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We present an eight-band k ·p -model for the calculation of the electronic structure of wurtzite
semiconductor quantum dots (QDs) and its application to indium gallium nitride (InxGa1−xN) QDs
formed by composition fluctuations in InxGa1−xN layers. The eight-band k·p -model accounts for
strain effects, piezoelectric and pyroelectricity, spin-orbit and crystal field splitting. Exciton binding
energies are calculated using the self-consistent Hartree method. Using this model, we studied the
electronic properties of InxGa1−xN QDs and their dependence on structural properties, i.e., their
chemical composition, height, and lateral diameter. We found a dominant influence of the built-in
piezoelectric and pyroelectric fields, causing a spatial separation of the bound electron and hole
states and a redshift of the exciton transition energies. The single-particle energies as well as the
exciton energies depend heavily on the composition and geometry of the QDs.

PACS numbers: 73.21.La, 78.67.Hc, 78.20.Bh

I. INTRODUCTION

The InxGa1−xN/GaN material system is of particular
interest for applications in optoelectronic devices, since
the band gap of InxGa1−xN covers the whole range of the
visible spectrum, depending on the indium concentration.
Several novel opto-electronic devices, such as green and
blue light emitting diodes and laser diodes, have already
been realized based on this material system.1

Recently, experimental investigations have revealed
quantum-dot (QD)-like light emission from zero-
dimensional localization centers within InxGa1−xN
layers.2,3,4,5 The origin of these emission lines has been
ascribed to nanometer-sized fluctuations of the indium
concentration within the InxGa1−xN layers.2,3,4,5,6,7 The
electronic and optical properties of these localization cen-
ters are fairly unclear. In particular, the interplay be-
tween their structural and their electronic properties has
not yet been assessed experimentally.

The purpose of this work is to gain insight into the
physics of InxGa1−xN nanostructures by theoretical in-
vestigations. We calculate the electronic properties of
the localization centers, more precisely the bound single-
particle electron and hole states and excitonic states,
and their dependence on the QD structure. Special at-
tention is paid to the influences of the built-in piezo-
electric and pyroelectric fields, which are known to be
of great importance in wurtzite group-III-nitride based
nanostructures.8

Another aim of this paper is to give a comprehensive
outline of the theoretical model used together with a brief
comparison to other k ·p -methods that have been em-
ployed in recent publications.

This paper is organized as follows: In Sec. II the
method of calculation, i.e., the calculation of strain,
piezoelectric and pyroelectric fields, single-particle elec-
tron and hole states, and excitonic states is outlined.

In Sec. III the electronic properties of InxGa1−xN QDs
and their dependence on geometry and composition are
investigated.
In Sec. IV different implementations of the k·p -method

are compared and the importance of spin-orbit interac-
tion and conduction-band (CB)/valence-band (VB) cou-
pling in InxGa1−xN/GaN quantum dots is assessed.

II. METHOD OF CALCULATION

For the calculations we extend our eight-band k ·p
model, which has been successfully applied to various
types of zinc blende material QDs,9,10,11 to the treatment
of QDs based on materials with wurtzite crystal struc-
ture. The model accounts for strain effects, piezoelectric
and pyroelectric polarization, and spin-orbit and crystal-
field splitting, and by using the full 8 x 8-Hamiltonian,
coupling between the VBs and the CB. Previous ap-
proaches, mostly for the application on GaN/AlN QDs,
like the methods introduced in Refs. 12 and 13, use the
following simplifications of the full eight-band method:
The method introduced in Ref. 12 includes all important
effects except spin-orbit splitting, which has been ne-
glected to reduce the dimensions of the Hamiltonian from
8x 8 to 4 x 4. This simplification can be justified, given
that the spin-orbit splitting is small in GaN (17 meV) and
AlN (19 meV) and modifies the absolute exciton transi-
tion energies by the same oder of magnitude. InN shows
an even smaller spin-orbit splitting with 5 meV.14 Never-
theless, as we will show in Sec. IV, neglecting spin-orbit
splitting will lead to an artificial degeneracy of the hole
ground state.
The authors of Ref. 13 use a 6 x 6 Hamiltonian for the

VBs, and the effective mass approximation for the CB.
This method neglects the coupling between VBs and CB,
which is justified for large band gap materials such as
GaN and AlN. InN, in contrast, has a much smaller band
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gap of about 0.78 meV14 and therefore requires the in-
clusion of VB/CB-coupling.
In Sec. IV we will compare both of these simplifications

of the model used in this work on the basis of the single-
particle energies of one typical InxGa1−xN QD.
Calculations for group-III-nitride QDs using the atom-

istic tight-binding model15 have been presented for
InxGa1−xN/GaN-QDs,16 GaN/AlN-QDs,17 and recently
for pure InN/GaN-QDs.18 An in-depth comparative dis-
cussion will be presented elsewhere.
In the following paragraphs our method will be out-

lined in detail, starting with the calculation of the strain
field and the built-in electrostatic potential; followed by
a description of the k·p Hamiltonian and the calculation
of exciton energies.

A. Calculation of strain and built-in electric fields

The correct description of the strain field within and
in the vicinity of the QD is crucial for a proper descrip-
tion of its electronic properties, since the influence of the
strain field on the electronic states is twofold: direct by
strain-induced band shifts and indirect by strain-induced
piezoelectric polarizations.
In contrast to QDs in most other material systems,

such as the well known InAs/GaAs system, these polar-
ization effects play a dominant role in wurtzite group-
III-nitride based QDs for two reasons. First, in wurtzite
semiconductors biaxial strain in the basal plane [(0001)-
plane] causes a piezoelectric field parallel to the C axis
([0001] axis). Since most heterostructures are grown on
the (0001) plane, the corresponding biaxial strain is usu-
ally large. Second, due to the high ionicity of the bonds,
the piezoelectric constants of group-III-nitrides are sig-
nificantly larger than those of most other semiconductor
materials.14

Additionally spontaneous (pyroelectric) polarization
occurs in wurtzite crystals. For GaN/AlN QDs, the built-
in potential resulting from the spontaneous polarization
has been found to be of the same order of magnitude
as the one resulting from piezoelectric effects.12,13 For
InxGa1−xN/GaN QDs, however, the spontaneous polar-
ization potential is much weaker than the piezoelectric
one, due to the smaller difference of the spontaneous po-
larization constants of InN and GaN.14

In this work, the strain field has been calculated using
the continuum mechanical, which is described in detail,
e.g., in Refs. 26 and 27. The overall polarization P in
wurtzite-type semiconductors is given by

P = PPZ +PSP , (1)

where PPZ is the strain-induced piezoelectric polariza-
tion and PSP the spontaneous polarization. The latter
one is only dependent on the material and its only non-
vanishing component along [0001] is given by the con-
stant PSP (see table I). The piezoelectric polarization
PPZ can be calculated from the strain tensor.28 The

TABLE I: Material parameters for GaN and InN. If not indi-
cated differently, the parameters are taken from Ref. 14. For
InxGa1−xN alloy parameters, linear interpolation has been
used, except for the parameters EG and PSP, where the bow-
ing parameters of table II have been used for parabolic inter-
polation.

Parameter GaN InN
alc (nm) 0.3189 0.3545
clc (nm) 0.5185 0.5703
C11 (GPa) 390 223
C12 (GPa) 145 115
C13 (GPa) 106 92
C33 (GPa) 398 224
C44 (GPa) 105 48
e15 (C/m2) 0.326 0.264
e31 (C/m2) -0.527 -0.484
e33 (C/m2) 0.895 1.06
PSP (C/m2) -0.034 -0.042

ǫr 9.8a 13.8b

EG (eV) 3.510 0.78
∆CR (eV) 0.010 0.040
∆SO (eV) 0.017 0.005

m‖
e/m0 0,20 0,07

m⊥
e /m0 0.20 0.07

A1 -7.21 -8.21
A2 -0.44 -0.68
A3 6.68 7.57
A4 -3.46 -5.23
A5 -3.40 -5.11
A6 -4.90 -5.96
A7 (eVÅ) 0.0 0.0
EV (eV) 0.0c 0.5c

a1 (eV) -4.9 -3.5
a2 (eV) -11.3 -3.5
D1 (eV) -3.7 -3.7
D2 (eV) 4.5 4.5
D3 (eV) 8.2 8.2
D4 (eV) -4.1 -4.1
D5 (eV) -4.0 -4.0
D6 (eV) -5.5 -5.5

aAverage over references 19,20,21,22,23.
bAverage over references 19,24.
cReference 25.

corresponding electrostatic potential φ (r) is obtained by
first calculating the polarization charge density ρ (r), us-
ing

ρ (r) = −∇ ·P (r) , (2)

and subsequently solving Poisson’s equation:

ǫ0∇ · [ǫr (r)∇φ (r)] = ρ (r) . (3)

All parameters used in this work are listed in table I. For
InxGa1−xN alloys, linear interpolation has been used for
all parameters except for EG and PSP, where the given
bowing parameters listed in table II have been used. For
the dielectric constants ǫr, averages of several published
values have been used. Since there are large uncertainties

regarding these values, we did not distinguish between ǫ
‖
r

(parallel to the C axis) and ǫ⊥r (perpendicular to the
C axis), but used the average of both for all directions
instead. Still ǫr remains material-dependent, and thus,
the potential obtained from Eq. (3) accounts for image
charge effects.
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TABLE II: Nonzero bowing parameters for the ternary
InxGa1−xN alloy. Parameters are taken from Ref. 14, and
refer to the formula A(InxGa1−xN) = xA(InN) + (1 −
x)A(GaN) − x(1 − x)Ab(InxGa1−xN). Here, A denotes an
arbitrary parameter and Ab the corresponding bowing pa-
rameter.

Parameter InxGa1−xN
Eg (eV) 1,4
Psp (C/m2) -0,037

B. Eight-band k·p -model for wurtzite-type

quantum dots

The 8 x 8 Hamilton matrix for the envelope functions29

has been derived from the one introduced by Gershoni et
al.30 for zinc blende crystals. The wurtzite specific parts
have been developed using Refs. 31, 32, 33, 12, and 13.
Following Gershoni et al., the Hamiltonian is expanded

into the basis

(|S ↑〉, |X ↑〉, |Y ↑〉, |Z ↑〉, |S ↓〉, |X ↓〉, |Y ↓〉, |Z ↓〉)T ,
(4)

and takes the block matrix form

Ĥ =

(

G(k) Γ
−Γ G (k)

)

. (5)

G(k) and Γ are both 4 x 4 matrices and the overline de-
notes the complex conjugate. G can be decomposed into
a sum of 4 x 4 matrices:

G = G1 +G2 +GSO +GCR +GST . (6)

The matrix G1 is given by

G1 =







E′
c iP2kx iP2ky iP1kz

−iP2kx E′
v 0 0

−iP2ky 0 E′
v 0

−iP1kz 0 0 E′
v






, (7)

where E′
c and E′

v are the CB edge and the VB edge,
respectively, and are defined by

E′
C = EV + EG +∆CR +

∆SO

3
+ Vext , (8)

E′
V = EV + Vext . (9)

Here, EV is the average VB edge on an absolute scale (the
VB edge of unstrained GaN is arbitrarily set to 0 meV
throughout this work). ∆SO and ∆CR are the spin-orbit
and crystal-field splitting energies of the given material.
EG is the fundamental band gap and Vext can be any
additional scalar potential. In our case it is the built-
in piezoelectric and pyroelectric potential. For the Kane
parameters

P1/2 =

√

~2

2m0
EP1/2 ,

we use the expressions derived in Ref. 32:

P 2
1 =

~
2

2m0

(

m0

m
‖
e

− 1

)

· (10)

3EG (∆SO + EG) + ∆CR (2∆SO + 3EG)

2∆SO + 3EG
,

P 2
2 =

~
2

2m0

(

m0

m⊥
e

− 1

)

· (11)

EG [3EG (∆SO + EG) + ∆CR (2∆SO + 3EG)]

∆CR∆SO + 3∆CREG + 2∆SOEG + 3E2
G

.

The matrix G2 is given by

G2 =









A′
2

(

k2x + k2y
)

+A′
1k

2
z 0 0 0

0 L′
1k

2
x +M1k

2
y +M2k

2
z N ′

1kxky N ′
2kxkz −N ′

3kx
0 N ′

1kykx M1k
2
x + L′

1k
2
y +M2k

2
z N ′

2kykz −N ′
3ky

0 N ′
2kzkx +N ′

3kx N ′
2kzkx +N ′

3ky M3

(

k2x + k2y
)

+ L′
2k

2
z









. (12)

The parameters L′
i, N

′
i , Mi in Eq. (12) are related to the

Luttinger-like parameters Ai and effective masses m
‖
e,

m⊥
e (parallel and perpendicular to the C axis), as given

in table I, by

A′
1 =

~
2

2m
‖
e

− P 2
1

Eg
,

A′
2 =

~
2

2m⊥
e

− P 2
2

Eg
,

L′
1 =

~
2

2m0
(A2 +A4 +A5) +

P 2
1

Eg
,

L′
2 =

~
2

2m0
A1 +

P 2
2

Eg
,
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M1 =
~
2

2m0
(A2 +A4 −A5) ,

M2 =
~
2

2m0
(A1 +A3) ,

M3 =
~
2

2m0
A2 ,

N ′
1 =

~
2

2m0
2A5 +

P 2
1

Eg
,

N ′
2 =

~
2

2m0

√
2A6 +

P1P2

Eg
,

N ′
3 = i

√
2A7 . (13)

The matrices GSO and Γ describe the spin-orbit splitting.
They are given by

GSO =
∆SO

3







0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0






(14)

and

Γ =
∆SO

3







0 0 0 0
0 0 0 1
0 0 0 −i
0 −1 i 0






. (15)

The crystal-field splitting is described by GCR:

GCR = ∆CR







0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0






. (16)

GST describes the strain-dependent part of the Hamilto-
nian:

GST =







a2 (ǫxx + ǫyy) + a1ǫzz 0 0 0
0 l1ǫxx +m1ǫyy +m2ǫzz n1ǫxy n2ǫxz
0 n1ǫxy m1ǫxx + l1ǫyy +m2ǫzz n2ǫyz
0 n2ǫxz n2ǫyz m3 (ǫxx + ǫyy) + l2ǫzz






. (17)

Here, a1 and a2 are the CB deformation potentials. The
parameters li, ni, and mi are related to the VB deforma-
tion potentials Di by

l1 = (D2 +D4 +D5) ,

l2 = D1 ,

m1 = (D2 +D4 −D5) ,

m2 = (D1 +D3) ,

m3 = D2 ,

n1 = 2D5 ,

n2 =
√
2D6 . (18)

For the analysis of the local band edges and single-
particle states, it is useful to transform the results into
a basis of eigenstates of an unstrained wurtzite semi-
conductor (bulk) at the Γ point, similar to the “heavy
holes, light holes, and split-off holes” representation in
zinc blende crystals. However, the VBs are labeled A, B,
and C in wurtzite crystals, with A being the uppermost
VB. The relations between this basis and the basis given
in Eq. (4) are given, e.g., in Ref. 32.

C. Calculation of excitonic states

To predict excitonic transition energies correctly, one
additionally needs to take few-particle effects into ac-

count. Besides the direct Coulomb interaction between
electron and hole, these are exchange and correlation ef-
fects. A popular method to account for all three effects
is the configuration interaction (CI) scheme,34 where the
few-particle Hamiltonian is expanded into a basis of anti-
symmetrized products of the bound single-particle states.
This method has been applied successfully to QDs in
other material systems like InAs/GaAs.35,36,37 However,
its reliability depends crucially on the availability of a
large number of bound single-particle states. Most of the
QDs considered in this paper have only one bound elec-
tron level, some have three. Since this is not sufficient
for a CI expansion, we chose to use the self-consistent
Hartree method38 for the calculation of exciton binding
energies. Although this approach does not account for
exchange and correlation effects, the results it yields are
sufficient since the exciton binding energies are governed
by the direct Coulomb interaction.

In the Hartree approximation the ansatz for the few-
particle wave function Ψ(r1, . . . , rn) is given as a product
of single-particle wave functions ϕi(ri):

Ψ =
∏

i

ϕi . (19)

The particles interact solely through the direct Coulomb
interaction; thus, the total energy of the few-particle
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state is given by

E =

n
∑

i

∫

ϕ∗
i (r)Hϕi(r)d

3r

+
1

2

n,n
∑

i,j

i6=j

qiqj

4πǫ0

∫ ∫ |ϕi(r)|2|ϕi(r
′)|2

ǫr(r′)|r− r′|2 d3rd3r′ .(20)

Here, n is the number of participating particles and qi
is the charge of the i-th particle, i.e., −|e| for electrons
and |e| for holes; H is the single-particle Hamiltonian.
Equation (20) is minimized self-consistently in order to
obtain the few-particle corrections.

III. NUMERICAL RESULTS

A. Input: Quantum dot structure

InxGa1−xN QDs formed by composition fluctuations
in InxGa1−xN layers have been investigated experimen-
tally using XTEM (cross-sectional transmission electron
microscopy) in conjunction with the DALI (digital anal-
ysis of lattice images) technique.39 The model structure
used in this work is derived from these structure images
and related growth information.2,6,40 These experimental
investigations revealed a broad distribution of QD sizes,
shapes, and indium concentrations. Due to the QDs’
growth mode, which is not strain-induced, their shapes
differ significantly from the shape of, e.g., InAs/GaAs
QDs. Furthermore, no wetting layer is present, but the
QDs are embedded in a QW.
We chose an ellipsoid as the shape of the model QDs,

which agrees well with the experimental findings and does
not lower the confinement symmetry more than justified
by the structure images. The model QD is shown in
Fig. 1. The ellipsoid is embedded in an In0.1Ga0.9N layer
with a height of 2 nm. The layer itself is embedded in a
matrix of pure GaN. dz denotes the QD height and dx =
dy its lateral diameter. The indium concentration within
the QD increases linearly form the indium fraction xw =
0.1 of the surrounding InxGa1−xN-layer to the maximum
indium fraction xc at the center of the QD.
We investigated the influence of different structural pa-

rameters on the electronic properties. Starting with a QD
with dz = 2.0 nm, dx/y = 5.2 nm, and xc = 0.5, calcula-
tions for three series have been carried out:
Series (a): The lateral diameter of the QD has been al-
tered between dx/y = 2.8 and 7.6 nm.
Series (b): The height of the QD has been altered be-
tween dz = 1.2 and 2.8 nm.
Series (c): The maximum indium fraction has been al-
tered between xc = 0.3 and 0.6.
All quantities of the structural parameters for the three
series are listed in table III. The numbering scheme
of this table will be used to address the different QDs
throughout this work. Quantum dot D4, with dx/y = 6.4,

FIG. 1: Schematic drawing of the model InxGa1−xN QDs
used in the calculation. Ellipsoids with a height of dz and
lateral diameter of dx = dy . The indium concentration inside
the QDs is modeled with a linear gradient from the maximum
indium fraction xc at the center of the QDs to x = 0.1 at their
border. The QDs are embedded in an In0.1Ga0.9N layer with
a height of 2 nm. The layer itself is embedded in a matrix of
pure GaN.

TABLE III: Structural parameters of the modeled QDs. The
symbols are explained in Fig. 1 and the text.

No. dx/y (nm) dz (nm) xc xw

(a) variation of the lateral diameter dx/y
D1 2.8 2.0 0.5 0.1
D2 4.0 2.0 0.5 0.1
D3 5.2 2.0 0.5 0.1
D4 6.4 2.0 0.5 0.1
D5 7.6 2.0 0.5 0.1
(b) variation of the height dz
H1 5.2 1.2 0.5 0.1
H2 5.2 1.6 0.5 0.1
H3=D3 5.2 2.0 0.5 0.1
H4 5.2 2.4 0.5 0.1
H5 5.2 2.8 0.5 0.1
(c) variation of max. indium concentration x
C1 5.2 2.0 0.3 0.1
C2 5.2 2.0 0.4 0.1
C3=D3 5.2 2.0 0.5 0.1
C4 5.2 2.0 0.6 0.1

dz = 2.0, and xc = 0.5, will serve as an example for the
discussion of the general QD properties.
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FIG. 2: Line scan of the built-in electric potential of
the largest QD—D4 in table III—along the [0001] direction
through the QD’s center. The solid line shows the overall po-
tential. The dashed line and the dotted line show the contri-
butions of the piezoelectric polarization and the pyroelectric
polarization. The dotted ellipse indicates the position of the
QD.

B. Impact of Strain and Built-in Electric Fields

The strain field, built-in electric potentials, and local
band edges have been calculated on a 130x130x110 finite
differences grid with a mesh width of 0.2 nm.

Figure 2 shows a line scan of the built-in electric po-
tential along the [0001] direction through the QD’s center
for QD D4. A large potential drop of 655 meV inside the
QD can be observed along the [0001]-direction. The po-
tential is attractive for electrons at the upper side of the
QD and attractive for holes at the lower side.

The decomposition of the overall potential into a piezo-
electric and a pyroelectric part shows that the large built-
in electric potential is mainly caused by piezoelectric ef-
fects (Fig. 2); the contribution of the pyroelectricity is
comparatively small. For this specific QD (D4) the piezo-
electric potential is about eight times larger than the py-
roelectric potential.

Figure 3 shows the ±230 mV isosurfaces of the built-
in electric potential for the same QD (D4), giving an im-
pression of its spatial distribution in all three dimensions.
Note that the symmetry of the built-in electric potential
in the basal plane reproduces the symmetry of the struc-
ture. As a result of the electromechanical properties of
wurtzite materials, the polarization effects do not lead to
any additional symmetry lowering in the basal plane.

The modifications to the confinement potential by
piezoelectric and pyroelectric effects are of the same or-
der of magnitude as the band offsets between the different
materials. In contrast to InAs/GaAs QDs, the built-in
electric potentials in the QDs considered here cannot be
regarded as (small) distortions to the confinement poten-
tial, but have to be seen as a constituting part of it.

[0001]
+230 mV

−230 mV

QD

FIG. 3: ±230 mV isosurfaces of the overall built-in electric
potential of QD D4 (see table III). The surface of the QD
is shown in the middle in light gray. The positive isosurface
is located atop the QD, making this area attractive for elec-
trons. The negative one is found beneath it; this area becomes
attractive for holes.
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FIG. 4: Line scan of the local band edge profile of QD D4
(see table III) along the [0001] direction through the QD’s
center. (a) without electric potentials. (b) including electric
potentials. The dashed ellipses indicate the position of the
QD.

C. Local Bandedges

The influence of the built-in potentials on the local
band edges can be observed in Fig. 4. It shows a linescan
of the local band edge profile of QD D4 along the z-axis
through the QD center, with (4b) and without (4a) the
piezoelectric and pyroelectric potentials.

Neglecting built-in electric potentials
Due to the symmetry of the model structure the field-free
local band edges are symmetric with respect to the mid-
dle of the QD, and the resulting confinement potential
minima reside in the QD center for both charge carrier
types. (Fig. 4a)
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The VBs show pronounced shifts, caused by the biaxial
strain in the QD and its vicinity. The biaxial strain in
the basal plane —always present in lattice mismatched
heterostructures grown on [0001]—, does not split the
|A〉 and |B〉 VBs. Both are energetically shifted in the
same way: upwards by the negative biaxial strain inside
the QD and downwards by the positive biaxial strain in
the QD vicinity. For the |C〉 VB the biaxial strain has
the opposite effect: the band energy is reduced by the
negative biaxial strain inside the QD, and increased in
the area surrounding the QD. Therefore, since the major
part of the hole states should be located inside the QD,
the hole ground states and the first few excited hole states
are expected to be mainly of |A〉- and |B〉-character.

Including built-in electric potentials
The built-in electric fields cause dramatic modifications
of the local band edges, as can be seen in Fig. 4b. The
symmetry along the [0001]-direction is broken, as the CB
and the VBs are lifted up beneath the QD’s center and
lowered above it. The confinement potential becomes
more attractive for electrons (holes) in the upper (lower)
part of the QD. The band-edge profile implies a spatial
separation of electron and hole states together with a
redshift of the corresponding exciton transition energies
compared to the field-free QD. This effect is known as
the quantum confined Stark effect (QCSE).41

Additionally, the electric fields change the projections
of the hole wave functions on the different VBs. In the
area beneath the QD, the |C〉 band is more attractive
for the holes than the |A〉 and |B〉 band. The absolute
energetic maximum of the |C〉 band (1.1 nm below the
QD’s center) is as high as the maximum of the |A〉 band
(0.7 nm below the QD’s center). This suggests an in-
crease of the intermixing with the |C〉 band for the bound
hole states, caused by the electric fields.

D. Bound Single-particle States

The single-particle electron and hole states have been
calculated on a subdomain of the original finite differ-
ences grid, with the size of 60x60x40 grid points, having
the same mesh width of 0.2 nm as used for the calculation
of strain and polarization.
As an example, Fig. 5 shows the probability density

distribution |Ψ(r)|2 of the ground state and the first
two excited states of QD D4 for electrons and holes.
The corresponding single-particle energies are given in
table IV. The table also lists the projections of the
single-particle states on the different bulk bands and the
corresponding quantities for a calculation that omits the
built-in potential.

Impact of electric fields
The electronic states are governed by electric fields,
i.e., the QCSE. First, the electron and hole orbitals

TABLE IV: Single particle energy levels in QD D4 and pro-
jections of the corresponding states on bulk bands. The en-
ergies are given with respect to the VB edge of unstrained
GaN. The corresponding quantities for a calculation omitting
the built-in electric fields are also listed.

E (meV) |〈S|Ψ〉|2 |〈A|Ψ〉|2 |〈B|Ψ〉|2 |〈C|Ψ〉|2

incl. electric fields
e0 3229 0.95 0.01 0.01 0.03
e1 3393 0.96 0.01 0.01 0.02
e2 3393 0.96 0.01 0.01 0.02
h0 298 0.0 0.77 0.10 0.13
h1 291 0.0 0.12 0.75 0.13
h2 264 0.0 0.64 0.18 0.18
without electric fields
e0 3289 0.95 0.01 0.01 0.03
e1 3465 0.96 0.01 0.01 0.02
e2 3465 0.96 0.01 0.01 0.02
h0 135 0.0 0.85 0.12 0.03
h1 129 0.0 0.15 0.83 0.02
h2 103 0.0 0.74 0.23 0.03

are vertically (along [0001]) separated according to the
positions of the confinement minima resulting from the
built-in electric potentials. For this specific QD (D4),
the separation of the center of masses of the electron and
hole ground-state orbital is 1.4 nm; among all QDs listed
in table III the separation varies from 1.2 to 2.0 nm.
Second, compared to the field-free case, the energies
of the electron and hole ground states are strongly
modified in the field-dependent calculation: the electron
ground-state energy is lowered by about 60 meV and the
hole ground-state energy is increased by about 160 meV.
Omitting excitonic effects, the resulting ground state
transition energy is redshifted by about 220 meV by the
QCSE alone.

Symmetry properties and band-mixing effects
The projections on the bulk band show that the electron
states all have a clear (95%) CB (|S〉) character. The
shape of the electron ground-state envelope function re-
produces the symmetry of the confinement potential, i.e.,
it is comparable to the s state in an atom. The envelope
functions of the exited electron levels have the shape of
a p-like state. Thus, they preserve orthogonality to the
ground level.

The situation is different for the hole states. The prob-
ability density distributions of the hole ground and first
excited state are almost identical; both resemble the sym-
metry of the confinement potential. The orthogonality
of the two states is preserved by the orthogonality of the
different VBs. Accordingly, the projection of the hole
ground state on the bulk bands yields about 75% |A〉-
band character, whereas the first excited hole state is
of |B〉-type with about 75%. The energetic splitting of
these two states is mainly determined by the spin-orbit
and crystal-field splitting. The splitting of the ground
and first excited state (7 meV) is of the same order of
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FIG. 5: Bound single-particle states for QD D4 (dz = 2 nm, dx/y = 6.4 nm, xc = 0.5): electron ground state (e0), hole ground
state (h0), and the first two excited states for both (e1/e2 and h1/h2). The picture shows the 65% isosurfaces of the propability
density distribution |Ψ|2 in top and side view. Each state is twofold spin-degenerate. The energies of the single-particle states
are listed in table IV.

magnitude as the splitting of the |A〉 and the |B〉 band
in bulk InxGa1−xN [3.2-5.2 meV at Γ; Refs. 32 and 14].

The splitting between the first and second excited state
is larger by 27 meV. The probability density distribution
of the second excited state differs significantly from those
of the two lower states. The orthogonality to the lower
states is attained mainly by the shape of the envelope
function, i.e., the probability density distribution shows
a knot in its center. The state has an |A〉-band character
(64%), but it is less pronounced than in the case of the
ground state.

Comparison to the field-free QD shows that the built-
in fields increase the intermixing with the |C〉 band. Its
contribution to the hole ground state rises from 3% in the
field free case to 13% when the fields are included. For the
excited hole states the increase of the |C〉-contribution is
even higher (see table IV).

Despite the large intermixing of all three VBs, a
clear |A〉-type hole ground state and clear |B〉-type first
excited state were found for all QDs listed in table III.
|C〉-type states, however, are always missing among
the first few excited hole states due to strain-induced
band-shifts (see Sec. III C).

Influence of the quantum dot morphology
We investigated the influence of the QD structural pa-
rameters on the single-particle states. Figure 6 shows the
electron and hole energy levels for all QDs of the three se-
ries listed in table III. All three structural parameters—
lateral diameter, height, and indium concentration—have
dramatic influences on the single-particle energies re-
sulting from an intricate interplay of the quantum size
effect,42 the shift of the local band edges, and the changes
in the built-in electric potentials:
Series (a): In response to an increase of the lateral di-
ameter from 2.8 to 7.6 nm and the resulting increase of
the built-in electric potential, the electron ground-state
energy decreases by 210 meV; the hole ground-state en-
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FIG. 6: Single-particle electron and hole state energies—with
respect to the VB edge of unstrained GaN—for all three cal-
culated series. (a) Variation of lateral diameter; (b) Variation
of height; (c) Variation of indium concentration.

ergy increases by 120 meV.
Series (b): Similarly, changing the QD height increases
the volume and the potential drop within the QDs. Ac-
cordingly, the electron (hole) ground state energy de-
creases (increases) by 200 meV(60 meV).
Series (c): Increasing the maximum In mole fraction
from 0.3 to 0.6 affects the local band edges directly as
well as indirectly by changing the built-in electric fields.
As a result the electron ground state energy drops by
170 meV, while the hole ground-state energies increase
by 100 meV.

Thus, the ground state transition energies (neglect-
ing excitonic correction) show dramatic redshifts between
260 and 330 meV for all three series. As we will show in
Sec. III E, these shifts are significantly larger than any
structure-dependent changes of the exciton binding en-
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ergies, and therefore govern the structure dependence of
the exciton transition energies.

Number of bound excited states
Bound excited electron levels have only been found for
five out of twelve calculated QDs: two of them (D4,D5)
have the largest lateral extensions, two (H4,H5) have the
largest QD heights, and one (C4) has the largest indium
content. All other QDs contain only one localized elec-
tron level.
The splitting between the electron ground level and

the (degenerate) first two excited levels is comparatively
large with 150 meV (D5) to 220 meV (H5).
The number of confined hole states, in contrast, is

much larger. For all considered QDs, at least three bound
hole levels have been found. As discussed above, the
splitting between the ground and first excited state is
caused by the spin-orbit and crystal-field splitting. It is
always 6 − 7 meV and shows almost no dependence on
the QD morphology. The splitting between the first and
second excited state is structure dependent and ranges
from 15 meV (C1) to 33 meV (C4).
For one QD (D4) we tried to determine the total num-

ber of bound hole levels. As far as our calculations go, it
contains at least 10 bound hole levels. The local band-
edge profile shown in Fig. 4 does not show a stronger con-
finement for holes than for electrons. The significantly
larger number of bound hole states is caused by, first,
the larger effective hole masses, and second, the occur-
rence of bound |A〉- and |B〉-type hole states, which—in
first-order approximation—doubles the number of bound
hole states.

E. Excitonic states

In Sec. III D we have shown that the QDs’ hole ground
state has |A〉-band character and the first excited state
has |B〉-band character, while the |C〉-type hole states
are shifted to lower energies due to strain effects. Ac-
cordingly, we find |A〉 excitons—formed by an electron
in the ground state and a hole in the (|A〉-type) ground
state—and |B〉 excitons —formed by an electron in the
ground state and a hole in the (|B〉-type) first excited
state—confined in the QDs, similar to |A〉 and |B〉 exci-
tons in bulk wurtzite semiconductors.
We calculated the binding and transition energies

(Fig. 7) of the ground states of both excitons for all QDs
listed in table III. The binding energies of the |A〉 and
|B〉 excitons are identical within 0.6 meV. The splitting
between both therefore resembles the energetic difference
between the involved single-particle hole states, which
shows almost no dependence on the QD morphology (see
Sec. III D). The energy of the |B〉 exciton is always 6-
7 meV higher than that of the |A〉 exciton.
The exciton transition energies shift over a wide range

with varying QD morphology. A change of the QD diam-
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FIG. 7: Transition (upper panel) and binding energies (lower
panel) of the |A〉-excitons for all three calculated series. (a)
Variation of lateral diameter; (b) Variation of height; (c)
Variation of indium concentration. The binding energies of
|B〉 excitons are identical to the |A〉 exciton binding energies
(±0.6 meV).

eter from 2.8 to 7.6 nm leads to a shift of 320 meV. An
increase of the QD height from 1.2 to 2.8 nm leads to a
decrease of of the transition energy of almost 270 meV.
An increase of the Indium mole fraction from 30% to 60%
lowers the transition energy by 300 meV.

These calculations show that slight variations in QD
morphology have a strong impact on the transition en-
ergy. Therefore the presumably large inhomogeneity of
QD ensembles results in broad ensemble peaks as mea-
sured in luminescence experiments.2,3,4,5 The obtained
transition energies agree with measured values, which
range from 2.8 to 3.05 eV.2,3,4,5

Exciton binding energies
The exciton binding energies of the QDs considered here
are larger (55 to 90 meV) than those of, e.g., InAs/GaAs
QDs for two reasons: First, InxGa1−xN QDs are much
smaller than typical InAs/GaAs QDs, and the effective
electron and hole masses in InxGa1−xN are significantly
larger. Thus, the Coulomb interaction is increased by the
smaller extension of the wave functions. Second, the di-
electric constants εr of GaN and InxGa1−xN are smaller
than those of GaAs and InAs, which also increases the
Coulomb interaction.

The exciton binding energy of each QD is primarily
determined by the dimensions of the orbitals and the
mutual positions of the electron and hole wave functions,
i.e, their spatial separation by the built-in electric fields.

For very small QDs even the (electron and hole) ground
states are only weakly bound and their wave functions
substantially leak into the surrounding material. This
leads to an increase of the orbital sizes and the charge
carrier separation, and therefore decreases the binding
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TABLE V: Single particle energy levels in QD D4 (see ta-
ble III) using different k·p -methods. The energies are given
with respect to the VB edge of unstrained GaN.

8 x 8, ∆SO 6= 0 4 x 4, ∆SO = 0 6 x 6, ∆SO 6= 0
E (meV)

e0 3229 3225 (−4) 3269 (+40)
e1 3393 3388 (−5) 3430 (+37)
e2 3393 3388 (−5) 3430 (+37)
h0 298 294 (−4) 294 (−4)
h1 291 294 (+3) 287 (−4)
h2 264 263 (−1) 257 (−7)

energies. The effect can be observed in Fig. 7 for small
QD diameters [series (a)] and small QD heights [series
(b)]. An increase of the QD volume at this small sizes re-
duces the delocalization effects and, thus, results in larger
binding energies. This remains true until the QDs reach a
size, where the extent of the wave functions is directly de-
termined by the QD volume. The separation of electron
and hole orbitals is then determined by the QD height.
As a result, the binding energy changes only sightly

at a further increase of the diameter for diameters larger
than 4 nm [series (a)]. It even decreases slightly for the
largest QD (D5) due to the larger extentions of the or-
bitals.
An increase of the QD height beyond 2.0 nm leads to

reduction of the binding energies in response to the larger
separation of the electron and hole orbital [series (b)].
The increase of the In mole fraction increases the bind-

ing energies due to the stronger localization of the wave
functions [series (b)].
However, the changes of the exciton binding energies

are small compared to those of the single-particle ener-
gies. Thus, the structure dependence of the exciton tran-
sition energies is governed by the structure dependence
of the single-particle energies.

IV. COMPARISON TO OTHER k·p -METHODS

In Sec. II we discussed two methods to simplify the
8 x 8 k ·p Hamiltonian in order to reduce the computa-
tional effort. The first one was to neglect spin-orbit split-
ting, thus, to reduce the Hamiltonian to a 4 x 4 matrix;
the second one to decouple CB and VB, which leads to
a 2 x 2 effective mass Hamiltonian for the electrons and
a 6 x 6 Hamiltonian for the hole states.
In order to assess the influences of these approxima-

tions we calculated the single-particle states of QD D4
using both simplifications. The 4 x 4 method has been
simulated by setting ∆SO = 0; the 6 x 6 method by set-
ting P1 = P2 = 0. The obtained single-particle energy
levels are listed in table V.
4 x 4 method: Neglecting spin-orbit splitting has only

slight influences on the absolute single-particle energies;
they agree within 5 meV with the single-particle ener-

gies of the 8 x 8 calculation. The ground state transition
energy —omitting excitonic corrections— matches the
results of the 8 x 8 methods within 2 meV.
The main drawback of this approach is the introduc-

tion of an artificial degeneracy in the hole spectrum:
Without spin-orbit interaction, the hole ground level and
first excited level are degenerate. Thus, the calcula-
tion predicts a fourfold-degenerate hole ground state, al-
though it is in fact only twofold (spin-)degenerate. The
hole levels lose their character of being |A〉-like and |B〉-
like hole states. The fourfold degenerate hole ground
state shows a balanced contribution of both bands (43%).
Thus, using this approach it will not be possible to dis-
tinguish between |A〉 and |B〉 excitons.
6 x 6 method: Neglecting CB/VB coupling has notice-

able influences on the electron energies: The electron
ground state energy is 40 meV higher than in the 8 x 8
and 4 x 4 calculations. A shift of the exciton energies in
the same order of magnitude can be expected. The en-
ergy of the excited electron states is also increased by
37 meV. Thus, CB/VB-coupling cannot be neglected in
the systems considered in this work, since this leads to a
significant artificial increase of the transition energies.

V. SUMMARY

We have presented an eight-band k ·p model for the
calculation of the electronic structure of wurtzite-type
semiconductor QDs and its application to InxGa1−xN
QDs (composition fluctuation) embedded in InxGa1−xN
layers.
A large impact of the built-in piezoelectric and py-

roelectric fields on the electronic properties of the QDs
has been assessed: The electrostatic fields cause a spatial
separation of electron and hole states and a redshift of
the transition energies of hundreds of meV by the QCSE.
Band mixing effects within the bound hole states are sig-
nificantly increased.
We found a pronounced dependence of the single-

particle state energies on the QD strutural properties,
i.e., their chemical composition, height, and lateral ex-
tension.
Only in QDs with low transitions energies (/ 2.9 eV)

could we find bound excited electron states; at least three
bound hole levels could be found in all QDs.
The exciton transition energies show a strong depen-

dence on the quantum dot structure, caused by the struc-
ture dependence of the single-particle states. The ex-
perimentally observed broad ensemble PL peak can be
explained with variations in the size and indium concen-
tration of the QDs in the ensemble.
Furthermore, we have demonstrated the benefits of our

full 8 x 8 k ·p method. Compared to simpler models,
which neglect spin-orbit splitting or use separate Hamil-
tonians for electron and hole states, it yields accurate
results regarding the single-particle and exciton states.
The inclusion of spin-orbit splitting is needed to avoid
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artificial degeneracies in the hole spectrum, in particular
of the hole ground state. Without spin-orbit splitting, it
is not possible to distinguish between |A〉- and |B〉-type
hole states, and the differences between |A〉 and |B〉 ex-
citon can not be assessed. Decoupling of the 8 x 8 Hamil-
tonian into a 2 x 2 effective mass Hamiltonian for the CB
and 6 x 6 k·p Hamiltonian for the VB leads to a significant
overestimation of the single-particle electron energies, re-
sulting in an overestimation of all exciton transition en-
ergies.
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