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The equations-of-motion (EOM) hierarchy satisfied by the Green functions of a quantum dot
embedded in an external mesoscopic network is considered within a high-order decoupling approxi-
mation scheme. Exact analytic solutions of the resulting coupled integral equations are presented in
several limits. In particular, it is found that at the particle-hole symmetric point the EOM Green
function is temperature-independent due to a discontinuous change in the imaginary part of the
interacting self-energy. However, this imaginary part obeys the Fermi liquid unitarity requirement
away from this special point, at zero temperature. Results for the occupation numbers, the density
of states and the local spin susceptibility are compared with exact Fermi liquid relations and the
Bethe ansatz solution. The approximation is found to be very accurate far from the Kondo regime.
In contrast, the description of the Kondo effect is valid on a qualitative level only. In particular,
we find that the Friedel sum rule is considerably violated, up to 30%, and the spin susceptibility is
underestimated. We show that the widely-used simplified version of the EOM method, which does
not account fully for the correlations on the network, fails to produce the Kondo correlations even
qualitatively.

PACS numbers: 75.20.Hr,72.15.Qm,73.21.-b,73.23.Hk

I. INTRODUCTION

Quantum dots embedded in mesoscopic structures are
currently of great experimental and theoretical interest,
because such systems allow for detailed and controlled
studies of the effects of electronic correlations.1 The the-
oretical description of these systems is usually based on
the Anderson model,2,3 in which the electronic correla-
tions are confined to few impurities that represent the
quantum dots. Although a rich variety of techniques
has been developed over the years to treat the Anderson
model,4 their applications to the quantum dot systems
are not straightforward. In such systems one would like
to be able to study dynamical properties (e.g., transport)
as function of the impurity characteristics (which can be
tuned experimentally) over a wide range of parameters.
This is not easily accomplished by the Bethe ansatz so-
lution, for example.

The theoretical difficulty can be pinned down to the
ability to derive a reliable, easy-to-handle, expression
for the single-electron Green function on the quantum
dot. Because the electronic interactions in the Anderson
model take place solely on the dot, this Green function
can be shown to determine, under certain conditions, the
charge or the spin transmission through the quantum dot,
the charge accumulated on it, etc.3,5 Consequently, much
effort has been devoted to finding faithful analytic ap-
proximations for this object. Alternative treatments rely
on numerical techniques, such as quantum Monte Carlo,6

or the numerical renormalization group (NRG) method.7

NRG in particular is considered to be capable of provid-
ing accurate estimates of the Green function over a wide
parameter range, although at the cost of running itera-

tive diagonalizations for each parameter set, and a lim-
ited resolution at high energies and high magnetic fields.

A ubiquitous method to derive an analytical expres-
sion for the Green functions is to use the equations-of-
motion (EOM).8 In the case of the single-impurity An-
derson model, the EOM of the (single-particle) impu-
rity Green function gives rise to an infinite hierarchy of
EOM of higher-order Green functions. A well-known ap-
proximation procedure is then to truncate this hierar-
chy, thus producing certain thermal averages represent-
ing various correlation functions. The latter need to
be found self-consistently from the resulting closed set
of equations. The level at which the EOM are trun-
cated is chosen such that most of the interaction effects
are captured.9,10,11,12 This scheme has been applied to
the original Anderson model a long time ago,9,10,11,13,14

yielding approximate expressions for the resistivity,9,10

the spin susceptibility,10,13 and the magneto transport14

of dilute magnetic alloys. For temperatures above the
Kondo temperature, TK , these results agree with pertur-
bation theory calculations.4 Although several limitations
of these self-consistent approaches are known (such as un-
derestimation of the Kondo temperature or the absence
of (T/TK)2 terms in the low-temperature expansion of
the results), they still can form a basis for a qualitative
analytic treatment of the Kondo effect.

The first application of the EOM technique to a quan-
tum dot system has been undertaken by Meir, Wingreen
and Lee5 (MWL). Neglecting certain correlation func-
tions, they have obtained a closed analytic expression
for the dot Green function. Several subsequent studies
have employed their scheme to describe various effects of
the Kondo correlations in quantum dots in different set-
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tings, e.g., ac response of a biased quantum dot,15 non-
equilibrium Andreev tunneling,16 and coupling to mag-
netic leads.17 As we show below, the approximation of
MWL fails in various aspects. Recent attempts to im-
prove on that solution turned out to be not completely
satisfactory: either requiring further approximations on
top of the self-consistent truncation,18 or leading to it-
erative numerical solutions.19,20,21 It is therefore of in-
terest to examine whether an exact solution of the self-
consistency equations of the EOM method will improve
on the previous results, and will be capable of producing
a reliable approximation for the Green function that can
be used in the analysis of quantum dot systems.

In this paper we consider a quantum dot embedded
in a general complex network, and obtain and solve the
truncated EOM for its Green function. This EOM con-
tains all the next order correlation functions, which we
decouple and calculate self-consistently. We first derive
(in Sec. II) an integral equation for the Green function,
allowing for arbitrary values of the on-site Coulomb inter-
action, U . We then analyze (in Sec. III) the properties of
this EOM solution. We find that in the case of a particle-
hole symmetric Hamiltonian the resulting Green function
is temperature-independent (a point which is overlooked
in previous treatments of quantum dots, see for exam-
ple Ref. 5). However, we show that this is a singular
point in the parameter space. We also investigate the
zero-temperature limit of the EOM solution, and show
that it fails to satisfy the Friedel sum-rule. We then turn
to the infinite U case (in Sec. IV), and derive an ex-
act analytical solution to the integral equation for the
Green function. In Sec. V we use this solution to obtain
the total occupation number on the dot, and compare
it with the exact solution supplied by the Bethe ansatz.
This comparison shows that the EOM solution is faithful
outside the Kondo regime, but fails in the regime where
Kondo correlations play a dominant role. In particu-
lar, the Friedel sum-rule is violated by ∼ 30%, invalidat-
ing the assumptions made in previous studies.11,19,21 We
then derive the local spin-susceptibility on the dot and
demonstrate that the full self-consistent solution of the
EOM, as used in this work, is required in order to obtain
quantitatively correct results. We also examine the local
density of states at the Fermi level, and find that it shows
the expected universal behavior as function of T/TK,
though the EOM Kondo temperature lacks a factor of
two in the exponential dependence on the single-energy
level on the dot. Finally, we examine the EOM tech-
nique from another point of view (Sec. VI): We expand
the Green function derived from the EOM to second or-
der in the dot-network coupling, and compare the results
with those obtained from a straightforward perturbation
theory.22,23 This comparison shows again the necessity
to include in the EOM solution the full self-consistent
calculation of all the correlations. A short summary in
Sec. VII concludes the paper.

II. THE GREEN FUNCTION ON THE DOT

As mentioned above, several properties of the Ander-
son model can be expressed in terms of the Green func-
tion on the dot. Here we examine the determination of
this function using the EOM method. Our discussion is
limited to a single interacting impurity embedded in a
general non-interacting network, for which the Hamilto-
nian can be written in the form

H = Hdot +Hnet +Hnet-dot . (1)

Here, the dot Hamiltonian is given by

Hdot =
∑

σ

(ǫ0 + σh)ndσ + Und↑nd↓ , ndσ = d†σdσ , (2)

where d†σ (dσ) is the creation (annihilation) operator of
an electron of spin index σ = ±1/2 on the dot, ǫ0 is
the single-particle energy there, h is the Zeeman split-
ting, and U denotes the Coulomb repulsion energy. The
non-interacting network is described by the tight-binding
Hamiltonian

Hnet =
∑

nσ

εnσa
†
nσanσ −

∑

mnσ

Jmna
†
mσanσ , (3)

where a†nσ (anσ) is the creation (annihilation) operator
of an electron of spin index σ on the nth site on the
network, whose on-site energy is εnσ, and Jmn = J∗

nm

are the hopping amplitudes on the network. Finally, the
coupling between the dot and the network is given by

Hnet-dot = −
∑

nσ

Jnσd
†
σanσ +H.c. (4)

We have allowed for spin-dependent on-site energies on
the network, as well as spin-dependent hopping ampli-
tudes between the dot and the network. In this way, our
model includes also the case of spin-polarized leads con-
nected to a quantum dot (see for example, Refs. 5 and
21). The entire system is assumed to be at equilibrium
with a reservoir held at temperature T (in energy units)
and chemical potential µ = 0.
Adopting the notations of Ref. 8, we write a general

Green function in the form

≪A;B≫ω±iη

≡ ∓i

∫ +∞

−∞

Θ(±t)〈[A(t);B]+〉ei(ω±iη)tdt , (5)

whereA andB are operators, Θ is the Heaviside function,
and η → 0+. The Green function on the dot is then

Gσ(z) ≡ ≪dσ; d
†
σ≫z , z ≡ ω ± iη . (6)

In conjunction with the definition (5), a thermal average,
〈BA〉, is related to the corresponding Green function by

〈BA〉 = i

∮

C

dz

2π
f(z)≪A;B≫z , f(z) ≡ 1

1 + ez/T
, (7)
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where the contour C runs clockwise around the real axis.
The EOM for the dot Green function is given in Ap-

pendix A [see Eq. (A2)]. As is shown there, that equa-
tion includes a higher-order Green function, whose EOM
gives rise to additional Green functions. The resulting
infinite hierarchy of EOM is then truncated according
to a scheme proposed originally by Mattis24 and subse-
quently used in Refs. 9,10,11,13,14,18,19,20,21,25: Each
Green function of the type ≪A†BC; d†≫ in the EOM
hierarchy is replaced by

≪A†BC; d†≫ ⇒ 〈A†B〉≪C; d†≫− 〈A†C〉≪B; d†≫ (8)

if at least two of the operators A, B and C are network

operators anσ. Explicitly, the Green functions which are

decoupled are≪anσd
†
σ̄amσ̄; d

†
σ≫, ≪a†nσ̄dσ̄amσ; d

†
σ≫, and

≪a†nσ̄amσ̄dσ; d
†
σ≫ (with σ̄ = −σ).26 Upon calculating

the averages 〈a†mσam′σ〉 and 〈d†σamσ〉 using Eq. (7), the
set of EOM is closed, and can be therefore solved. The
details of this calculation are presented in Appendix A.
In particular, the resulting equation determining the dot
Green function is

Gσ(z) =
u(z)− 〈ndσ̄〉 − Pσ̄(z1)− Pσ̄(z2)

u(z) [z − ǫ0 − σh− Σσ(z)] + [Pσ̄(z1) + Pσ̄(z2)] Σσ(z)−Qσ̄(z1) +Qσ̄(z2)
, (9)

where

u(z) ≡ U−1 [U − z + ǫ0 + σh+Σσ(z) + Σσ̄(z1)− Σσ̄(z2)] , (10)

and z1 ≡ z−2σh, z2 ≡ −z+2ǫ0+U . The functions P and
Q are given in terms of the non-interacting self-energy
on the dot, Σσ(z), brought about by its coupling to the
network [namely, the self-energy of the non-interacting
dot, see Eq. (A7)], and the dot Green function itself [see
Eqs. (A25)],

Pσ(z) = Fσz

[
G] , Qσ(z) = Fσz

[
1 + ΣG] , (11)

where the notation Fσz [g] stands for

Fσz [g] ≡
i

2π

∮

C

f(w)gσ(w)
Σσ(w)− Σσ(z)

z − w
dw . (12)

Equation (9) generalizes the result of Ref. 11 (see also
Refs. 18,19,20,21) for the case in which the interaction
on the dot is finite, and the entire system is subject to an
external magnetic field. Our generalization also corrects
a few details in Lacroix’s earlier treatment of finite U .12

III. PROPERTIES OF THE EOM

APPROXIMATION AT FINITE U

As is evident from Eq. (9), the solution of the dot
Green function within the EOM scheme cannot be easily
obtained over the entire parameter range. However, there
are certain limiting cases in which this Green function
can be analyzed analytically. We examine those in the
subsequent subsections.

A. Particle-hole symmetry

Upon replacing the particle operators by the hole ones,
d̃†σ ≡ dσ, ã

†
nσ ≡ anσ, the Anderson Hamiltonian (1) at-

tains its original structure, with

ǫ̃0 + σh̃ = −ǫ0 − σh− U , Ũ = U ,

J̃nσ = −J∗
nσ , ε̃nσ = −εnσ , J̃nm = −Jmn . (13)

(Hole quantities are denoted by a tilde.) The dot Green
function in terms of the hole operators is then related to
the particle Green function by

G̃σ(z) ≡ ≪d̃σ; d̃
†
σ≫z = −Gσ(−z) . (14)

One may check that this equivalence holds by introducing
the definitions (13) into Eq. (9). Since Σ̃σ(z) = −Σσ(−z)
and ũ(z) = 1 − u(−z), one finds that [see Eqs. (A25)

and (A26)] P̃σ(z) = −Pσ(−z) and Q̃σ(z) = Qσ(−z) −
Σσ(−z), re-confirming Eq. (14).
From now on we shall assume that Σσ(z) = −Σσ(−z).

This relation is realized, for example, when the network
to which the dot is coupled has a wide band spectrum,
with the Fermi level at the middle. We next discuss the
particular point where 2ǫ0 + U = 0 and h = 0. At this
point, the Anderson Hamiltonian becomes particle-hole

symmetric. Then Gσ(z) = −Gσ(−z), Pσ(z) + Pσ(−z) =
0, Qσ(z) − Qσ(−z) = Σσ(z), and 〈ndσ〉 = 1/2. As a
result, Eq. (9) becomes

[Gσ(z)]
−1

= z − Σσ(z)

− U2

4 [z − Σσ(z)− 2Σσ̄(z)]
. (15)

Namely, at the particle-hole symmetry point of the
Anderson model, the EOM results in a temperature-

independent dot Green function! This implies that the
EOM technique at the particle-hole symmetric point can-
not produce the Kondo singularity. This property of the
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EOM scheme has been reported a long time ago,10a,27,28

but was ignored in more modern uses of it,5 which are
designed to study the Kondo peak in the density of states.
The failure of the EOM method to describe faithfully

the Anderson model at its symmetric point, where the
Fermi level lies exactly between the states of single and
double occupancies, is a very severe drawback of this
method. An important question is whether this point
is singular, or is there a continuous domain in which the
EOM method fails totally. We return to this problem in
the next subsection.

B. Zero-temperature relations

The zero-temperature limit is of special importance
since the Green function at the Fermi energy at T = 0
satisfies the Fermi-liquid relations4,29

Im[G+
σ (0)]

−1 = Γσ , (16)

Re[G+
σ (0)]

−1 = −Γσ cot(πñdσ) . (17)

Here and below we use A±(ω) ≡ limη→±0 A(ω + iη), so
that G+

σ (ω) = [G−
σ (ω)]

∗ is the usual retarded Green func-
tion. In Eqs. (16) and (17), Γσ is the level broadening,

Γσ ≡ − ImΣ+
σ (0) . (18)

The first relation, Eq. (16), implies29 number conserva-
tion, and therefore is sometimes referred to as the ‘uni-
tarity’ condition. The second one, Eq. (17), is the Friedel
sum-rule, in which ñdσ is the total number of spin σ elec-
trons introduced by the quantum dot,29

ñdσ = − 1

π
Im

∫
f(ω)

[
1− ∂Σ+

σ (ω)

∂ω

]
G+

σ (ω) dω . (19)

When the self-energy Σσ does not depend on the energy,
ñdσ coincides with the single-spin occupation number on
the dot, 〈ndσ〉.
It is evident that the EOM solution for the Green func-

tion at the particle-hole symmetric point, Eq. (15), vi-

olates the unitarity condition (16). On the Fermi level,
the particle-hole symmetric Green function is

[G+
σ (0)]

−1 = iΓσ + i
U2

4
(
Γσ + 2Γσ̄

) , (20)

and therefore the imaginary part of [G+
σ (0)]

−1 is not de-
termined solely by the non-interacting self-energy, (as
implied by the unitarity condition), but has also a con-
tribution coming from the interaction. This is contrary
to the result of Lacroix,12 whose EOM differs from our
Eq. (9) in several places. On the other hand, the Friedel
sum-rule is satisfied by the Green function (15), which
yields ñdσ = 1/2. This follows from Eq. (19): The
imaginary parts of both Gσ(ω) and Σσ(ω) are even in ω,
while (at the symmetric point) the real parts are odd in
it. However, Gσ(ω) ≃ ω−1 at large frequencies, whereas

∂Σσ(ω)/∂ω ≃ ω−2. As a result, the second term in the
square brackets of Eq. (19) does not contribute. With
ñdσ = 1/2, the Friedel sum-rule gives Re[G+

σ (0)]
−1 = 0,

which is fulfilled by Eq. (20).
It is rather intricate to study the full EOM solution,

Eq. (9), at T = 0, even on the Fermi level. However,
there are cases in which this can be accomplished without
constructing the full solution. The investigation of these
cases will also allow us to examine the behavior of Gσ(0)
as the particle-hole symmetric point is approached. To
this end we note that at T = 0 the functions P (ω) and
Q(ω) acquire logarithmic singularities as ω → 0,

P±
σ (ω) ∼ − 1

π
ΓσG

∓
σ (0) ln |ω|+O(1) ,

Q±
σ (ω) ∼ − 1

π
Γσ

[
1 + Σ∓

σ (0)G
∓
σ (0)

]
ln |ω|+O(1) . (21)

Therefore, we may examine special points at which the
functions P and Q are divergent, keeping only the diver-
gent terms in Eq. (9). Then, that equation reduces to
an algebraic one, which can be easily solved to yield Gσ

at those special points.
Let us first consider the case in which the Zeeman field

h on the dot vanishes, but 2ǫ0 + U 6= 0. Using Eqs. (21)
in Eq. (9) yields

[G+
σ (0)]

−1 +Σ+
σ (0) = [G−

σ̄ (0)]
−1 +Σ−

σ̄ (0) . (22)

By writing the Green function in the general form

[Gσ(z)]
−1 = z − ǫ0 − σh− Σσ(z)− Σint

σ (z) , (23)

in which Σint is the self-energy due to the interaction,
Eq. (22) takes the form

Σint+
σ (0)− Σint−

σ̄ (0) = 0 . (24)

When the network is not spin-polarized, the spin in-
dices σ and σ̄ are indistinguishable. Then Eq. (22) im-
plies that ImΣint(0) vanishes, namely the unitarity con-
dition is satisfied. (In the more general case of possi-
bly ferromagnetic leads, it is only the imaginary part of
[G+

σ (0)]
−1 − [G−

σ̄ (0)]
−1 which is determined by the non-

interacting self-energy alone.) Had we now sent 2ǫ0 + U
to zero, we would have found that the EOM result at
the particle-hole symmetric point does satisfy the unitar-
ity condition, in contradiction to our finding, Eq. (20),
above. We thus conclude that the failure of the EOM
to obey the Fermi-liquid relation (16) at the symmetric
point is confined to the symmetric point alone, namely,
the imaginary part of Σint on the Fermi level has a dis-
continuity.
Next we consider the case where 2ǫ0 + U = 0, but

h 6= 0. Using Eqs. (21) in Eq. (9) we now find the
relation

[G+
σ (0)]

−1 +Σ+
σ (0) = −

{
[G+

σ̄ (0)]
−1 +Σ+

σ̄ (0)
}
. (25)

Inserting here expression (23), we re-write this relation
in the form

Σint+
σ (0) + Σint+

σ̄ (0) = U . (26)
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Therefore, ImΣint(0) = 0, in agreement with the unitar-
ity condition. Sending now the Zeeman field on the dot
to zero, yields the result 2ReΣint(0) = U , which agrees
with the real part of Eq. (20). Thus the EOM result for
the real part of Σint on the Fermi energy does not have
a discontinuity. We hence conclude that the EOM tech-
niques failure at the symmetric point is confined to the
imaginary part of the interacting self-energy alone and
to the symmetric point alone.
Our considerations in this subsection are confined to

ω = 0, and therefore do not allow us to investigate the
Friedel sum-rule easily. We carry out such an analysis
for the infinite-U case below. Alternatively, one may at-
tempt, as has been done in Ref. 21, to impose the Friedel
sum-rule on the EOM result, assuming that Eq. (17)
holds, with ñdσ ≡ 〈ndσ〉. This is a dangerous proce-
dure, which leads in some cases to un-physical results, as
is demonstrated in Sec. V.

IV. EXACT SOLUTION IN THE U → ∞ LIMIT

In this section we present an exact solution of the self-
consistently truncated EOM, and obtain the dot Green
function, in the limit U → ∞. For this solution, we as-
sume that the bandwidth Dσ is larger than the other en-
ergies in the problem (except U). In the next section we
use this function to calculate several physical quantities,
and compare the results with those of the Bethe anstaz

technique and other calculations. For simplicity, we also
assume that the non-interacting self-energy may be ap-
proximated by an energy-independent resonance width,
i.e.,

Σ±
σ = ∓iΓσ , (27)

for all the energies in the band, −Dσ < ω < Dσ (The
extension to the case where there is also an energy-
independent real part to the self-energy is straightfor-
ward). This assumption is certainly reasonable for a
range of energies near the center of the band. However,
using it for the whole band introduces corrections of or-
der |ω/Dσ|, thus restricting the solution to |ω/Dσ| ≪ 1.
Then, Eq. (9) for the Green function, together with the
definitions (10), (11), and (12), takes the form

[
G±
σ (ω)

]−1
G±

σ (ω + σh) = 1− 〈ndσ̄〉 − P±
σ̄ (ω + σ̄h),(28)

where

G±
σ (ω) =

[
ω − ǫ0 ± iΓσ − I±σ̄ (ω + σ̄h)

∓ i
(
Γσ̄ + Γσ

)
P±
σ̄ (ω + σ̄h)

]−1
. (29)

Note the shift of energies by σh, compared to Eq. (9).
The function Iσ introduced here contains the Kondo
singularity,30

I±σ (ω) =
Γσ

π

∫ Dσ

−Dσ

dω′ f(ω′)

ω ± iη − ω′
. (30)

To order O(ω/Dσ), one has

πI±σ (ω)/Γσ = −Ψ

(
1

2
∓ iω

2πT

)
+ ln

Dσ

2πT
∓ i π

2
, (31)

where Ψ is the digamma function. Equation (28) for
the Green function also contains the function Pσ, which,
using the assumption (27), is given by

P±
σ (ω) =

Γσ

π

∫ Dσ

−Dσ

dω′ f(ω
′)G∓

σ (ω
′)

ω ± iη − ω′
dω′ . (32)

Physically, all the integrals which contain Σσ must be
calculated between −Dσ andDσ, and the resulting Green
function is calculated only for energies inside the band,
|ω| < Dσ. However, the integral P±

σ (ω) converges even
when one takes the limit Dσ → ∞, because Gσ(ω) ∼ 1/ω
at large |ω| [see e.g. Eq. (28)]. If Dσ is sufficiently large,
so that this asymptotic behavior becomes accurate and
since f(ω) ≈ 1 for ω < −Dσ, it is convenient to extend
the range of this integral (and all the related integrals
below, unless otherwise specified) to the range −∞ <
ω < ∞. This introduces errors of order Γσ/Dσ or ω/Dσ

in the results, which we neglect.
We have thus found that the equation for G+

σ involves
an integral containing the function G−

σ̄ , and thus the two
functions G+

σ and G−
σ̄ are coupled. In addition, the oc-

cupations 〈ndσ〉 have to be determined self-consistently
from the Green functions themselves. Our solution for
the Green function follows the method introduced in
Refs. 10 and 31. This method allows one to turn the
integral equations into algebraic ones, at the cost of
additional quantities which have to be determined self-
consistently from the Green function. First, one intro-
duces the functions

Φσ(z) = z − ǫ0 + iΓσ − Iσ̄(z + σ̄h)− i
(
Γσ̄ + Γσ

)Γσ̄

π

∫
dω′ f(ω

′)G−
σ̄ (ω

′)

z + σ̄h− ω′
,

Φ̃σ(z) = z − ǫ0 − iΓσ̄ − Iσ(z + σh) + i
(
Γσ̄ + Γσ

)Γσ

π

∫
dω′ f(ω

′)G+
σ (ω

′)

z + σh− ω′
. (33)

Note that Φ+
σ (ω) is identical to

[
G+
σ (ω)

]−1
and Φ̃−

σ (ω) ≡
[
G−
σ̄ (ω)

]−1
, while Φ−

σ (ω) and Φ̃+
σ (ω) are different from
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[
G−
σ (ω)

]−1
and

[
G+
σ̄ (ω)

]−1
, respectively. The knowledge of Φ±

σ is sufficient to determine G−
σ̄ , since

Φ+
σ (ω)− Φ−

σ (ω) = 2iΓσ̄f(ω + σ̄h)
[
1 + i

(
Γσ̄ + Γσ

)
G−

σ̄ (ω + σ̄h)
]
. (34)

Similarly, the functions Φ̃±
σ determine G+

σ , through the relation

Φ̃+
σ (ω)− Φ̃−

σ (ω) = 2iΓσf(ω + σh)
[
1− i

(
Γσ̄ + Γσ

)
G+

σ (ω + σh)
]
. (35)

Returning now to Eq. (28), we eliminate the Green functions by using Eqs. (34) and (35), and the functions P by
using the definitions (33). In this way we find

Φ+
σ (ω)

Φ̃+
σ (ω)− Φ̃−

σ (ω)

2iΓσf(ω + σh)
= X+

σ (ω) , Φ̃−
σ (ω)

Φ+
σ (ω)− Φ−

σ (ω)

2iΓσ̄f(ω + σ̄h)
= X̃−

σ (ω) , (36)

where

Xσ(z) = −i(Γσ + Γσ̄)(1 − 〈ndσ̄〉) + z − ǫ0 + iΓσ − Iσ̄(z + σ̄h) ,

X̃σ(z) = i(Γσ + Γσ̄)(1 − 〈ndσ〉) + z − ǫ0 − iΓσ̄ − Iσ(z + σh) . (37)

So far, we have not achieved much simplification over the original problem at hand. However, noting that

X+
σ (ω)−X−

σ (ω) = 2iΓσ̄f(ω + σ̄h) , X̃+
σ (ω)− X̃−

σ (ω) = 2iΓσf(ω + σh) , (38)

Eqs. (36) yield the remarkable result

Φ+
σ (ω) Φ̃

+
σ (ω)−X+

σ (ω) X̃
+
σ (ω) = Φ−

σ (ω) Φ̃
−
σ (ω)−X−

σ (ω) X̃
−
σ (ω) . (39)

Therefore, the combination

R(z) ≡ Φσ(z) Φ̃σ(z)−Xσ(z) X̃σ(z) (40)

is non-singular across the real axis. In fact, the only singular point of this combination is at z = ∞. This means that

R(z) can be written as a polynomial with non-negative powers of z. Moreover, since Φ, Φ̃, X, and X̃ grow only linearly
as z → ∞, that polynomial includes only two terms, r0 + r1z. The details of this calculation are given in Appendix

B. The result (39) allows one to express the (unknown) functions Φ and Φ̃ in terms of the (known) functions X, X̃
and R,

Φ+
σ

Φ−
σ

=
R+X+

σ X̃
−
σ

R+X−
σ X̃

−
σ

≡ Hσ(ω) ,
Φ̃+

σ

Φ̃−
σ

=
R+X+

σ X̃
+
σ

R +X+
σ X̃

−
σ

≡ H̃σ(ω) . (41)

This reduces our problem into two independent linear Reimann-Hilbert problems, for which a rigorous solution is
available,31,32

Φσ(z) = (z − a)eMσ(z) , Mσ(z) =

∫ (
− dω

2πi

) lnHσ(ω)

z − ω
,

Φ̃σ(z) = (z − ã)eM̃σ(z) , M̃σ(z) =

∫ (
− dω

2πi

) ln H̃σ(ω)

z − ω
. (42)

This is a valid solution as long as lnH(ω) and ln H̃(ω) can
be chosen to be continuous in ω and to vanish at both
ends of the integration interval.33 All the cases studied
in this paper obey this requirement, although we could
not prove the absence of solutions other than (42) for a
general case with no spin symmetry. The form of the
polynomial prefactors, (z − a) and (z − ã), in Eq. (42) is
dictated by the fact that the leading term in Φσ(z) and

Φ̃σ(z) must be z [see Eqs. (33)]. The determination of
the coefficients a and ã, as well as other self-consistent
quantities, is detailed in Appendix C.
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FIG. 1: The zero-temperature occupation number n0 as func-
tion of the renormalized energy Ed calculated self-consistently
by the EOM method (solid line), and from the Friedel sum
rule, Eq. (17) (dashed line). Open circles show the exact
Bethe ansatz results.34

V. PHYSICAL PROPERTIES IN THE U → ∞
LIMIT

Once the functions Φ and Φ̃ are found, then the Green
function is determined from Eq. (34) or Eq. (35). This
knowledge enables us to compute various physical quan-
tities, and compare them with the results of other cal-
culations. The first quantity we consider is the total
occupation on the dot, n0 ≡ 〈nd↑ + nd↓〉, at zero tem-
perature. This calculation is carried out for the spin-
symmetric case, h = 0 and spin-independent self-energy.
We also denote D ≡ Dσ, Γ ≡ Γσ. The result is plotted
as function of Ed/Γ, where

Ed ≡ ǫ0 + (Γ/π) ln(D/Γ) , (43)

and is portrayed in Fig. 1 (full line). It agrees within 3%
with the exact universal curve n0(Ed/Γ), as found from
the Bethe ansatz,34 (open circles). Thus, the EOM so-
lution conforms with Haldane’s scaling.35 On the other
hand, the EOM solution fails to satisfy the Friedel sum-
rule, as has been already discussed above. The total oc-
cupation calculated from Eq. (17) (dashed line) deviates
systematically from the self-consistent values, in partic-
ular in the Kondo regime (n0 → 1). Note that Eq. (27)
implies that ñdσ = 〈ndσ〉 [see Eq. (19)].
As mentioned above, the Fermi-liquid relations are

connected with unitarity. In particular, at zero tempera-
ture the linear conductance of a symmetrically-coupled
quantum dot is given by3,5 −2(e2/h)Γσ ImGσ(ω =
0). Thus, the unitary limit 2e2/h is reached only if
Re[G+

σ (0)] → 0 and the Fermi liquid relation (16) holds.
As implied by the dashed line in the figure, the first of
these criteria is not obeyed by the self-consistent solution.
Next we consider the local spin susceptibility on the

dot. When the leads are non-magnetic, this quantity
is given by χ = 1

2 (gµB)
2∂〈nd↓ − nd↑〉/∂h, with h =

-10 -5 0 5 10
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B
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 Bethe ansatz

T=0
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 = -6 Γ 

 

 

χ(
T

)/
χ(

0)

T/T*
K

FIG. 2: The local spin susceptibility χ as function of the
renormalized energy level Ed, for T = 0. The EOM re-
sult (solid line) is close to the Bethe ansatz one34 (circles),
except for large negative values of Ed/Γ. Inset: The scal-
ing of the susceptibility with T/T ∗

K at three fixed energy
level positions (marked by arrows in the main graph). The
solid lines indicate the high-temperature asymptotic behav-
ior, χ(T ) = (gµB)2/(6T ).

−gµBB. Here B is the external magnetic field and gµB

is the gyromagnetic ratio of electrons in the quantum
dot. (The spin susceptibility of the leads adds to the lo-
cal susceptibility the usual Pauli term, and O(Γσ/Dσ)
corrections.4) We have calculated χ(Ed/Γ, T ) by differ-
entiating the self-consistent equations for 〈ndσ〉 with re-
spect to h, and evaluating the integrals numerically. This
procedure is similar to the one which has been used for
the Wolff model in Ref. 10b, but is free from numerical
accuracy problems reported there.

The zero-temperature susceptibility derived from the
EOM is found to be in a good quantitative agreement
with the Bethe ansatz results in the mixed valence
(|Ed/Γ| . 1) and empty orbital (Ed ≫ Γ) regimes, as is
shown in Fig. 2. In the local moment regime, Ed ≪ −Γ,
a screening cloud is expected to form due to the Kondo
effect at4,35 T < TK ∼ ΓeπEd/(2Γ), leading to a crossover
from a high-temperature Curie law, χ ∼ (gµB)

2/T , to
a finite ground state value, χ ∼ (gµB)

2/TK . The latter
is underestimated by our self-consistent solution, as is
manifested by the deviation from the exact Bethe ansatz
results depicted in Fig. 2.

Indeed, had we defined the Kondo temperature
through the inverse of the zero-temperature susceptibil-
ity, we would have found that the EOM method overesti-

mates that temperature. However, within EOM, the rel-
evant energy scale is determined from the leading (real)
terms in the denominator of the Green function, i.e., by
the temperature at which the real part of G, Eq. (29),
vanishes. Using for I(z), Eq. (31), the approximate
form9 I(z) ≈ −(Γ/π) log [(z + iκT )/D] where κ is a num-
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ber of order unity, we find that the leading terms are

ω − Ed +
Γ

π
ln

D

Γ
+

Γ

π
ln

√
ω2 + κ2T 2

D
, (44)

yielding for the temperature scale

T ∗
K ∼ ΓeπEd/Γ , (45)

such that the leading terms are

ω +
Γ

π
ln
√
(ω/T ∗

K)2 + (κT/T ∗
K)2 . (46)

The logarithm in Eq. (46) dominates the properties of
the solution close to the Fermi energy at temperatures
T . T ∗

K . The same energy scale T ∗
K has been determined

from the analysis of the truncated EOM in Refs. 11 and
18. Note that T ∗

K is smaller than the true Kondo tem-
perature TK .
The local spin susceptibility at finite temperatures, cal-

culated from our EOM solution, is shown in the inset of
Fig. 2. Indeed, χ(T )/χ(0) scales with T/T ∗

K , but instead
of crossing over to the Curie law, a region of intermedi-
ate behavior in which χ ∼ T x with −1 < x < 0 is ob-
served. The high-temperature asymptotic χ(T ) ∼ 1/T is
approached only for T & Γ. Such a behavior in the inter-
mediate temperature range T ∗

K < T < Γ is not supported
by NRG or Bethe ansatz calculations,4 which scale with
TK ,36 and has thus to be attributed to the deficiency of
the EOM method.
In contrast, neither the Lacroix approximation, as im-

plemented in Ref. 18, nor the MWL5 approximate Green
function leads to comparable results when used to calcu-
late the local spin susceptibility. The Lacroix approxi-
mation becomes intrinsically inconsistent at finite mag-
netic fields, since it results in a logarithmic divergence
of Gσ(z) as z → σh. Even when ignoring this inconsis-
tency, the zero-temperature spin susceptibility calculated
in that approximation attains negative and divergent val-
ues regardless of the quantum dot parameters. The MWL
approximation leads to finite, but quite unphysical values
of χ for T < Γ, as we demonstrate in Fig. 3. That approx-
imation gives reasonable results at T = Γ: the suscepti-
bility follows roughly the Curie law ≈ 1/T (= 1/Γ) or the
zero-temperature value, whichever is smaller. At lower
temperatures one would have expected a gradual increase
in the susceptibility in the Kondo region. Instead, a win-
dow of a negative susceptibility opens, which is widened
as the temperature is decreased. At strictly zero tem-
perature χ is negative for all values of Ed. This example
shows the necessity of using the full self-consistency of
the EOM solution in order to obtain the qualitatively
correct behavior.
Finally, we examine the local density of states on the

dot, given by

ρ(ω, T ) ≡ − Im
∑

σ

G+
σ (ω)/π , (47)

as calculated from the EOM. The inset of Fig. 4 shows
the Kondo peak at temperatures T . T ∗

K . The local

-10 -5 0 5 10
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103

-5 5

0

1

MWL, T=10-4Γ

MWL, T=Γ

Self-consistent

χΓ/(gµ
B
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E
d
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Exact

MWL

FIG. 3: Data from Fig. 2 compared to the spin susceptibility
given by the MWL approximation in the temperature range
from T = 1Γ down to T = 10−4Γ. The inset shows the
MWL susceptibilities only, on a linear scale, allowing for the
negative values.
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FIG. 4: (Color online) The scaling of the local density of
states at the Fermi level as function of the reduced tempera-
ture T/T ∗

K , is demonstrated by plotting ρ(ω = 0, T ) for three
different values of the renormalized single-electron energy on
the dot, Ed [Eq. (43)]. The dashed line at ρ = 2/(πΓ)
corresponds to the limit dictated by the Friedel sum rule at
Ed/Γ ≪ −1. The inset shows the melting of the Kondo peak
as the temperature is increased at fixed Ed/Γ = −5. Temper-
ature values represented in the inset are marked by arrows in
the main graph.

density of states at the Fermi energy follows the univer-
sal temperature dependence, as can be seen in Fig. 4,
with the same scaling factor T ∗

K as the spin susceptibil-
ity (compare to the inset of Fig. 2). The appearance of a
single scale determining the low energy properties of the
system is another hallmark4 of the Kondo effect which is
captured by the fully self-consistent EOM technique.
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VI. PERTURBATION EXPANSION IN THE

DOT-NETWORK COUPLINGS

The EOM technique is unfortunately not a systematic
expansion. It is therefore very interesting to compare
its results with those given by a direct expansion. Here
we expand the EOM Green function up to second-order
in the dot-network couplings Jnσ. For compactness, we
confine ourselves to the case U → ∞, and assume for
simplicity that the non-interacting self-energy has just
an energy-independent imaginary part, i.e., Σσ(ω) =
−iΓσ. By comparing with the direct perturbation the-
ory expansion22,23 we find that, up to second-order in
Jnσ, our EOM result for the dot Green function is exact.
On the other hand, the Green function derived in Ref. 5
(which does not include all correlations resulting from the
truncated EOM) violates the second-order perturbation
theory result, and in fact, predicts a Kondo anomaly in
this order (which should not be there).
The U → ∞ Green function of the EOM is given

by Eqs. (28), (29), (30), and (32). Since the non-
interacting self-energy Σσ, and consequently the width
Γσ are second-order in the coupling Jnσ, the expansion
of the Green function reads

G(0)
σ (z) =

δn
(0)
σ̄

z − ǫσ
, (48)

and

G(2)
σ (z) =

δn
(2)
σ̄ − P

(2)
σ̄ (z1)

z − ǫσ

+ G(0)
σ (z)

Iσ̄(z1) + Σσ(z)

z − ǫσ
, (49)

where we have denoted

〈nσ̄〉 ≡ 1− δnσ̄ , ǫσ = ǫ0 + σh (50)

and where the superscript (k) denotes the contribution
of order k in the couplings. The function P (2) is found
by using the zeroth-order of the Green function in Eq.
(32),

P (2)
σ (z) = G(0)

σ (z)
[
Iσ(z)− I−σ (ǫσ)

− f(ǫσ)Σσ(z) + f(ǫσ)Σ
−
σ (ǫσ)

]
. (51)

Using the identities

I−σ (ǫσ)− f(ǫσ)Σ
−
σ (ǫσ) = Re

[
Iσ(ǫσ)− f(ǫσ)Σσ(ǫσ)

]
(52)

and

G
(0)
σ̄ (z1) = δn(0)

σ G(0)
σ (z)/δn

(0)
σ̄ , (53)

Eq. (49) takes the form

G(2)
σ (z) =

δn
(2)
σ̄

z − ǫσ
+

−δn
(0)
σ [Iσ̄(z1)− f(ǫσ̄)Σσ̄(z1)− Re{Iσ̄(ǫσ̄)− f(ǫσ̄)Σσ̄(ǫσ̄)}] + δn

(0)
σ̄ [Iσ̄(z1) + Σσ(z)]

(z − ǫσ)2
. (54)

In order to complete the second-order calculation, we

need to find the occupation numbers δn
(0)
σ and δn

(2)
σ [see

Eq. (50)]. From Eq. (48) we find

〈nσ〉(0) =
f(ǫσ)[1 − f(ǫσ̄)]

1− f(ǫσ)f(ǫσ̄)
. (55)

The second-order correction to the occupation number,

δn
(2)
σ ≡ −〈nσ〉(2), is obtained by integrating over the

Fermi function multiplied by the second-order correction

to the density-of-states, ρ
(2)
σ (ω). The latter reads

ρ(2)σ (ω) ≡ G
+(2)
σ (ω)−G

−(2)
σ (ω)

−2πi
=δ(ω − ǫσ)

(
δn

(2)
σ̄ +

[
〈nσ〉(0) − 〈nσ̄〉(0)

] ∂Re Iσ̄(ǫσ̄)

∂ǫ0

)
− δ′(ω − ǫσ)δn

(0)
σ̄ Re Iσ̄(ǫσ̄)

+
Γσ + (Γσ̄ − Γσ) 〈nσ̄〉(0) + Γσ̄ f(ω − ǫσ + ǫσ̄)

[
〈nσ〉(0) − 〈nσ̄〉(0)

]

π(ω − ǫσ)2
. (56)
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Apart from the terms representing the second-order modifications of the singularity at ǫσ [the first and second
members of Eq. (56)], our result reproduces the one of Ref. 22, for the case where the width Γσ is spin-independent,

i.e., Γσ = Γσ̄. Note that this density of states remains finite at all temperatures. The Kondo divergence of ρ
(k)
σ (0) in

the limit T → 0 appears only at k ≥ 4 [see Ref. 22]. Using the second-order correction to the density of states, we
find

〈nσ〉(2) =
∫

f(ω)ρ(2)σ (ω)dω =
(
〈nσ̄〉(0) − 1

)
Re

∂Iσ(ǫσ)

∂ǫσ
+

∂〈nσ〉(0)
∂ǫσ

Re Iσ̄(ǫσ̄) +
∂〈nσ〉(0)

∂ǫσ̄
Re Iσ(ǫσ) . (57)
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FIG. 5: The equilibrium occupation number n0 =
∑

σ
〈nσ〉

for the same parameters as in Fig. 1, and D = 100Γ (since
second-order perturbation theory does not scale with Ed,
the bandwidth has to be specified), calculated from the self-
consistently truncated EOM (solid lines), and by perturbation
theory to first-order in Γ, Eqs. (55) and (57) (dashed line).
The perturbational result diverges at ǫ0 = 0.

This result is identical to the U → ∞ limit of Eq. (5)
in Ref. 23 which was obtained by a direct perturba-
tion expansion. Figure 5 depicts the total occupation,
n0 =

∑
σ〈nσ〉, as function of ǫ0, as found from the EOM

technique, and as computed from Eqs. (55) and (57) to
first order in the width. The two curves differ by a few
percents. The comparison with the exact result is carried
out in Sec. IV.

VII. CONCLUSIONS

We have presented a solution for the Green function
of an interacting quantum dot embedded in a general
non-interacting network. Our solution is derived within
the EOM technique, taking into account exactly all re-
sulting correlations once those equations are truncated.
We have tested our solution by analyzing several limit-
ing cases, and by comparing several physical properties

derived from that solution with other results available by
the Bethe ansatz method and by NRG computations.

We have found that the EOM Green function is
temperature-independent at the particle-hole symmetric
point (where h = 0 and 2ǫ0 + U = 0). We have found
that this deficiency of the EOM is related to a disconti-
nuity in the imaginary part of the interacting self-energy
at that particular point. However, this imaginary part
obeys the Fermi liquid unitarity requirement away from
this special point, at zero temperature. In contrast, even
away from the particle-hole symmetric point, the EOM
result fails to satisfy the Friedel sum-rule deep inside the
Kondo regime, as we have shown explicitly in the infinite
interaction limit.

Albeit these problems, the EOM solution reproduces
faithfully the low-temperature scaling of the spin sus-
ceptibility and the density of states at the Fermi level,
though with an energy scale T ∗

K which differs from
the true Kondo temperature [ cf. Eq. (45)]. Zero-
temperature results are in excellent agreement with the
exact Bethe ansatz solution, except for the Kondo corre-
lated regime. As the temperature is raised, the EOM
results become more and more quantitatively correct,
and approach high-temperature asymptotics known rig-
orously from perturbation theory and NRG studies. We
have expanded the EOM Green function to second order
in the dot-network coupling and found an exact agree-
ment with direct calculations by perturbation theory.
Most importantly, we have found that it is crucial to in-
clude in the EOM solution all the correlations emerging
from the truncated scheme. Ignoring part of these corre-
lations, as is ubiquitously done in such studies, results in
erroneous behaviors of various physical quantities.

Hence we conclude that the method examined in this
paper can provide a reasonable description of a quantum
dot system over a wide parameter range, provided that
the self-consistency conditions inherent to this technique
are fully taken into account.

We thank A. Schiller for helpful comments. This
project was carried out in a center of excellence supported
by the Israel Science Foundation.
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APPENDIX A: EOM FOR THE FINITE U CASE

Here we extend the derivations of Refs. 9, 13, and 18, carried out for an infinite repulsive interaction, to the case in
which U is finite. In addition, we allow for a Zeeman field, assuming that the quantization axes of the spins are the
same on the dot and on the leads (but the g-factors may be different). The Hamiltonian of the our system is given in
Eq. (1).
The Fourier transform of the EOM for the Green function defined in Eq. (5) can be written in two alternative

forms8 (both will be used in the following)

z≪A;B≫z = 〈[A,B]+〉+≪[A,H]− ;B≫z = 〈[A,B]+〉 −≪A; [B,H]−≫z . (A1)

It follows that the EOM for the dot Green function is

[z − ǫ0 − σh]Gσ = 1 + U≪ndσ̄dσ; d
†
σ≫−

∑

n

Jnσ≪anσ; d
†
σ≫ , (A2)

where σ̄ is the spin direction opposite to σ. Here and in the following we frequently omit for brevity explicit indications
of the argument z. We first consider the last term on the right-hand-side of Eq. (A2). The EOM for the Green function
appearing there is

(z − εnσ)≪anσ; d
†
σ≫ = −

∑

m

Jnm≪amσ; d
†
σ≫− J∗

nσGσ . (A3)

Introducing the inverse matrix

Mnmσ(z) ≡
[
(z −Hσ

net)
−1

]
nm

, (A4)

where Hσ
net is the part of H net pertaining to the spin direction σ, we find

≪anσ; d
†
σ≫ = −

∑

m

Mnmσ(z)J
∗
mσ Gσ . (A5)

Note that M is the Green function matrix of the network in the absence of the coupling to the dot. Using Eq. (A5),
we find that the last term on the right-hand-side of Eq. (A2) can be put in the form

−
∑

n

Jnσ≪anσ; d
†
σ≫ = ΣσGσ , (A6)

where

Σσ(z) ≡
∑

nm

JnσMnmσ(z)J
∗
mσ (A7)

is the self-energy of the dot Green function coming from the coupling to the (non-interacting) network. Namely, it is
the dot self-energy for the U = 0 case.18 As such, it can always be calculated, at least in principle (see for example
Refs. 18 and 37).
We now turn to the interacting part of the EOM for the dot Green function [the second term on the right-hand-side

of Eq. (A2)]. The EOM for the 4-operator Green function appearing there reads

[z − ǫ0 − σh− U ]≪ndσ̄dσ; d
†
σ≫ = 〈ndσ̄〉 −

∑

n

[
Jnσ≪anσndσ̄; d

†
σ≫

+ Jnσ̄≪d†σ̄anσ̄dσ; d
†
σ≫− J∗

nσ̄≪a†nσ̄dσ̄dσ; d
†
σ≫

]
, (A8)

and gives rise to three new 4-operators Green functions (on the right-hand-side here). Their EOM are

[z − εnσ]≪anσndσ̄; d
†
σ≫ = −

∑

m

Jnm≪amσndσ̄; d
†
σ≫− J∗

nσ≪ndσ̄dσ; d
†
σ≫

−
∑

m

[
Jmσ̄≪anσd

†
σ̄amσ̄; d

†
σ≫− J∗

mσ̄≪a†mσ̄dσ̄anσ; d
†
σ≫

]
, (A9)



12

[z1 − εnσ̄]≪d†σ̄anσ̄dσ; d
†
σ≫ = 〈d†σ̄anσ̄〉 −

∑

m

Jnm≪d†σ̄amσ̄dσ; d
†
σ≫− J∗

nσ̄≪ndσ̄dσ; d
†
σ≫

+
∑

m

[
J∗
mσ̄≪a†mσ̄anσ̄dσ; d

†
σ≫− Jmσ≪d†σ̄anσ̄amσ; d

†
σ≫

]
, (A10)

[−z2 + εnσ̄]≪a†nσ̄dσ̄dσ; d
†
σ≫ = 〈a†nσ̄dσ̄〉+

∑

m

J∗
nm≪a†mσ̄dσ̄dσ; d

†
σ≫+ Jnσ̄≪ndσ̄dσ; d

†
σ≫

−
∑

m

[
Jmσ≪a†nσ̄dσ̄amσ; d

†
σ≫− Jmσ̄≪a†nσ̄dσamσ̄; d

†
σ≫

]
, (A11)

where we have introduced the definitions

z1 ≡ z − 2σh, z2 ≡ −z + 2ǫ0 + U . (A12)

The EOM (A9)–(A11) include 4-operator Green functions in which only two of the operators are dot operators. Those
are decoupled as detailed in Eq. (8). One then finds

−
∑

n

Jnσ≪anσnσ̄; d
†
σ≫ =Σσ≪nσ̄dσ; d

†
σ≫+

∑

nmm′

JnσMnmσ≪amσ; d
†
σ≫

[
Jm′σ̄〈d†σ̄am′σ̄〉 − J∗

m′σ̄〈a†m′σ̄dσ̄〉
]
, (A13)

−
∑

n

Jnσ̄≪d†σ̄anσ̄dσ; d
†
σ≫ =(1 + ΣσGσ)Pσ̄(z1) + Σσ̄(z1)≪nσ̄dσ; d

†
σ≫−GσQσ̄(z1) , (A14)

∑

n

J∗
nσ̄≪a†nσ̄dσ̄dσ; d

†
σ≫ =(1 + ΣσGσ)Pσ̄(z2)− Σσ̄(z2)≪nσ̄dσ; d

†
σ≫+GσQσ̄(z2) , (A15)

where we have introduced

Pσ(z) ≡ −
∑

nm

JnσMnmσ(z)〈d†σamσ〉 = −
∑

mn

〈a†mσdσ〉Mmnσ(z)J
∗
nσ , (A16)

Qσ(z) ≡
∑

nmm′

JnσMnmσ(z)〈a†m′σamσ〉J∗
m′σ =

∑

nmm′

Jm′σ〈a†mσam′σ〉Mmnσ(z)J
∗
nσ . (A17)

The second equality in each of Eqs. (A16) and (A17) is justified below.
Examining Eqs. (A13), (A16) and (A17) reveals that one needs to find thermal averages of two types, the ones

belonging to two network operators, 〈a†mσam′σ〉, and the ones consisting of a dot and a network operator, 〈d†σamσ〉.
These are found [see Eq. (7)] from the corresponding Green’s functions, whose EOM are given by Eq. (A3) and

(z − εnσ)≪dσ; a
†
nσ≫ =−

∑

m

≪dσ; a
†
mσ≫Jmn − JnσGσ , (A18)

(z − εmσ)≪amσ; a
†
nσ≫ = δmn −

∑

m′

Jmm′≪am′σ; a
†
nσ≫− J∗

mσ≪dσ; a
†
nσ≫ . (A19)

Their solutions in terms of the inverse matrix Mnmσ [see Eq. (A4)] are

≪dσ; a
†
nσ≫ = −

∑

m

JmσMmnσGσ , (A20)

≪amσ; a
†
nσ≫ = Mmnσ +

∑

ln′

MmlσJ
∗
lσJn′σMn′nσGσ . (A21)

Employing these solutions to obtain the thermal averages appearing in Eq. (A13), we find
∑

m′ Jm′σ̄〈d†σ̄am′σ̄〉 =∑
m′ J∗

m′σ̄〈a
†
m′σ̄dσ̄〉. Consequently, the terms in the square brackets of Eq. (A13) are cancelled. Next, we use the first

equality in each of the definitions (A16) and (A17) together with the auxiliary Green functions (A5) and (A21), to
find P and Q in terms the dot Green function G,

Pσ(z) = i

∮

C

dz′

2π
f(z′)Gσ(z

′)
∑

nm

JnσJ
∗
mσ

[
(z −Hσ

net)
−1(z′ −Hσ

net)
−1

]
nm

, (A22)

Qσ(z) = i

∮

C

dz′

2π
f(z′) [1 + Σσ(z

′)Gσ(z
′)]

∑

nm

JnσJ
∗
mσ

[
(z −Hσ

net)
−1(z′ −Hσ

net)
−1

]
nm

, (A23)



13

where we have used Eq. (A4). Since

(z −Hσ
net)

−1(z −Hσ
net)

−1 =
(z′ −Hσ

net)
−1 − (z −Hσ

net)
−1

z − z′
, (A24)

we can use Eq. (A7) for the non-interacting self-energy, to write the functions P and Q in terms of that self-energy,

Pσ(z) = lim
η′→0

i

2π

∫
dω

f(ω)

z − ω

(
Gσ(ω + iη′) [Σσ(ω + iη′)− Σσ(z)]−Gσ(ω − iη′) [Σσ(ω − iη′)− Σσ(z)]

)

≡ i

2π

∮

C

f(w)Gσ(w)
Σσ(w) − Σσ(z)

z − w
dw ,

Qσ(z) = lim
η′→0

i

2π

∫
dω

f(ω)

z − ω

×
(
[1 + Σσ(ω + iη′)Gσ(ω + iη′)] [Σσ(ω + iη′)− Σσ(z)]− [1 + Σσ(ω − iη′)Gσ(ω − iη′)] [Σσ(ω − iη′)− Σσ(z)]

)

≡ i

2π

∮

C

f(w)[1 + Σσ(w)Gσ(w)]
Σσ(w) − Σσ(z)

z − w
dw . (A25)

Here and elsewhere the imaginary part of z is always
greater than η′, so that the contour C never encircles
the pole at w = z. Note that using the same procedure
employing the second equalities in Eqs. (A16) and (A17)
gives again Eqs. (A22) and (A23), thus proving that the
two definitions of P and Q in Eqs. (A16) and (A17) are
equivalent. Equation (A8) can be now easily solved. In-
serting the solution into Eq. (A2) leads to the expression
for the dot Green function, Eq. (9).
In treating the functions P and Q in Sec. III A we have

employed several properties of the complex integrals ap-
pearing in Eqs. (A25). Consider for example the integral

i

2π

∮

C

G(w)
Σ(w) − Σ(z)

z − w
dw . (A26)

Since G(w) and Σ(w) have no singularities except for a
cut along the real axis, it is expedient to complete each
half of the contour C by a large-radius semi-circle in the
upper and lower half-planes. Then, by the residue the-
orem, Eq. (A26) vanishes provided that G(w) falls as
w−1 or faster at w → ∞. This means that the Fermi
function f(w) in the definition of P can be replaced by
f(w) + const. Another important case is when G(w) is

replaced by 1 in Eq. (A26). In this case the contribu-
tion of the semi-circles does not vanish, and the integral
(A26) gives Σ(z).

An alternative to the fully self-consistent treatment in-
vestigated in this paper has been proposed in Ref. 5.
There, the averages of the form 〈d†σamσ〉 were ignored,
and those of the type 〈a†mσam′σ〉 were approximated by
δmm′〈a†mσamσ〉. Namely, Hnet-dot was put to zero in the
calculation of the averages. Upon such an approxima-
tion, Pσ(z) ≃ 0, and

Qσ(z) ≃
∫

Im
[Σσ(ω − iη)

π

] f(ω)

z − ω
dω , (A27)

reproducing Eq. (8) of Ref. 5. Another approximation of
Eqs. (A22) and (A23), originally due to Lacroix,11 has
been recently analyzed in the context of quantum dots
in Ref. 18. In this approximation one assumes the dot
Green function to vary smoothly enough over the inte-
gration regimes in Eqs. (A22) and (A23), so that it can
be taken out of the integrals. This ansatz reduces Eq. (9)
of the text to a quadratic form. These two approximate
solutions are discussed in Secs. III and IV.

APPENDIX B: DERIVATION OF THE POLYNOMIAL FUNCTION R

As explained in Sec. IV, the function

R(z) ≡ Φσ(z)Φ̃σ(z)−Xσ(z)X̃σ(z)

= i(Γσ + Γσ̄)
[
z − ǫ0 − iΓσ̄ − Iσ(z + σh)

][
〈1− ndσ̄〉 −

Γσ̄

π

∫
dω

f(ω)G−
σ̄ (ω)

z + σ̄h− ω

]

− i(Γσ + Γσ̄)
[
z − ǫ0 + iΓσ − Iσ̄(z + σ̄h)

][
〈1− ndσ〉 −

Γσ

π

∫
dω

f(ω)G+
σ (ω)

z + σh− ω

]

−
(
Γσ + Γσ̄

)2[〈1 − ndσ̄〉〈1− ndσ〉 −
Γσ̄

π

∫
dω

f(ω)G−
σ̄ (ω)

z + σ̄h− ω
× Γσ

π

∫
dω

f(ω)G+
σ (ω)

z + σh− ω

]
(B1)
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is non-singular across the real axis, and its only singular point is at z = ∞. This observation enables one to solve for

the Green function in terms of the functions Φ and Φ̃. Here we examine R(z) in some detail, and also derive the first
two terms of its polynomial expansion.
In the limit z → ∞, the function Iσ(z), Eq. (31), is given by

Iσ(z) ∼
Γσ

π
ln

Dσ

z
. (B2)

The z → ∞ limit of the integrals appearing in Eq. (B1) has to be taken with care. We write the Green
functions appearing in the integrands there in the form G±

σ (ω) = ReG+
σ (ω) ± i ImG+

σ (ω), and use 〈ndσ〉 =
−(1/π)

∫
dωf(ω) ImG+

σ (ω) to obtain

Γσ

π

∫
dω

f(ω)G±
σ (ω)

z − ω
∼ ∓i

Γσ〈ndσ〉
z

+Aσ(z) , (B3)

where

Aσ(z) =
Γσ

π

∫
dω

f(ω)ReG+
σ (ω)

z − ω
. (B4)

Inserting Eqs. (B2) and (B3) into Eq. (B1), the terms which survive the z → ∞ limit are

R(z) ∼ (Γσ + Γσ̄)
2
(
〈ndσ〉+ 〈ndσ̄〉 − 〈ndσ〉〈ndσ̄〉

)
+ i(Γσ + Γσ̄)

(
z − ǫ0

)
〈ndσ − ndσ̄〉

+ i(Γσ + Γσ̄)
(
z
(
Aσ(z)−Aσ̄(z)

)
− 〈1− ndσ̄〉

Γσ

π
ln

Dσ

z
+ 〈1− ndσ〉

Γσ̄

π
ln

Dσ̄

z

)
. (B5)

According to the discussion in Sec. IV, the terms logarithmic in z have to disappear. The integral giving Aσ(z), Eq.
(B4), is well behaved on the positive ω axis, since then for large ω the Fermi function makes it convergent. For very
large negative ω values, ReG+

σ (ω) → 〈1− ndσ̄〉/ω, and as a result, the contribution from that part of the integration
to Aσ(z) is 〈1 − ndσ̄〉(Γσ/π)(1/z) ln(ζσ/z), where ζσ . Dσ. Hence, the terms logarithmic in z are cancelled. In our
calculations, we have used

Aσ(z) ∼ −Γσ

π
〈1 − ndσ̄〉 ln

z

Dσ
+

bσ
z

, (B6)

and have determined the coefficient bσ self-consistently (see next Appendix). In this way we find

R(z) = (Γσ + Γσ̄)
2
[
〈ndσ〉+ 〈ndσ̄〉 − 〈ndσ〉〈ndσ̄〉

]
+ i(Γσ + Γσ̄)

[(
z − ǫ0

)
〈ndσ − ndσ̄〉+ bσ − bσ̄

]
. (B7)

APPENDIX C: DETAILS OF THE EXACT SOLUTION

This Appendix is devoted to the analysis of the exact solution for the self-consistent EOM, and in particular to the
determination of the unknown coefficients bσ [see Eqs. (B6) and (B7)], a and ã [see Eqs. (42)]. This is accomplished
by expanding the solution at large frequencies, and equating the coefficients with those of the desired functions Φ and

Φ̃. We give the details for Φ; those of the ‘tilde’ solution are obtained analogously.
As has been the case for the integral (B3), the large negative part of the integral defining Mσ(z) has to be taken

with care. To this end we write

Mσ(z) ≡
∫ (

− dω

2πi

) lnHσ(ω)

z − ω
=

∫ +∞

−∞

(
− dω

2πi

) lnHσ(ω)−Θ(−Dσ̄ − ω)Fσ(ω)(−2πi)

z − ω
+

∫ −Dσ̄

−∞

Fσ(ω) dω

z − ω
, (C1)

where the function Fσ(ω) is defined in such a way that the use of the geometric series 1/(z−ω) = z−1+z−2ω+O(z−3)
in the first integral of Eq. (C1) results in convergent integrals. It is sufficient to include in Fσ(ω) the most slowly-
decaying terms of lnH(ω)/(−2πi), which are obtained by expanding H(ω) for large negative ω,

Fσ(ω) = −Γσ̄

πω
− Γσ̄

πω2

[
Γσ̄

π
ln

Dσ̄

|ω| + ǫ0 − i(Γσ + Γσ̄)〈ndσ〉+ iΓσ̄

]
. (C2)
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[In this expansion one has to include terms of the order O(ω−2) because of the linear term in the prefactor in Eq.
(42).] Using Eq. (C2), the second integral in Eq. (C1) is obtained explicitly, and then expanded up to order z−2,

∫ −Dσ̄

−∞

Fσ(ω) dω

z − ω
∼Γσ̄

πz
ln

z

Dσ̄
− 1

2

(
Γσ̄

πz
ln

z

Dσ̄

)2

+
Γ2
σ̄

π2 Dσ̄ z
− Γ2

σ̄

6 z2

+
Dσ̄Γσ̄

π z2
− Γσ̄

π
[ǫ0 − i(Γσ + Γσ̄)〈ndσ〉+ iΓσ̄]

[
1

z Dσ̄
− 1

z2
ln

z

Dσ̄

]
. (C3)

As a result, the asymptotic expansion of the function Mσ(z) becomes

Mσ(z) ∼
[
ασ + (Γσ̄/π) ln(z/Dσ̄)

]
/z+

{
βσ + (Γσ̄/π)

[
ǫ0 − i(Γσ + Γσ̄)〈ndσ〉+ iΓσ̄

]
ln(z/Dσ̄)− (Γσ̄/π)

2(1/2) ln2(z/Dσ̄)
}
/z2 , (C4)

where the coefficients ασ and βσ are given by

ασ =
Γ2
σ̄

π2Dσ̄
− Γσ̄

πDσ̄

[
ǫ0 − i(Γσ + Γσ̄)〈ndσ〉+ iΓσ̄

]
+

∫ +∞

−∞

[i lnHσ(ω)/(2π)−Θ(−Dσ̄ − ω)Fσ(ω)] dω , (C5)

βσ = −Γ2
σ̄

6
+

Γσ̄Dσ̄

π
+

∫ +∞

−∞

ω [i lnHσ(ω)/(2π)−Θ(−Dσ̄ − ω)Fσ(ω)] dω . (C6)

An analogous calculation gives F̃σ(ω) = Fσ̄(ω)
∗, leading to

M̃σ(z) ∼
[
α̃σ + (Γσ/π) ln(z/Dσ)

]
/z+

{
β̃σ + (Γσ/π)

[
ǫ0 + i(Γσ + Γσ̄)〈ndσ̄〉 − iΓσ

]
ln(z/Dσ)− (Γσ/π)

2(1/2) ln2(z/Dσ)
}
/z2 , (C7)

α̃σ =
Γ2
σ

π2Dσ
− Γσ

πDσ

[
ǫ0 + i(Γσ + Γσ̄)〈ndσ̄〉 − iΓσ

]
+

∫ +∞

−∞

[
i ln H̃σ(ω)/(2π)−Θ(−Dσ − ω)F̃σ(ω)

]
dω , (C8)

β̃σ =− Γ2
σ

6
+

ΓσDσ

π
+

∫ +∞

−∞

ω
[
i ln H̃σ(ω)/(2π)−Θ(−Dσ − ω)F̃σ(ω)

]
dω . (C9)

Finally, we use Eqs. (C4) and (C7) in Eq. (42), and then compare term by term with the expansion of Eq. (33).
This procedure determines the coefficients a and ã,

a = ασ + ǫ0 − iΓσ , ã = α̃σ + ǫ0 + iΓσ̄ , (C10)

and gives the self-consistency equations

bσ̄ + iΓσ̄〈ndσ̄〉 = i (Γσ + Γσ̄)
−1 [

βσ − aασ + α2
σ/2 + Γσ̄h/(2π)

]
, (C11)

bσ − iΓσ〈ndσ〉 = −i (Γσ + Γσ̄)
−1 [

β̃σ − ã α̃σ + α̃2
σ/2− Γσh/(2π)

]
. (C12)

In the case of a full spin-symmetry (including h = 0),

one has α̃ = α∗, β̃ = β∗, and ã = a∗, and then Eq. (C11)
and Eq. (C12) become complex conjugate.
For a given set of parameters, Eqs. (C11) and (C12)

are solved numerically for bσ and 〈ndσ〉 by an iterative
Newton-Raphson algorithm. The initial values are cho-
sen from the solution of the non-interacting (U = 0)
problem.
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