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We show that the electron-phonon coupling in graphene, in contrast with the non-relativistic two-
dimensional electron gas, leads to shifts in the phonon frequencies that are non-trivial functions of
the electronic density. These shifts can be measured directly in Raman spectroscopy. We show that
depending whether the chemical potential is smaller (larger) than half of the phonon frequency, the
frequency shift can negative (positive) relative to the neutral case (when the chemical potential is
at the Dirac point), respectively. We show that the use of the static response function to calculate
these shifts is incorrect and leads always to phonon softening. In samples with many layers, we find
a shift proportional to the carrier concentration, and a splitting of the phonon frequencies if the
charge is not homogeneously distributed. We also discuss the effects of edges in the problem.
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I. INTRODUCTION

The discovery of graphene, a thermodynamically stable
two-dimensional (2D) crystall, whose electronic proper-
ties, described in terms of a half-filled m-electronic band
with Dirac electrons, can be controlled externally, has
stirred great interest in the scientific community since
the demonstration of a theoretically predicted?? anoma-
lous integer quantum Hall effect®2. Unlike other 2D
electronic systems, such as MOSFET heterostructures,
graphene is easily accessible to optical probes. Further-
more, in contrast to ordinary semiconductors where the
different types of disorder can be distinguished through
the temperature dependence of the transport properties®,
graphene does not show any strong temperature or mag-
netic field dependence in its electronic transport? that
allows an easy discrimination between different types of
impurities. Hence, local probes such as scanning tun-
neling microscopy (STM) and single electron transistor
probes, will play a fundamental role in the understand-
ing of nature the effects of disorder in graphene-based
systems.

Raman spectroscopy has been one of the most
successful experimental methods used to study these
systems®21%:11 - Tn particular, it has been shown that it
is possible to measure the number of graphene layers on a
SiO4 substrate with great accuracy, leading to an efficient
and fast method to characterize graphene in situ. An-
other interesting feature of these measurements is that,
even for a single graphene layer, the phonon frequency
measured in Raman shifts by a few wavenumbers, from
point to point in space®21%. Moreover, the observation
of a D-line, which is Raman forbidden in translational
invariant graphene, indicates the presence of disorder in
the samples at electronic scale.

We show that this Raman shift can be associated
with the earlier experimental evidence for charge inho-
mogeneity in undoped, unbiased, graphene®!2. There-

fore, Raman spectroscopy can be used to map the dis-
order in graphene layers, and hence, help to shed light
on the nature of the disorder scattering in these materi-
als. The understanding of the nature of impurity scat-
tering in graphene is fundamental not only for the devel-
opment of electronic devices based on carbon, but also
may help to solve theoretical puzzles such as the discrep-
ancy found between the theoretically predicted universal
value of the conductivityl3, 4e2/(rh), and its experimen-
tally observed? value of 4e?/h (the so-called “mystery
of the missing 7”), and the absence of weak-localization
effects” (a topic that has generated intense theoretical
debateld:15:16,17,18,19.20)

In this paper we show that the shift in the phonon
frequency in graphene has its origin on the polarization
of the electrons due to the ion motion. Since graphene
is a perfect hybrid between a metal and a semiconduc-
tor there are two contributions to the polarization func-
tion: one comes from intra-band transitions and another
that originates on inter-band transitions. We show that
the simplest approximation based on the static response
is incorrect and predicts a reduction of the phonon fre-
quency (softening of the lattice). The correct dynamic
response is used to calculate the phonon frequency shift
and it is shown that the phonon frequency can either de-
crease (softening) or increase (hardening) depending on
whether the phonon frequency is either larger or smaller
than twice the chemical potential, respectively. We also
show that the intra-band dynamic response vanishes at
long wavelengths in a translationally invariant graphene
sheet, while the inter-band contribution is finite. Never-
theless, in disordered graphene we expect the intra-band
contribution to be of the order of the inter-band one, in-
dicating that disorder is important for the measurement
of the Raman shift in graphene.

The paper is organized as follows: in section [I] we
present the model for the electrons, phonons, and their
coupling in graphene; section [II] discusses the problem
of the shift of the phonon frequency due to the electronic
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polarization in graphene and we consider both the static
and the dynamic response; in section [[V] we examine the
problem of phonon frequency shifts in bilayers and mul-
tilayers within the same framework; section [V] contains a
discussion of the problem of edges in finite samples and
also the main conclusions of our work. We have also
included one appendix with the details of an analytical
model for the in-plane phonon modes in graphene, and
also discuss the effect of defects and edges in the phonon
spectra.

II. THE MODEL.

In the absence of disorder the Hamiltonian for electrons
and phonons in graphene can be written as H = Hg +
Hp+Hp—_p, where (we use units such that h =1 = kg),

He = —to Z (CL,ichj + hC) - Z Clﬁica,iv (1)

(i,5) i,a=A,B

is the free electron Hamiltonian, where p is the chemical
potential, ¢, ; (CI“) annihilates (creates) and electron on

sublattice a = A, B on site R; in the honeycomb lattice
(spin indices are omitted throughout the paper), and ¢y &
2.7 eV, is the nearest neighbor hopping energy. Hp is the
phonon Hamiltonian:

Hp = Z Wqi bleqz ) (2)
q,t

where bq,q (b], ,) annihilates (creates) a phonon with mo-
mentum q, and ¢ = TA , LA , TO , LO, are the four
phonon modes?!. In the following, we focus on the trans-
verse optical (TO) modes near the I" and K and K’ points
of the Brillouin zone. The TO band shows little disper-
sion with a frequency wg ~ 0.19 eV.

We assume that the electron-phonon coupling arises
from the modulation by the phonons of the Carbon-
Carbon distance, a = 1.42 A, which leads to a change
in the nearest neighbor hopping tg. The dependence of
to on distance [ has been extensively studied22-223:

Oto/0l = a ~ 6.4eVA " . (3)

The resulting electron-phonon interaction is:

He_p = (0ty/0l) Z C;kCBk+q {qu [1 _ ei(k+q)a/2 -~ ei(k+q)~b/2} — ZBq [1 _ eik~a/2 _ eik-b/ﬂ 4

k,q

4 (V3/2)yaq [ei(kJrq)'a _ ei(kJrq)'b} — (V3/2)ypq [e*® — €] } T he. (4)

where a and b are the unit vectors of the honeycomb lat-
tice, and Zaq, Yaq (@ = A, B) are given by the polarization
of the phonon of wavevector q. They can be written as:

T Aq aq
vaa | =L 14y a2 5
TBq V2Mcwq (bq +b-a) as |’ 5)
YBq Oy

where M = 1.2 x 10%m, is the carbon mass (me is the
electron mass), and the vector (aq, aa, a3, ) is normal-
ized to one.

In order to obtain the polarizability of the TO mode,
we use a central force model (see appendix [A]) which
leads to a phonon dispersion which can be calculated
analytically2?. This model is adapted from similar mod-
els for tetrahedrally bonded lattices?®. The details of the
model are described in the appendix [Al where it is il-
lustrated by some applications. The honeycomb lattice,
even in the limit when the bonds are incompressible, can
have shear deformations, leading to a vanishing shear
modulus. Because of it, the model shows a flat transverse
acoustical branch at zero energy. The optical modes, on
the other hand, induce significant changes in the bond
lengths. We focus here on a single optical mode, whose

energy we take from experiments. The polarization is
fixed by symmetry considerations. Hence, the model is
needed only to describe the coupling to the electrons.
The only coupling consistent with nearest neighbor tight
binding model used to describe the 7w bands is the one
that we are using.

The polarization of the non-degenerate mode at the K
point in the Brillouin zone is:

(al,ozg,ozg,ou;):(1/2,i/2,—1/2,i/2), (6)

and we have a doubly degenerate mode (a Dirac phonon)
with polarizations:

(a1, a2, a3, ) (1/\/5, —i/\/ﬁ,0,0) ,
(a1, 9,a3,04) = (0,0,1/\/5,1'/\/5). (7)

For comparison, the polarization of the two optical modes
at the I' point can be written as:

(a1,a9,a3,04) = (1/\/5,0,—1/\/5,0),
(0,1/\/5,0,—1/\/5) C®)

(CY1, g, a3, a4)



K+k+q

Q+q_A A QHq

K’ +k

FIG. 1: Diagram which describes the modification of the
phonon propagator due to electron-hole transitions. See text
for details.

III. SINGLE LAYER GRAPHENE

We are interested in the modification induced by elec-
tronic transitions of the frequency of a phonon with
wavevector Q. The electronic transitions which describe
these processes are given, approximately, by:

HQ = 30[/2 Z CAKkCBK'+k (:Z?AQ — xBQ—F
Kk

+ iyaq +1iyBq) + h.c.,

9)

where we assume that the main contribution arises from
transitions close to the Fermi level. In this limit, we can
use the continuum limit and expand the energy of the
electrons around the K and K’ points, leading to the
Hamiltonian:

—p vp |k|eix 0 0
| vrlk|eix — i 0 0
Ho = 0 0 —p vp|k|e Pk (10)
0 0 vp|k|eix —u

where vp = 3tpa/2 = 6 eV A is the Fermi-Dirac velocity,
and ¢ = arctan(k, /k,) is the angle in momentum space.

A typical diagram which describes the renormalization
of the phonon propagator in second order perturbation
theory is given in Fig. [I]. The convolution of electronic
Green’s functions shown in the diagram is formally iden-
tical to the charge susceptibility of graphene:

/ dkdu |

+ G5k W)GEPY (k+qw+w)] |

0k, )GERY (k + q,w +w')+

(11)

where Go%°(k,w) (G (k,w)) with a,b = A, B is
the electronic Green’s function for the occupied (empty)
states. The main difference between (II]) and the charge
susceptibility of graphene is that the charge susceptibility
includes an overlap factor which suppresses completely
transitions between the valence and conduction band at
q=0.

From Fig. [I] we can immediately obtain the shift in the
phonon frequency due to the polarization of the graphene
layer due to particle-hole excitations:

x(q,w) =

27\/§a2|041 — Q2 + iag + ia4|2< 8t0
5WQ =

2
16Mowg W) X(vaq—(>0))7
12

3

where we have used that Q2 = 3\/3(12/2 is the area of the
unit cell.

Graphene, from the electronic point of view, is a hybrid
between a metal and a semiconductor: the polarization
involves not only inter-band excitations (as in the case of
the ordinary electron gas) but also intra-band excitations
(as in the case of a semiconductor). The full susceptibil-
ity x can be separated into an intra- and an inter-band
contributions:

inter( w) + Xintra(q, w) .
The intra-band contribution to the susceptibility was
originally calculated by K.W.-K. Shung for graphene in
ref. [26] and more recently it has appeared on refs. |27,
2R129/30)].

x(q,w) = x (13)

A. Static approximation

A commonly used approximation on the electron gas
problem is to replace the dynamical response x(w =
wq,q = 0) by the static one: x(w = 0,¢ = 0). This
approximation is usually justified in ordinary metals be-
cause the Fermi energy p is much larger than the phonon
frequency so that the phonons respond to a time averaged
electron distribution. In graphene, however, this is not
necessarily so. In what follows we will study the effect
of an static response and compare it with what happens
when a dynamic response is calculated instead. We will
show that these two approximations give very different
results.

At finite doping, the compressibility sum rule for the
charge susceptibility leads to the equation:

2

2 ?

lim ™" (q,w = 0) = =D(p) =
7T’UF

14
q—0 ( )
where D(u) is the density of states at the Fermi level.
The number of carriers per unit cell, ng, is given by,

(15)

The coupling to optical phonons involves terms which
couple the two sublattices A and B, eq.(@), while
the charge susceptibility leading to eq.([d) is the re-
sponse to the total charge density operator: p(q) =
Zk(cTAkJrchk + CJJkaJquBk)' This change modifies the
overlap factors, leading to an angular factor, when q — 0,
equal to sin?(#) or cos?(#), depending on the polarization
of the phonon. The average of this term gives rise to a
factor 1/2 with respect to the (diagonal) charge suscep-
tibility calculated in refs. [26/27)28)29/30].

In addition, we have:
: o cos?
X" (g — 0,w = 0) / kdk/ df———=

kp

(16)



where the angular factor, as for the intraband suscep-
tibility, depends on the polarization of the phonon and
whose average is always 1/2.

The main contribution to the integral in eq.([I6) comes
from k ~ A, where A is the high energy cut-off, so that
this expression depends on details of the bands at high
energies away from the Dirac point. Nevertheless, the
change of the susceptibility with electronic density is in-
dependent of the cut-off and can be readily calculated:

: inter _ .inter _
Lim (™ () =X (0))
, p
XM (g = 0w =0) ~ ——— . 17
X (q W ) Wv% ( )

which is of the same magnitude as the intra-band shift,
eq. ().
Inserting ([4), (I7) and (&) into (I2), we find, in ad-

dition to a density independent shift:

9 <5to>2 ng? (18)
Vo ol MchtO '
Expressing dwq (in eV), and replacing ng by the density
per unit area, n (expressed in cm~2), we find:

6OJQ =

dwq(eV) ~ =3 x 107902 (cm™2), (19)

is the expression for the shift of the phonon frequency in
the static approximation. For typical electron (or hole)
densities, n ~ 10! — 10'2cm~2, the shifts are of the
order of a few wavelengths (or degrees Kelvin), within
experimental accuracy.

Let us first notice that this result indicates that there is
a decrease of the phonon frequency, that is, a softening of
the lattice. This result is generically expected on physical
grounds since a high density of electrons leads to the
screening of the ion-ion interactions, reducing the elastic
coupling in the lattice, and hence leading to a softening
of the phonons.

B. Dynamic approximation

The real part of the intra-band susceptibility is given

by20;
b o)

This expression is rather different from the static result
([@I4). We note that the limits of w = 0 and ¢ — 0 with
w — 0 and ¢ = 0 do not commute. Moreover, we clearly
see that ([20) changes behavior whether w/(2u) is smaller
or larger than one, and the susceptibility has a logarith-
mic singularity in w = 2pu.

For 2 > w a self consistent calculation of the po-
larizability shows the existence of the two dimensional
plasmon, which needs to be taken into account. We find:

R (w, g = 0)] ~ —

@ (2u 1 2u—w
— < —+=1In
27w | w 2 21+ w

—q°p

mlw? —w (9]

R (w < 2,9 = 0)] & (21)
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where wp(q) = v/(2€2uq)/eo is the plasmon frequency

(e is the electric charge and €g the dielectric constant of
graphene). For 2 < w we find:

4 ¢

RO (w > 20,9 = 0)] ~ o=

(22)
Observe the change of sign in the expression of the sus-
ceptibility in the two limits. More importantly, one can
clearly see that these expressions vanish when ¢ — 0.
This effect occurs because at ¢ = 0 the states associated
with these transitions are orthogonal. Hence, in a system
with translational invariance the intra-band transitions
give no contribution. Nevertheless, in the presence of dis-
order (or a finite sample), the electron mean free path, ¢,
(or the system size, L) acts naively as a infrared cut-off
and one would expect to see a non-zero effect. Replacing
(1) and ([22)) into (IZ), and assuming that wq > wy, we

find:
-9 <%)2 ng* <UFQ> (23)
2\/671' ol MCWQtO wqQ
9V (Oto * ng® (toveg (24)
\/5 ol ] Mcwqto WQ

Expressing dwq in eV, and replacing ng by the density
per unit area, n, expressed in cm ™2, we find:

5 1ntra(2‘u > WQ)

5 1ntra(2‘u<wQ)

6w1ntra(2M > WQ) ~ +1.4x 1076711/2 (qa)Q ; (25)
6&}1““6‘(2# < WQ) ~ —1.0x 10_18n3/2 (qa)2 . (26)

We stress, once again, that this shift vanishes as ¢ — 0
and hence there should be no shift in the phonon fre-
quency in a translationally invariant graphene sheet.
Nevertheless, in the presence of disorder this is not nec-
essarily the case.

In order to include disorder in the calculation one
would have to dress the fermion propagators in Fig. [I]
by disorder and include vertex corrections to that dia-
gram. These calculations are beyond the scope of this
paper. Instead, we will follow a naive approach and sim-
ply introduce a cut-off in ¢ of the order of the inverse of
the electron mean free path, ¢, which is known to be of
order of 0.1um in these systems’. For typical electron
(or hole) densities, n ~ 10*2 — 103 ¢cm~2, and ¢ ~ 10%a
(¢ ~ 0.1pm) the shifts are of the order of 1076 —1075 eV.
For these concentrations and wavelengths, the plasmon
frequency is wy; ~ 0.01 —0.04eV, so that the assumptions
leading to eq.(24)) are justified. Notice that while for large
doping, 4 > wg/2, the intra-band contribution leads to a
hardening of the phonon, for low doping, 1 < wg/2 there
is softening of the phonon mode which depends directly
on the amount of disorder in the system.

The inter-band susceptibility is:

RO (g = 0,w)] ~ ——7> / kk— (27)

42'

As in the static case, we find a large contribution which
is independent of the carrier concentration and depend



on the high-energy cut-off. As before, we consider only
the density dependent contribution:

inter H w w_2u
ROX™ g =2 0w~ =5 = s log}w+2u’ 28)
F F

The first term in this expression reproduces the static
limit of x'™*°*. The second term gives a correction which
is more important for w ~ 2u, and cancels the static
contribution as wq/u — oo. Comparing (20) with (28]
we find that:

RO (w, ¢ = w/vp)] = ROX™ (w, ¢ =0)],  (29)
implying, from (26]), that:

Swd™ (21 > wg) ~ +3 x 107 n!/?, (30)
—2x 10702 (31)

%

5w8mr(2u < wq)

Once again, for g > wg/2, the inter-band contribution
leads to a hardening of the phonon, while for p < wg/2
there is softening of the phonon mode. Notice, that the
numerical value of the inter-band contribution is small
for densities of order 10'? ¢cm~2 when compared with
the intra-band contribution estimated in the presence of
disorder. It may well be that in disordered graphene
the intra-band transitions dominate over the inter-band
transitions. Hence, the final result may vary with the
amount of disorder in the samples.

IV. BILAYERS

The previous analysis can be extended to a bilayer sys-
tem. For simplicity, we consider here the static limit
only. The model for the in-plane phonons considered
before needs no changes. The shift in the phonon fre-
quency is also given by the electronic susceptibility shown
in Fig. [, and given in eq. ().

In a bilayer, however, the wavefunctions corresponding
to the low energy electronic states have a small ampli-
tude, aax ~ k|k|/tL in the orbitals hybridized through
the hopping ¢ with an orbital in the next layer (¢, ~ 0.3
eV is the inter-layer hopping energy). The relevant sus-
ceptibility involves a convolution of the Green’s function
of sites in both sublattices, so that the reduction in low
energy spectral weight at the sites with a neighbor in the
next layer will reduce the susceptibility.

The amplitude of an electronic wavefunction at energy
e'x ~ v3|k|?/t2 < 1is of order ap ~ V~1/2 where V
is the volume of the system, on sites of the sublattice not
connected to the second layer, defined as sublattice B.
The amplitude on sites in sublattice A, where the sites are
connected to the second layer is of order ay ~ vr|k|/t) X
ap. Then, the contribution to the susceptibility from the
low energy electron-hole pairs is of the form:

Fk(k + ) nicrq — M
ti €ktq — €k

intra v
Xbifayer(q’w = O) ~ /dk ) (32)

The same suppression applies to inter-band transitions,
as, in any case, the modulation of the hopping involves
transitions from the A sublattice to the B sublattice.
Using dimensional arguments, which are also valid for
single layer graphene, at the neutrality point we find,

intra

Xiilager (@ w = 0) o |a|?/t. , and, at finite fillings,

lim e, (q,w = 0) oc kg [t . (33)
la|—0

As in the single layer case, the inter-band susceptibility
includes a contribution determined by the high energy
cut-off, and density dependent term, which, also on di-
mensional grounds, depends on density as the intra-band
susceptibility, (B3).

For the inter-band contribution, using the reduction in
the amplitude at the A sublattice mentioned earlier, we
find:

inter v2 k2 Abil k
Xbifaycr (q7w = 0) X 122 = / dku ’ (34)
1 kg 93

where Apy = ¢, /up is a high momentum cut-off above
which the assumption that vpk < t| ceases to be valid.
The integral in this expression has a logarithmic de-
pendence on Ay, similar to the logarithmic divergences
which characterize the charge susceptibility of a bilayer3?!.

As in the case of the single layer, when we insert eq. ([34)
into the expression for the shift in the phonon frequency,
we find an term which is independent of the number of
carriers, given by kr. Taking it out, and neglecting log-
arithmic corrections, we find:

St e o — Ot 2 . (35)
Q ol Mcowqt 1

We expect a similar dependence for other multilayer sys-
tems, as the main ingredient in this estimate, the changes
in the low energy density of states in the two sublattices
in each graphene layer, is independent of the number of
layers in the stack. If the carrier density differs signif-
icantly among the layers32, we expect that phonons at
each layer will be shifted by a quantity which depends
on the local charge. Note that a crossover to a shift typ-
ical of single layer graphene will take place at wq ~ ¢,
A similar crossover will occur if y ~ ¢ .

A bilayer system can show a gap in the electronic spec-
trum, when an applied field or chemical doping breaks the
symmetry between the two layers. In this case, the elec-
tronic states close to the gap are mainly localized in one
of the layers. The polarizability shown in the diagram
in Fig. [I] acquires a layer index, and is different in the
two layers. Hence, we expect that the in-plane phonons
in each layer experience a different frequency shift. In
a first approximation, the phonons in the layer where
the states at the Fermi energy have highest weight show
the largest shift. Using dimensional arguments similar to
those leading to eq. ([B2), we expect that, when the Fermi
wavevector is much smaller than the wavevector at the



center of the band of the biased bilayer, kr < ko = A/vp,
the factor n ~ k2 in eq.(35) is replaced by kZ oc AZ.

The full dynamical response of a bilayer under a per-
pendicular applied field is quite complex when the chem-
ical potential is close to the gap edges33, with an anoma-
lously large imaginary part. Hence, low energy phonons
in a biased bilayer should be significantly damped.

V. CONCLUSIONS

We have analyzed the effect of a finite concentration
of carriers on the frequency shift of phonons in electri-
cally doped graphene samples. We have not considered
changes due to modifications of the force constants, as-
sociated to distortions of the ¢ bonds. The analysis pre-
sented here shows that the shift in the optical phonon
frequencies in electrically doped graphene samples can
be observed in Raman experiments®21911 and it can be
used to estimate the carrier density, or alternatively, the
strength of the electron-phonon coupling. Notice that in
an ordinary 2D electron gas the density of states (and
charge susceptibility) depends only on the electronic ef-
fective mass m* and is independent of the electronic den-
sity. Therefore, for an ordinary 2D electron gas the fre-
quency shift is essentially uniform and independent of
disorder. For Dirac fermions, however, because of the ef-
fective Lorentz invariance in the continuum limit, we can
write an equivalent of Einstein’s relation between energy
and mass: u = m*vi (where the Fermi-Dirac velocity
now plays the role of speed of light), indicating that the
effective mass is energy dependent and vanishes at the
Dirac point (= 0). Therefore, the effect described here
does not work in an ordinary 2D electron gas.

Another interesting consequence of equation (24 is
that the Raman shift should be larger close to extended
effects such as edges, dislocations and cracks®2:10, The
reason for that is the so-called self-doping effect discussed
in great detail in ref. [2]: because of the poor screening
properties of Dirac fermions, the Coulomb interactions
remain long-ranged and an electrostatic potential builds
up at the edges of the system, shifting the position of
the surface states, and reducing the charge transfer to or
from them. In this case the system, in order to maintain
charge neutrality, can transfer charge to/from extended
defects. This charging transfer is only halted when the
charging energy of the edges is compensated by the ki-
netic energy of the electrons. Thus, extra charge and a
large density of states can be found at the edges of sam-
ples. In this case, according to eq. ([24)), the Raman shift
should change as a function of the distance from the sam-
ple edges (being larger at the edge). We have estimated
that for edges of size 0.1-1 p m the charge transfer is or-
der of 1074-107° electrons per carbon (6n =~ 10! — 1012
electrons per cm™?2) and hence the Raman shift is also of
the order of a few wavenumbers but slightly larger than
the effect produced by bulk disorder. We also notice that
this effect is not possible in the ordinary 2D electron gas

because screening leads to a uniform charge distribution.

The shift of phonons with energies comparable or
larger than the Fermi energy is determined by the dy-
namic electronic response function, which is significantly
different from the static one. In this regime, the shift
changes when p =~ wq/2, and vanishes at wg > p.

Our results also suggest that the shift in phonon fre-
quencies has a different dependence on carrier density
in single layer and many layer systems, egs. (24) and
@BH). For a given carrier density, the shifts in phonon
frequencies should scale as &u(lQL ~ 6o.%‘Lto\/% Jti. As-
suming that ¢, /to ~ 0.1, the shift in a bilayer should be
smaller than in a single layer sample with the same car-
rier concentration. This is consistent with experimental
results which show that the phonon frequencies in single
layer systems are consistently lower than in samples with
many layers®®10, The difference between a single layer
and many layer systems is due to the fact that the low en-
ergy electronic wavefunctions has a reduced weight on the
sites connected to other layers. Hence, it depends on the
stacking order, and the shift is different in samples with
regions with thombohedral structure, (123123 ---)34. In
systems where the charge distribution among the layers
is not uniform, we expect that the shift of the phonons in
different layers is also different, leading to a splitting of
the single layer phonon frequencies. Similar effects may
also occur in bulk graphite3®.

In summary, we have studied the effect of electronic
inhomogeneities in the phonon spectrum of Raman active
modes in graphene. We have shown that the electron-
phonon coupling leads to a shift of the optical phonon
frequency that is dependent on local electronic density.
We argue that the frequency shift is larger at the edges
than in the bulk of graphene and its value is of order of a
few wavenumbers. These results have their origin on the
Dirac-like nature of the quasi-particles in these materials
and hence do not have an analogue in the ordinary 2D
electron gas.
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FIG. 2: Notation used for the atomic displacements used in
the text.

APPENDIX A: ANALYTICAL MODEL FOR THE
IN PLANE PHONONS IN GRAPHENE.

1. The model.

The simplest model for the phonons of a single
graphene plane includes only nearest neighbor cen-
tral forces??, following similar models for the diamond
lattice2®:

p2
H=D S+

Mw2[(akl - amn)(rkl - rmn)
>, — 2

k,;m,m

(A1)
where the indices k,l and m,n label lattice sites which
are nearest neighbors. The three possible orientations
of the bonds attached to a given site, m,n, allows us
to define three unit vectors, bé i = 1,2,3. We define
the displacement of the atom at site m,n, r,,, by the
three projections x%,, = bl r,,. These numbers satisfy

Y ic123%m, = 0. The model contains a single parame-
ter, wg = \/K/M, where K is the spring constant of the
bonds, and M is the mass of the Carbon atom.

The equations of motion are:

wzxinn = w(?) (x;nn - x;n/n/) - % Z(I‘Znn - xin”n”)
J#i
(A2)
where the indices m/n’ and m’”’n” label sites which are
nearest neighbors to site mn (see Fig.[2]). We now define
the variable:

bmn = I'}n'n' + I?n//n// + x?n///n/// (A3)

using the displacements at the three sites connected to
site mn (see Fig.[3]). In terms of these variables, the

Frequency (arb. units)

Momentum

FIG. 3: Schematic dispersion relation of the phonons in the
model used in the text.

equations of motion, eq.(A2), can be written as:

3 1
W2bmn = §ngmn + 5(408 Z bin

m’'n’

(A4)

where m'n’ label the three sites connected to site mn.
The calculation of the phonon eigenstates is reduced to
a tight binding model with one orbital per site in the
honeycomb lattice. From eq.([AZ]), we obtain two bands:

31
P _ \/§:l:§\/3+2[cos(k -aj)+cos(k - ag)+cos(k - ag)]
wo
(A5)
where aj, as are the unit vectors of the honeycomb lat-
tice, and and ag = a; — as. From the knowledge of the
variables by, the equations of motion, eq.([A2]), can be

written as:

3w? w?
Wty = TO(Illcz - Irlnn) - 70bmn
3 2 2
Wy = S (Wh k)~ b (AG)

From these equations the atomic displacements can be
deduced from the set {bpn}.

The equations of motion, eq.([A2) assume that all the
variables b,,, are different from zero. When b,,,, = 0,
the equations (AG) admit two additional solutions for
w? =0, and w? = 3w2/2. The bands obtained in eq. (A5
correspond to the longitudinal acoustical (LA) and lon-
gitudinal optical modes (LO). The two additional flat
bands obtained when b,,,, = 0 describe the transverse
acoustical (TA) and transverse optical (T'O) modes. The
phonon bands are shown in Fig.[3]. The existence of a flat
TA band at w = 0 reflects the band that the honeycomb
lattice can be distorted without changing the distance be-
tween nodes. These deformations do not have an energy
cost in a nearest neighbor central forces model described
in eq.(Adl. The velocity of sound of the LO modes is
vs = (woa)/(2v/2), where a is the lattice constant.



FIG. 4: Displacements used to define the variable a,,, at an
atom at a zigzag edge (red), and the variable by, (blue).

2. Defects

The mapping to a scalar tight binding model of the
Hamiltonian in eq.(A]) can be extended to lattices with
defects. We describe the defect as the absence of bonds.
Hence, an atom near a defect is attached to fewer neigh-
bors than one at the bulk. This implies that the condition
S"at =0 is no longer satisfied. We can take this into
account by deﬁning a new variable at the sites near the
defect, apn = >, x%,,,, where the sum is restricted to the
bonds which remain intact.

a. Zigzag edge

The atoms at a zigzag edge are connected by only two
bonds to the rest of the lattice. We define the variable
bmn using the displacements of the two nearest neighbor
atoms to the edge atom mn. The atomic displacements
used to define the variables a,,, and b,,, are sketched in
Fig.[]. The equations of motion for the variables a,,
and b,,, when the indices mn label an atom at the edge
become:

2
w2amn = ﬂ (a/mn bmn)
2
2 3w0 Z
w bmn = b bm 'n' = & Amn
3w? w? wd
2 _ 20 0
w bm’n’ = B) bm In! — E b m!'n!! — —am,QA7)

where the indices m’n’ label the sites which are the near-
est neighbors of the vacancy, and m”n” stand for the
next nearest neighbors. The equations of motion for the
remaining atoms are not changed from eq.([A4).

Thus, the equations of motion of the atoms can be
mapped onto a tight binding model. The only differ-
ence with the bulk case is that the description of the
displacements of the atoms at the boundary require the
definition of two effective orbitals. The position of the ef-
fective orbital level a,,, at the edge, w3 /2, is lower than
that for the variable by, (3w3)/2. This reflects the fact
that atomic fluctuations are enhanced at the edge.

Spectra of longitudinal phonons. 256 sites.
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FIG. 5: Phonon density of states and spectral function of
bond fluctuations with and without a vacancy.

b.  Vacancy.

As in the case of an atom at a zigzag edge, the three
atoms near a vacancy are connected by bonds to two
nearest neighbors only. As in the previous case, a new
variable, @y, = Z; xi - mneeds to be defined at these
three sites. The equations of motion for the variables
Amn and by, are those in eq.([AZ]).

The phonon density of states in clusters with and with-
out vacancies, and the spectral strength of the bond
length fluctuations, in the bulk and near a vacancy are
shown in Fig.[5]. Contrary to what happens for the =
electronic band, the phonons are not too disturbed near
a vacancy, although some shift of spectral strength to
lower energies takes place.
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