 are 

observed, the inelastic threshold at 0 0.2e ωΦ = ≈ eV and the conduction threshold near 

 where the molecular level enters the resonance tunneling region between the left and 

right Fermi energies. The vibrational structure of this heat generation spectrum should be noted. 

It is seen as peaks in the second derivative signal about the lower 

4e eΦ ≈ V

0e ωΦ =  threshold (seen in 

the expanded view in the inset) and as steps (that would appear as peaks in the first derivative 

signal) above the 4e eVΦ ≈  threshold. The low bias behavior is characteristic of the standard 

inelastic tunneling spectroscopy, which is characterized by peaks in the second derivative of the 

current-voltage characteristic (multiple overtone peaks appear because by our choice of strong 

electron-phonon coupling). The high bias structure is the analog of phonon sideband peaks that 

often appear in the conduction-voltage plot above the conduction threshold in resonance inelastic 

tunneling spectroscopy. Note that the fact that here we look at the heat generation signal may 

affect the observed spectra. For example, higher overtones in the  in IETS are rare 

because the probability to excite more than one phonon in a non-resonance process is small. 

2 /d I dΦ2
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However higher harmonic generation corresponds to larger energy transfer to phonons, which 

gives larger weight to such higher harmonics peaks. This, and our choice of relatively strong 

electron-phonon coupling, are the probable causes for the non-monotonic shape of the signal 

envelope. 

The balance between heat generation in the junction and heat dissipation out of the 

junction is expressed in terms of the steady state junction temperature. Figure 7 shows the results 

of calculations on a single state model (one electronic level coupled to one oscillator) where the 

effective temperature of this primary oscillator was determined by the measuring technique of 

Sect. 5. The temperature is displayed against the molecule-leads electronic coupling Γ and 

primary-to-secondary phonon coupling Ω. As in Fig. 5, this calculation was done using the 

SCBA approach to evaluate the electron and phonon GFs and SEs. As expected, stronger 

electronic coupling to the leads results  (in the off-resonance case) in a larger junction 

temperature due to the higher electron flux, while stronger coupling between the bridge 

vibrational mode and the thermal bath of secondary phonons drives the junction towards lower 

temperatures closer to equilibrium with the thermal bath. Also expected is the temperature 

increase with the bias voltage, as seen in Fig. 4 (for slightly different junction parameters) and 

discussed above.  

 

Figure 7.  Contour plot of junction temperature  vs. the strength of the electronic molecule-leads coupling thT

L RΓ = Γ + Γ  and the vibration-thermal bath coupling Ω , in a junction characterized by symmetric 

electronic coupling to leads ( )L RΓ = Γ  and a junction bias 0.1Φ = V. Other junction parameters are 

0 1ε = eV, , 0FE = 0 0.1ω = eV, 0.2M = eV, and T T 300L R= = K. 

 

 20



(b) Thermal transport. Next consider thermal transport through the junction. We use the 

molecular model described above as a bridge between two metal contacts without a potential 

bias, i.e. , but with a temperature bias, 0Φ = L RT T≠ . The ensuing process is heat conduction to 

which both electrons and phonons contribute. To elucidate their respective roles we first consider 

a junction without electron-phonon coupling, 0M = . In this case electron and phonon transport 

take place independently; the electron energy and heat currents are described by Eqs. (13) and 

(15) (note that in unbiased junctions and if all energies are calculated relative to the Fermi 

energy, these equations are identical) and the phonon current – by Eq. (24). Figures 8 show these 

currents, calculated for a 1-state bridge as described above. It is seen that, depending on system 

parameters, either phonon or electron transport can dominate the thermal current.  
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Figure 8. Thermal (energy) currents carried by electrons (solid line, red) and phonons (dashed line, blue) 
through a 1-state junction (see text) connecting metal leads under an imposed temperature difference 
between the two sides. In the calculations shown 300RT = K is kept fixed, while LT  is varied. The 

junction parameters used in this calculation are 0FE = , 0 0.1ω = eV, eV. In (a)-(c) 0 0 0.005L RΩ = Ω =
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0 1ε = eV and the molecule-lead electronic coupling is varied: 0.1L RΓ = Γ = eV (a), eV (b), and 
eV (c). In (d)-(f)  and ε

0.25
0.5 0.1eVL RΓ = Γ = 0 is varied according to 0 1ε = eV  (d);  eV (e) and 

eV (f). 
0.5

0.2
 

(c) Thermoelectric currents. The existence of temperature difference between unbiased metallic 

junctions connected by a bridge gives rise to an electric (or thermoelectric) current as well as 

thermal current. Figure 9 demonstrates an important characteristic of these currents. It shows 

both the thermal and the thermoelectric currents computed for a 1-state junction model and 

plotted against the temperature difference between the left and right leads. While the thermal 

flux is always directed from the hot to the cold contact, the direction of the thermoelectric 

current depends on the carrier type. Indeed, Figure 9 shows that the direction of the latter current 

in the case where 0 0.5FEε − = eV, where the current can be characterized as electron current 

(solid line, red) is opposite to that obtained for 0 0.5FEε − = − eV (dashed line, blue) where the 

dominant mechanism is hole-transport. In contrast, the electronic heat flux is the same (dotted 

line, black) in both cases. The dependence of the thermoelectric current on the carrier type was 

proposed60 as a way to discern between electron and hole dominated transport (determined by 

the positions of the occupied and unoccupied molecular level relative to the leads Fermi energy) 

in molecular junctions. 
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Figure 9. The thermal electron flux, , Eq. el
RQ

el
LQ

el
Q JJJ ,, −== (15), (dotted line, black; right axis) and the 

electric current (left axis) through a 1-level/ 1-vibration junction, plotted for an unbiased junction against 
the left-side temperature where the temperature on the right is kept fixed, K.  The molecular 
energy level is positioned at 

300RT =

0 0.5FEε − = eV (solid line, red) and 0.5− eV (dashed line, blue). 
 and the other junction parameters are those of Fig. 8. In particular, electron-phonon 

interaction is taken zero in this calculation. 
0.1eVL RΓ = Γ =
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(d) Effect of electron-phonon interaction. The results shown in Figures 8 and 9 were obtained in 

the absence of electron-phonon interaction, i.e.  0M =  in the Hamiltonian (3) or (27). The 

significance of this coupling in thermal conduction is examined in Fig. 10. This figure shows, for 

the single state bridge, the total thermal flux (sum of electron and phonon heat fluxes from Eqs. 

(15) and (17)-(20), respectively) at the left molecule-contact interface for  as well as 

the sum of the electron and phonon thermal fluxes, Eqs. 

0.5eVM =

(15) and (24) respectively, obtained for 

the case  The inset shows the difference between these results. The other two lines focus 

on the phonon flux (as defined in Section 3) calculated from Eq. 

0.M =

(24), with (dotted line, green) 

and without (dashed line, blue) including the electron-phonon interaction in calculating the 

phonon Green function. Considering the electron phonon coupling that was used here is rather 

large, we may conclude that the effect of the electron-phonon coupling on the conduction is 

modest, though not negligible. It should be kept in mind however that, as discussed in Sect. 4, 

the definition of phonon heat flux is not unique. 
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Figure 10 Thermal flux through a single-level as a function of the temperature difference between the leads. 
( K is kept fixed while 300RT = LT  is varied). The bridge parameters are 0 1ε = eV, 0FE = , 

eV, eV, 0.05LΓ = 0.5RΓ = 0 0.1ω = eV and eV.  The electron-phonon coupling is 

taken eV when present.  The total flux in the presence of electron-phonon coupling is represented 
by the solid line (red). The sum of electron and phonon contributions to the thermal flux in the 

0.001L RΩ = Ω =
0.5M =

0M = , case 
is given bt the dash-dotted (black) line. The inset shows the difference between these results. The other two 
lines focus on the phonon flux (as defined in Section 3) calculated from Eq. (24), with (dotted line, green) and 
without (dashed line, blue) including the electron-phonon interaction (M=0.5eV) in calculating the phonon 
Green function. 
 

(e) Conduction by molecular chains. Figure 11 shows the bridge length dependence of thermal 

flux using the molecular model of Eq. (27) and the SCBA approach. The parameters used in this 
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calculation are 0 1ε = eV, eV, 0.25L RΓ = Γ = 0FE = , 0 0.1ω = eV, eV and 

K, K. The electronic coupling between bridge sites is taken, for all i, to be 

eV (dashed line, triangles, blue) and 

0 0 0.005L RΩ = Ω =

400=LT 300RT =

, 1 0.1i it + = , 1 0.5i it + = eV (solid line, circles, red), and the 

coupling between nearest-neighbor phonons is set to , 1 0.01i iU + = eV. The bottom panel depicts 

the total thermal flux (electronic and phononic) for electron-phonon coupling strength of 

eV. The top panel shows the separate heat fluxes, electronic (in the main panel) and 

phononic (in the inset), for 

0.5M =

0M = eV. For weak intersite coupling, eV, we see a 

characteristic crossover from tunneling to hopping transport when the bridge length increases. In 

the strong intersite coupling case, 

1.0=t

0.5t = eV, we see a more complex behavior that is caused by 

the onset of resonant electron tunneling as the bridge length increases.  
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Figure 11 Thermal flux through a junction as a function of bridge length under a given temperature 
difference between leads. (see text for parameters). Shown are results for weak and strong intersite 
electronic interactions, eV (dashed line, triangles, blue) and 1.0=t 5.0=t eV (solid line, circles, red) 
(see Eq. (27)). The top panel shows the electron and phonon thermal fluxes in the absence of electron-
phonon coupling, . The bottom panel gives the total thermal flux in the presence of strong 
electron-phonon coupling, eV.  

0M =
0.5M =
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The local temperature along the molecular chain can be examined using the measuring 

technique of Section 5. The result of this calculation is shown in Figure 12 for a bridge of five 

sites operating under potential bias of 0.5Φ = V (with positive right electrode; L Rμ μ> ) . The 

parameters of this calculation are 0 1ε = eV, 0.1L RΓ = Γ = eV, , 0FE = 0 0.1ω = eV, 

eV and M=0.2eV, with the inter-site electronic coupling set to 0 0 0.025L RΩ = Ω = 5.0=t eV and 

the temperatures in the two leads are taken 300L RT T= = K. The bias potential was assumed to 

fall symmetrically at the two bridge-contact interfaces and stay flat along the molecular chain. 

With these parameters the junction temperature can become quite high. For comparison, the 

result obtained using the same parameters for a one-site bridge is K. As expected, the 

steady-state local temperature peaks in the interior of the bridge; sites close to contacts lose 

energy to the colder contacts more effectively. Interestingly, when the net electrical current goes 

from left to right, the steady state temperature of rightmost site is higher than that of the leftmost 

one. This can be rationalized using a classical picture of particles going down a slope with their 

kinetic energy increasing down the line. The quantum analog of this argument is that tunneling 

electrons that lose energy to phonons at the end of their trip through the barrier weight more in 

the total current because their quantum transition probability is higher than that of particles 

which lose energy earlier during their barrier traversal.  

319T ≈

1 2 3 4 5
site number

1000

1200

1400

T
(K

)

 
Figure 12 The local temperature along a biased 5-sites bridge, displayed as function of the site number. See 
text for parameters. 
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6. Conclusion 

In this paper we have presented a general self consistent approach to thermal transport through, 

and heating of, a junction comprising metal electrodes connected by a molecular bridge. We 

employ a general non equilibrium Green function approach that makes it possible to calculate 

electrical and heat transport as well as heating within a unified framework that accounts self 

consistently for the electronic and vibrational contributions. Furthermore within the same 

framework we have introduced a practical definition of, and a calculation procedure for, the 

effective local junction temperature under non-equilibrium steady state operation. Finally, model 

calculations with reasonable junction parameters were used to assess the significance of junction 

heating, the relative contribution of electronic and vibrational degrees of freedom to the junction 

heat transport and the importance of accounting self consistently for the electron-phonon 

interaction in evaluating these thermal properties of molecular transport junctions. 
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Appendix A: Derivation of the phonon thermal flux expression 
Here we derive a general NEGF expression for the phonon thermal flux through a 

molecule represented as system of coupled oscillators connecting two thermal phonon baths 

( ) characterized by different temperatures. This derivation essentially reproduces the 

derivation of Ref. 

,K L R=
49 of the general NEGF expression for the electron flux through an electronic 

system connecting two thermal electron reservoirs characterized by different electrochemical 

potentials. It is based on the same basic assumptions: bilinear molecule-bath coupling, free 

carriers in the bath, and non-crossing approximation (NCA) for the molecule-bath transfer in the 

molecular subspace of the problem.  

 Consider first two bilinearly coupled classical oscillators 

  
2 2 2

12 1 2
1,2 2 2

i i i i

ii

p m xH
m

ω

=

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ g x x      (43) 

The force exerted by oscillator  on oscillator i j  is 12i j iF g→ x= − , thus the work done by  on i

j  per unit time, i.e. the energy flow from i to j  is given by 
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  12
jph

i j j ii j
j

p
J F x g x

m→→ = = −       (44) 

The corresponding quantum energy flux (or thermal flux) operator is obtained from the 

symmetrized product. In second quantization it reads 

  12 ˆˆ ˆ
2

jph
i j j ii j

U
J Q P ˆP̂ Q

ω
→ ⎡= − +⎣

⎤
⎦      (45) 

where 12
12

1 1 2 22
gU

m mω ω
=

⋅
 and and  are defined in Eqs. Q̂ P̂ (4) and (5) respectively. 

 Now consider a molecular system M represented by the Hamiltonian ˆ
MH and bilinearly 

coupled to thermal bath . The corresponding Hamiltonian is K

  †

,

ˆ ˆˆ ˆ ˆ ˆM k k km k mk
k K k K m M

H H a a U Q Qω
∈ ∈ ∈

= + +∑ ∑     (46) 

The second term on the right hand side represents phonons in the bath and the third is the 

bilinear molecule-bath coupling. The thermal flux between these two subsystems is obtained 

from (45) by summing over the vibrational degrees of freedom in each subsystem and averaging 

over the corresponding distributions 

 

( ) ( )

( )

,

',

',

ˆ

( , ') ( ', )
2

Re , '

m k k m

m k

ph ph
M K m k

m k

k
km Q P mk P Q t tm k

k km Q P t tm k

J t J t

i U D t t U D t t

iU D t t

ω

ω

→ →

< <
=

<
=

=

⎡ ⎤= − +⎣ ⎦

⎡ ⎤= − ⎣ ⎦

∑

∑

∑

   (47) 

Here and below  and  indicate vibrational degrees of freedom in the subspaces m k M  and  

respectively, and same time correlations were expressed in terms of lesser projections of (Bose 

operators) Green functions, 

K

( ) ( ) ( )†ˆ ˆ, ' 'AB cD i T A Bτ τ τ= − τ , for example 

( )
'

ˆ ˆ , '
i ji j Q P

t t
Q P D t t<

=
⎡= ⎣

⎤
⎦

)

. The goal is now to express the mixed molecule-bath GFs 

 in terms of pure system GFs. This is achieved by using the identity ( , '
m kQ PD t t<

  ( ) ('
1 '

'

ˆ, ' , '
'm k m m

m k
Q P k Q Q

km

U
D D D )τ τ

ω τ
− τ τ∂

⋅ =
∂∑    (48) 

 where  is the operator (in 1ˆ
kD− (48) operating from the right) 

  
2

1
2

1ˆ
2kD 2

kω
τ

− ⎡ ⎤∂
≡ − +⎢

∂⎢ ⎥⎣ ⎦
⎥       (49) 

In integral form, and after integration by parts, Eq. (48) yields 
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  ( ) ( ) (
'

(0)'
1 1

1'
, ' , , '

m k m m k k
m k

Q P Q Q Q Q
km c

UD d D D )1τ τ τ τ τ τ
ω τ

τ∂
= − ⋅

∂∑∫  (50) 

The superscript 0 in the contact GF  indicates that phonons in the contacts are free.  These 

free phonon GFs can be written explicitly. The retarded, lesser and greater projections take the 

forms 

(0)
k kQ QD

  

( ) ( )

( ) ( )

( ) ( )

(0),

(0),

(0),

2 1

2 1

k k
k k

k
k k

k k
k k

i t i tr
Q Q

i t i t
k kQ Q

i t i t
k kQ Q

D t i t e e

D t i N e N e

D t i N e N e

ω ω

ω

ω ω

θ

π

π

−

−<

−>

⎡ ⎤= − −⎣ ⎦
kω⎡ ⎤= − + +⎣ ⎦

⎡ ⎤= − + +⎣ ⎦

   (51) 

where ( )
1/ 1k KT

k K kN N eωω
−

⎡= = −⎣
⎤
⎦  is the the thermal phonon population in the bath K. The 

lesser projection of Eq. (50) onto the real time axis is 

 
( )

( ) ( ) ( ) ( )' '

'
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'

(0), (0),
1 1 1 1

1 1

, '
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m k
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, '

)

  (52) 

using this in (47), and transforming to energy domain in the steady-state situation (where the 

 leads to (( ), ') ')D t t D t t= −

  
( ) ( ) ( ){

( )( ) ( ) ( )( ) }
02 2

2 1

ph K
M K

r a
K

i dJ Tr D

N D D

ω Dω ω ω
π

ω ω ω

∞
< >

→
⎡= Ω +⎣

⎤− + − ⎦

∫ ω
  (53) 

where KΩ  is defined in Eq. (19) and  are matrices in the molecular subspace with 

elements ). In the derivation of 

, ,rD > <

'

, , , ,
' m m

r r
mm Q QD D> < > <≡ (53) we have used , 

, 

( ) ( )
*

12 1 2 21 2 1, ,r aD t t D t t⎡ ⎤ =⎣ ⎦

( ) ( )
*, ,

12 1 2 21 2 1, ,D t t D t t> < > <⎡ ⎤ = −⎣ ⎦ km mkU U= , and ( ) (12 21D D )ω ω< >− = . Eq.(17) can now be 

obtained from Eq.(53) using expressions (18) and defining ph ph
K M KJ J →≡ − . 

 

Appendix B: Another phonon bath model 
In order to get a thermal flux expression analogous to (17) one has to assume that vibrational 

modes of the bridge are independent from each other and free (e.g. do not interact with tunneling 

electrons or with each other). Under this strong assumption the derivation of the phonon thermal 

flux expression is straightforward and goes along the same lines presented in Appendix A. The 
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only difference is that now free phonons are those on the bridge rather than in the contacts. As a 

result one arrives at  

 ( ) ( ) ( ) ( ), ,
, ,

0 2
ph ph ph
K K K

dJ Dαα α
α

ω Dαω π ω ω π ω ω
π

∞
< >>⎡ ⎤= − −⎣ ⎦∑ ∫ <    (54)  

where ,Dα
> <  are diagonal elements of the greater and lesser phonon GFs (generally D is non 

diagonal and disregarding non-diagonal terms corresponds to a quasi-rate-equation assumption) 

on the bridge and where ( ) ( ), 2 ,
,K KU Sααπ ω ω> < > <=  with ,

KS> <   being the greater and lesser 

projections of the GF 

 ( ) ( ){ }( ) ( ){ }( )†ˆ ˆ, ' ' ;b b
K cS i T F Q F Qβ βτ τ τ τ β= − ∈K    (55)  

One can use (54) under the quasi-rate-equation assumption, to evaluate the primary phonon GF 

in the presence of all bridge interactions, then use its diagonal part in the expression for thermal 

transport in place of the free phonon GF. 

 

Appendix C. Derivation of Eq. (25) 

Under the assumption that no energy exchange between electron and phonon degrees of freedom 

on the bridge takes place, phonon current conservation implies , where each of these 

fluxes can be expressed by Eq. 

ph
R

ph
L JJ −=

(17). This makes it possible to follow the steps of Ref. 49. The 

phonon thermal flux is first written in the form 

 ( )1ph phph
L RJ x J x J= − −        (56) 

where  is an arbitrary constant. Following Ref 0 x< < 1 49 we consider the case where the 

functions ( )L ωΩ  and ( )R ωΩ  are proportional to each other (which always holds in the 

common case where their frequency dependence is disregarded). We can then choose 

 (/Rx = Ω Ω L RΩ = Ω + Ω ) and use Eq. (17) in (56) to get 

 ( ) ( )
( ) ( ) ( ) ( )(

0 2

L R
ph

ph L R
dJ Tr A N N

ω ωω )ω ω ω
π ω

∞ ⎡ ⎤Ω Ω
= −⎢ ⎥

Ω⎢ ⎥⎣ ⎦
∫ ω   (57) 

where ( ) ( ) ( )[ ]ωωω <> −= DDiAph . Next, utilizing the non-crossing approximation, i.e. 

 ( ) ( ) ( ) ( ) ( )[ ] ( )ωωωωωω a
RL

r DDD <><><><> Π+Π+Π= ,
int

,,,    (58) 

in Eqs. (57), and using  

 ( ) ( ) ( )[ ]ωωω <> Π−Π=Ω intintint i  

leads to Eq. (25). 
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