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Abstract

A practical computational scheme based on time-dependent density functional theory (TDDFT)

and ultrasoft pseudopotential (USPP) is developed to study electron dynamics in real time. A

modified Crank-Nicolson time-stepping algorithm is adopted, under planewave basis. The scheme

is validated by calculating the optical absorption spectra for sodium dimer and benzene molecule.

As an application of this USPP-TDDFT formalism, we compute the time evolution of a test electron

packet at the Fermi energy of the left metallic lead crossing a benzene-(1,4)-dithiolate junction. A

transmission probability of 5-7%, corresponding to a conductance of 4.0-5.6 µS, is obtained. These

results are consistent with complex band structure estimates, and Green’s function calculation

results at small bias voltages.

PACS numbers: 71.15.-m, 73.63.-b, 78.67.-n
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I. INTRODUCTION

The development of molecular scale electronic devices has attracted a great deal of interest

in the past decade, although major experimental and theoretical challenges still exist.1,2,3,4,5

To date precise experimental control of molecular conformation is lacking, resulting in large

uncertainties in the measured conductance. On the theory side, while the Green’s function

(GF) method has achieved many successes in describing electron transport at the meso6,7 and

molecular8,9,10,11,12 scales, issues such as dynamical electron correlation and large electron-

phonon coupling effects13,14 are far from fully resolved. It is therefore desirable to exploit

alternative approaches for comparison with the mainstream GF calculations. In this paper,

we describe a first step towards this goal by computing how an electron propagates through

a molecular junction in real time, based on the time-dependent density functional theory15

(TDDFT).

Density functional theory (DFT)16 with the Kohn-Sham reference kinetic energy func-

tional of a fictitious non-interacting electron system17 is a leading method for treating many

electrons in solids and molecules.18. While initially formulated to describe only the elec-

tronic ground state16,17, it has been rigorously extended by Runge and Gross15 to treat

time-dependent, driven systems (excited states). TDDFT is therefore a natural theoreti-

cal platform for studying electron conduction at the nanoscale. There are two flavors in

which TDDFT is implemented. One is direct numerical integration19,20,21,22,23,24 of the time-

dependent Kohn-Sham (TDKS) equations. The other is a Gedanken experiment of the

former with an added assumption of infinitesimal time-dependent perturbation, so a linear

response function may be first derived in closed form25,26,27, which is then evaluated numer-

ically. These two implementations should give exactly the same result when the external

perturbation field is infinitesimal. The latter implementation can be computationally more

efficient once the linear-response function has been analytically derived, while the former

can treat non-infinitesimal perturbations and arbitrary initial states.

A key step of the TDDFT dynamics is updating of the Kohn-Sham effective potential

by the present excited-state charge density ρ(x, t), V̂KS(t) = V̂KS[ρ(x, t), ...]. This is what

sets TDDFT apart from the ground-state DFT estimate of excitation energies, even when

TDDFT is applied in its crudest, so-called adiabatic approximation,25 whereby the same

exchange-correlation density functional form as the ground-state DFT calculation is used
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(for example, the so-called TDLDA approximation uses exactly the same Ceperley-Alder-

Perdew-Zunger functional28,29 as the ground-state LDA calculation.) This difference in ex-

citation energies comes about because in a ground-state DFT calculation, a virtual orbital

such as LUMO (lowest unoccupied molecular orbital) experiences an effective potential due

to N electrons occupying the lowest N orbitals; whereas in a TDDFT calculation, if one

electron is excited to a LUMO-like orbital, it sees N − 1 electrons occupying the lowest

N − 1 orbitals, plus its own charge density. Also, the excitation energy is defined by the

collective reaction of this coupled dynamical system to time-dependent perturbation (pole

in the response function)30, rather than simple algebraic differences between present vir-

tual and occupied orbital energies. For rather involved reasons beyond what is discussed

here, TDDFT under the adiabatic approximation gives significantly improved excitation

spectra25,26, although there are still much to be desired. Further systematic improvements

to TDDFT such as current density functional31 and self-interaction correction32 have already

made great strides.

Presently, most electronic conductance calculations based on the Landauer transmission

formalism33,34 have assumed a static molecular geometry. In the Landauer picture, dis-

sipation of the conducting electron energy is assumed to take place in the metallic leads

(electron reservoirs), not in the narrow molecular junction (channel) itself.35 Inelastic scat-

tering, however, does occur in the molecular junctions themselves, the effects appearing as

peaks or dips in the measured inelastic electron tunneling spectra (IETS)36 at molecular

vibrational eigen-frequencies. Since heating is always an important concern for high-density

electronics, and because molecular junctions tend to be mechanically more fragile compared

to larger, semiconductor-based devices, the issue of electron-phonon coupling warrants de-

tailed calculations36,37 (here we use the word phonon to denote general vibrations when

there is no translational symmetry). In the case of long π-conjugated polymer chain junc-

tions, strong electron-phonon coupling may even lead to new elementary excitations and

spin or charge carriers, called soliton/polaron13,14,38,39,40, where the electronic excitation is

so entangled with phonon excitation that separation is no longer possible.

In view of the above background, there is a need for efficient TDDFT implementations

that can treat complex electron-electron and electron-phonon interactions in the time do-

main. Linear-response type analytic derivations can become very cumbersome, and for some

problems41 may be entirely infeasible. A direct time-stepping method19,20,21,22,23,24 analogous
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to molecular dynamics for electrons as well as ions may be more flexible and intuitive in

treating some of these highly complex and coupled problems, if the computational costs can

be managed. Such a direct time-stepping code also can be used to double-check the correct-

ness of analytic approaches such as the non-equilibrium Green’s function (NEGF) method

and electron-phonon scattering calculations36,37, most of which explicitly or implicitly use

the same set of TDDFT approximations (most often an adiabatic approximation such as

TDLDA).

Two issues are of utmost importance when it comes to computational cost: choice

of basis and pseudopotential. For ground-state DFT calculations that involve a signifi-

cant number of metal atoms (e.g. surface catalysis), the method that tends to achieve

the best cost-performance compromise is the ultrasoft pseudopotential (USPP)42,43,44 with

planewave basis, and an independent and theoretically more rigorous formulation, the projec-

tor augmented-wave (PAW)45 method. Compared to the more traditional norm-conserving

pseudopotential approaches, USPP/PAW achieve dramatic cost savings for first-row p- and

d-elements, with minimal loss of accuracy. USPP/PAW are the workhorses in popular codes

such as VASP46 and DACAPO47,48,49. We note that similar to surface catalysis problems,

metal-molecule interaction at contact is the key for electron conduction across molecular

junctions. Therefore it seems reasonable to explore how TDDFT, specifically TDKS under

the adiabatic approximation, performs in the USPP/PAW framework, which may achieve

similar cost-performance benefits. This is the main distinction between our approach and

the software package Octopus22,24, a ground-breaking TDDFT program with direct time

stepping, but which uses norm-conserving Troullier-Martins (TM) pseudopotential50, and

real-space grids. We will address the theoretical formulation of TD-USPP (TD-PAW) in

sec. II, and the numerical implementation of TD-USPP in the direct time-stepping flavor

in sec. III.

To validate that the direct time-integration USPP-TDDFT algorithm indeed works, we

calculate the optical absorption spectra of sodium dimer and benzene molecule in sec. IV and

compare them with experimental results and other TDLDA calculations. As an application,

we perform a computer experiment in sec. V which is a verbatim implementation of the

original Landauer picture34,35. An electron wave pack comes from the left metallic lead (1D

Au chain) with an energy that is exactly the Fermi energy of the metal (the Fermi electron),

and undergoes scattering by the molecular junction (benzene-(1,4)-dithiolate, or BDT). The
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probability of electron transmission is carefully analyzed in density vs. x, t plots. The

point of this exercise is to check the stability and accuracy of the time integrator, rather

than to obtain new results about the Au-BDT-Au junction conductance. We check the

transmission probability thus obtained with simple estimate from complex band structure

calculations51,52, and Green’s function calculations at small bias voltages. Both seem to be

consistent with our calculations. Lastly, we give a brief summary in sec. VI.

II. TDDFT FORMALISM WITH ULTRASOFT PSEUDOPOTENTIAL

The key idea of USPP/PAW42,43,44,45 is a mapping of the true valence electron wave-

function ψ̃(x) to a pseudowavefunction ψ(x): ψ̃ ↔ ψ, like in any pseudopotential scheme.

However, by discarding the requirement that ψ(x) must be norm-conserved (〈ψ|ψ〉 = 1)

while matching ψ̃(x) outside the pseudopotential cutoff, a greater smoothness of ψ(x) in the

core region can be achieved; and therefore less planewaves are required to represent ψ(x). In

order for the physics to still work, one must define augmentation charges in the core region,

and solve a generalized eigenvalue problem

Ĥ|ψn〉 = εnŜ|ψn〉, (1)

instead of the traditional eigenvalue problem, where Ŝ is a Hermitian and positive definite

operator. Ŝ specifies the fundamental measure of the linear Hilbert space of pseudowave-

functions. Physically meaningful inner product between two pseudowavefunctions is always

〈ψ|Ŝ|ψ′〉 instead of 〈ψ|ψ′〉. For instance, 〈ψm|ψn〉 6= δmn between the eigenfunctions of (1)

because it is actually not physically meaningful, but 〈ψm|Ŝ|ψn〉 ≡ 〈ψ̃m|ψ̃n〉 = δmn is. (Please

note that ψ̃ is used to denote the true wavefunction with nodal structure, and ψ to denote

pseudowavefunction, which are opposite in some papers.)

Ĥ consists of the kinetic energy operator T̂ , ionic local pseudopotential V̂L, ionic nonlocal

pseudopotential V̂NL, Hartree potential V̂H, and exchange-correlation potential V̂XC,

Ĥ = T̂ + V̂L + V̂NL + V̂H + V̂XC. (2)

The Ŝ operator is given by

Ŝ = 1 +
∑

i,j,I

qIij|βI
j 〉〈βI

i |, (3)
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where i ≡ (τlm) is the angular momentum channel number, and I labels the ions. Ŝ contains

contributions from all ions in the supercell, just as the total pseudopotential operator V̂L +

V̂NL, which is the sum of pseudopotential operators of all ions. In above, the projector

function βI
i (x) ≡ 〈x|βI

i 〉 of atom I’s channel i is

βI
i (x) = βi(x−XI), (4)

where XI is the ion position, and βi(x) vanishes outside the pseudopotential cutoff. These

projector functions appear in the nonlocal pseudopotential

V̂NL =
∑

i,j,I

DI
ji|βI

j 〉〈βI
i |, (5)

as well, where

DI
ji = D

I(0)
ji +

∫
dx(VL(x) + VH(x) + VXC(x))Q

I
ji(x). (6)

The coefficients D
I(0)
ji are the unscreened scattering strengths, while the coefficients DI

ji need

to be self-consistently updated with the electron density

ρ(x) =
∑

n

{
|ψn|2 +

∑

i,j,I

QI
ji(x)〈ψn|βI

j 〉〈βI
i |ψn〉

}
f(εn), (7)

in which f(εn) is the Fermi-Dirac distribution. QI
ji(x) is the charge augmentation function,

i.e., the difference between the true wavefunction charge (interference) and the pseudocharge

for selected channels,

QI
ji(x) ≡ ψ̃I∗

j (x)ψ̃I
i (x)− ψI∗

j (x)ψI
i (x), (8)

which vanishes outside the cutoff. There is also

qIij ≡
∫
dxQI

ji(x). (9)

Terms in Eq. (7) are evaluated using two different grids, a sparse grid for the wavefunctions

ψn and a dense grid for the augmentation functions QI
ji(x). Ultrasoft pseudopotentials are

thus fully specified by the functions VL(x), β
I
i (x), D

I(0)
ji , and QI

ji(x). Forces on ions and

internal stress on the supercell can be derived analytically using linear response theory44,46.

To extend the above ground-state USPP formalism to the time-dependent case, we note

that the Ŝ operator in (1) depends on the ionic positions {XI} only and not on the electronic
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charge density. In the case that the ions are not moving, the following dynamical equations

are equivalent:

Ĥ(t)ψn(t) = i~∂t(Ŝψn(t)) = Ŝ(i~∂tψn(t)), (10)

whereby we have replaced the εn in (1) by the i~∂t operator, and Ĥ(t) is updated using the

time-dependent ρ(x, t). However when the ions are moving,

i~∂tŜ 6= Ŝ(i~∂t) (11)

with difference proportional to the ionic velocities. To resolve this ambiguity, we note that

Ŝ can be split as

Ŝ = (Ŝ1/2Û)(Û †Ŝ1/2), (12)

where Û is a unitary operator, ÛÛ † = Î, and we can rewrite (1) as

(Û †Ŝ−1/2)Ĥ(Ŝ−1/2Û)(Û †Ŝ1/2)ψn = εn(Û
†Ŝ1/2)ψn. (13)

Referring to the PAW formulation45, we can select Û such that Û †Ŝ1/2 is the PAW transfor-

mation operator

Û †Ŝ1/2 = T̂ ≡ 1 +
∑

i,I

(|ψ̃I
i 〉 − |ψI

i 〉)〈βI
i | : ψ̃n = T̂ψn, (14)

that maps the pseudowavefunction to the true wavefunction. So we can rewrite (13) as,

(Û †Ŝ−1/2)Ĥ(Ŝ−1/2Û)ψ̃n ≡ ˆ̃Hψ̃n = εnψ̃n, (15)

where ˆ̃H is then the true all-electron Hamiltonian (with core-level electrons frozen). In the

all-electron TDDFT procedure, the above εn is replaced by the i~∂t operator. It is thus

clear that a physically meaningful TD-USPP equation in the case of moving ions should be

(Û †Ŝ−1/2)Ĥ(Ŝ−1/2Û)(Û †Ŝ1/2)ψn = i~∂t((Û
†Ŝ1/2)ψn), (16)

or

(Û †Ŝ−1/2)Ĥψn = i~∂t((Û
†Ŝ1/2)ψn). (17)

In the equivalent PAW notation, it is simply,

(T̂ †)−1Ĥψn = i~∂t(T̂ψn). (18)
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Or, in pseudized form amenable to numerical calculations,

Ĥψn = i~T̂ †(∂t(T̂ ψn)) = i~(T̂ †T̂ (∂tψn) + T̂ †(∂tT̂ )ψn). (19)

Differentiating (14), there is,

∂tT̂ =
∑

i,I

(
∂(|ψ̃I

i 〉 − |ψI
i 〉)

∂XI
〈βI

i |+ (|ψ̃I
i 〉 − |ψI

i 〉)
∂〈βI

i |
∂XI

)
· ẊI , (20)

and so we can define and calculate

P̂ ≡ −i~T̂ †(∂tT̂ ) =
∑

i,I

P̂I · ẊI (21)

operator, similar to analytic force calculation44. The TD-USPP / TD-PAW equation there-

fore can be rearranged as,

(Ĥ + P̂ )ψn = i~Ŝ(∂tψn), (22)

with P̂ proportional to the ionic velocities. It is basically the same as traditional TDDFT

equation, but taking into account the moving spatial “gauge” due to ion motion. As such it

can be used to model electron-phonon coupling37, cluster dynamics under strong laser field41,

etc., as long as the pseudopotential cores are not overlapping, and the core-level electrons

are not excited.

At each timestep, one should update ρ(x, t) as

ρ(x, t) =
∑

n

{
|ψn(x, t)|2 +

∑

i,j,I

QI
ji(x)〈ψn(t)|βI

j 〉〈βI
i |ψn(t)〉

}
fn. (23)

Note that while ψn(x, t = 0) may be an eigenstate if we start from the ground-state wave-

functions, ψn(x, t > 0) generally is no longer so with the external field turned on. n is

therefore merely used as a label based on the initial state rather than an eigenstate label at

t > 0. fn on the other hand always maintains its initial value, fn(t) = fn(0), for a particular

simulation run.

One may define projection operator t̂I belonging to atom I:

t̂I ≡
∑

i

(|ψ̃I
i 〉 − |ψI

i 〉)〈βI
i |. (24)

t̂I spatially has finite support, and so is

∂t̂I
∂XI

= −∂t̂I
∂x

= −∂(1 + t̂I)

∂x
= (1 + t̂I)∇−∇(1 + t̂I). (25)
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Therefore P̂I in (21) is,

P̂I = −i~T̂ † ∂t̂I
∂XI

= −i~(1 + t̂†I)
∂t̂I
∂XI

= −i~(1 + t̂†I)((1 + t̂I)∇−∇(1 + t̂I))

= (1 + t̂†I)(1 + t̂I)p− (1 + t̂†I)p(1 + t̂I), (26)

where p is the electron momentum operator. Unfortunately P̂I and therefore P̂ are not

Hermitian operators. This means that the numerical algorithm for integrating (22) may be

different from the special case of immobile ions:

Ĥ(t)ψn = i~Ŝ(∂tψn). (27)

Even if the same time-stepping algorithm is used, the error estimates would be different. In

section III we discuss algorithms for integrating (27) only, and postpone detailed discussion

of integration algorithm and error estimates for coupled ion-electron dynamics (22) under

USPP to a later paper.

III. TIME-STEPPING ALGORITHMS FOR THE CASE OF IMMOBILE IONS

In this section we focus on the important limiting case of (27), where the ions are immobile

or can be approximated as immobile. We may rewrite (27) formally as

Ŝ−1/2Ĥ(t)Ŝ−1/2(Ŝ1/2ψn) = i~∂t(Ŝ
1/2ψn). (28)

And so the time evolution of (27) can be formally expressed as

ψn(t) = Ŝ−1/2T̂
[
exp

(
− i

~

∫ t

0

dt′Ŝ−1/2Ĥ(t′)Ŝ−1/2

)]
Ŝ1/2ψn(0), (29)

with T̂ the time-ordering operator. Algebraic expansions of different order are then per-

formed on the above propagator, leading to various numerical time-stepping algorithms.

A. First-order Implicit Euler Integration Scheme

To first-order accuracy in time there are two well-known propagation algorithms, namely,

the explicit (forward) Euler

i~Ŝ
ψn(t+∆t)− ψn(t)

∆t
= Ĥψn(x, t) (30)
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and implicit (backward) Euler

i~Ŝ
ψn(t +∆t)− ψn(x, t)

∆t
= Ĥψn(t +∆t) (31)

schemes. Although the explicit scheme (30) is less expensive computationally, our test

runs indicate that it always diverges numerically. The reason is that (27) has poles on

the imaginary axis, which are marginally outside of the stability domain (Re(z∆t) < 0)

of the explicit algorithm. Therefore only the implicit algorithm can be used, which upon

rearrangement is, [
Ŝ +

i

~
Ĥ∆t

]
ψn(t +∆t) = Ŝψn(t). (32)

In the above, we still have the choice of whether to use Ĥ(t) or Ĥ(t + ∆t). Since this

is a first-order algorithm, neither choice would influence the order of the local truncation

error. Through numerical tests we found that the implicit time differentiation in (31) already

imparts sufficient stability that the Ĥ(t + ∆t) operator is not needed. Therefore we will

solve [
Ŝ +

i

~
Ĥ(t)∆t

]
ψn(t+∆t) = Ŝψn(t) (33)

at each timestep. Direct inversion turns out to be computationally infeasible in large-

scale planewave calculations. We solve (33) iteratively using matrix-free linear equation

solvers such as the conjugate gradient method. Starting from the wavefunction of a previous

timestep, we find that typically it takes about three to five conjugate gradient steps to achieve

sufficiently convergent update.

One serious drawback of this algorithm is that norm conservation of the wavefunction

〈ψn(t +∆t)|Ŝ|ψn(t+∆t)〉 = 〈ψn(t)|Ŝ|ψn(t)〉 (34)

is not satisfied exactly, even if there is perfect floating-point operation accuracy. So one has

to renormalize the wavefunction after several timesteps.

B. First-order Crank-Nicolson Integration Scheme

We find the following Crank-Nicolson expansion24,53,54 of propagator (29)

Ŝ
1

2ψn(t +∆t) =
1− i

2~
Ŝ− 1

2 Ĥ(t)Ŝ− 1

2∆t

1 + i
2~
Ŝ− 1

2 Ĥ(t)Ŝ− 1

2∆t
Ŝ

1

2ψn(t) (35)
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stable enough for practical use. The norm of the wavefunction is conserved explicitly in the

absence of roundoff errors, because of the spectral identity

∥∥∥∥∥
1− i

2~
Ŝ− 1

2 ĤŜ− 1

2∆t

1 + i
2~
Ŝ− 1

2 ĤŜ− 1

2∆t

∥∥∥∥∥ = 1. (36)

Therefore (34) is satisfied in an ideal numerical computation, and in practice one does not

have to renormalize the wavefunctions in thousands of timesteps.

Writing out the (35) expansion explicitly, we have:

[
Ŝ +

i

2~
Ĥ(t)∆t

]
ψn(t +∆t) =

[
Ŝ − i

2~
Ĥ(t)∆t

]
ψn(t). (37)

Similar to (33), we solve Eq. (37) using the conjugate gradient linear equations solver. This

algorithm is still first-order because we use Ĥ(t), not (Ĥ(t) + Ĥ(t+∆t))/2, in (37). In the

limiting case of time-invariant charge density, ρ(x, t) = ρ(x, 0) and Ĥ(t + ∆t) = Ĥ(t), the

algorithm has second-order accuracy. This may happen if there is no external perturbation

and we are simply testing whether the algorithm is stable in maintaining the eigenstate

phase oscillation: ψn(t) = ψn(0)e
−iωt, or in the case of propagating a test electron, which

carries an infinitesimal charge and would not perturb Ĥ(t).

C. Second-order Crank-Nicolson Integration Scheme

We note that replacing Ĥ(t) by (Ĥ(t) + Ĥ(t + ∆t))/2 in (35) would enhance the local

truncation error to second order, while still maintaining norm conservation. In practice we of

course do not know Ĥ(t+∆t) exactly, which depends on ρ(t+∆t) and therefore ψn(t+∆t).

However a sufficiently accurate estimate of ρ(t +∆t) can be obtained by running (37) first

for one step, from which we can get:

ρ′(t+∆t) = ρ(t +∆t) +O(∆t2), Ĥ ′(t +∆t) = Ĥ(t+∆t) +O(∆t2). (38)

After this “predictor” step, we can solve:

[
Ŝ +

i(Ĥ(t) + Ĥ ′(t +∆t))∆t

4~

]
ψn(t+∆t) =

[
Ŝ − i(Ĥ(t) + Ĥ ′(t+∆t))∆t

4~

]
ψn(t), (39)

to get the more accurate, second-order estimate for ψn(t+∆t), that also satisfies (34).
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IV. OPTICAL ABSORPTION SPECTRA

Calculating the optical absorption spectra of molecules, clusters and solids is one of

the most important applications of TDDFT19,20,21,22,23,25,26,55,56,57. Since many experimen-

tal and standard TDLDA results are available for comparison, we compute the spectra

for sodium dimer (Na2) and benzene molecule (C6H6) to validate our direct time-stepping

USPP-TDDFT scheme.

We adopt the method by Bertsch et al.19,56 whereby an impulse electric field E(t) =

ǫ~k̂δ(t)/e is applied to the system at t = 0, where k̂ is unit vector and ǫ is a small quantity.

The system, which is at its ground state at t = 0−, would undergo transformation

ψ̃n(x, t = 0+) = eiǫk̂·xψ̃n(x, t = 0−), (40)

for all its occupied electronic states, n = 1..N , at t = 0+. Note that the true, unpseudized

wavefunctions should be used in (40) if theoretical rigor is to be maintained.

One may then evolve {ψ̃n(x, t), n = 1..N} using a time stepper, with the total charge

density ρ(x, t) updated at every step. The electric dipole moment d(t) is calculated as

d(t) = e

∫
d3xρ(x, t)x. (41)

In a supercell calculation one needs to be careful to have a large enough vacuum region

surrounding the molecule at the center, so no significant charge density can “spill over” the

PBC boundary, thus causing a spurious discontinuity in d(t).

The dipole strength tensor S(ω) can be computed by

S(ω)k̂ = m(ω) ≡ 2meω

e~π
lim
ǫ,γ→0

1

ǫ

∫ ∞

0

dt sin(ωt)e−γt2 [d(t)− d(0)], (42)

where γ is a small damping factor andme is the electron mass. In reality, the time integration

is truncated at tf , and γ should be chosen such that e−γt2
f ≪ 1. The merit of this and

similar time-stepping approaches30 is that the entire spectrum can be obtained from just

one calculation.

For a molecule with no symmetry, one needs to carry out Eq. (40) with subse-

quent time integration for three independent k̂’s: k̂1, k̂2, k̂3, and obtain three different

m1(ω),m2(ω),m3(ω) on the right-hand side of Eq. (42). One then solves the matrix equa-
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tion:

S(ω)[k̂1 k̂2 k̂3] = [m1(ω) m2(ω) m3(ω)] → S(ω) = [m1(ω) m2(ω) m3(ω)][k̂1 k̂2 k̂3]
−1.

(43)

S(ω) satisfies the Thomas-Reiche-Kuhn f -sum rule,

Nδij =

∫ ∞

0

dωSij(ω). (44)

For gas-phase systems where the orientation of the molecule or cluster is random, the

isotropic average of S(ω)

S(ω) ≡ 1

3
TrS(ω) (45)

may be calculated and plotted.

In actual calculations employing norm-conserving pseudopotentials22, the pseudo-

wavefunctions ψn(x, t) are used in (40) instead of the true wavefunctions. And so the

oscillator strength S(ω) obtained is not formally exact. However, the f -sum rule Eq. (44)

is still satisfied exactly. With the USPP/PAW formalism42,43,44,45, formally we should solve

T̂ ψn(x, t = 0+) = eiǫk̂·xT̂ ψn(x, t = 0−), (46)

using linear equation solver to get ψn(x, t = 0+), and then propagate ψn(x, t). However,

for the present paper we skip this step, and replace ψ̃n by ψn in (40) directly. This “quick-

and-dirty fix” makes the oscillator strength not exact and also breaks the sum rule slightly.

However, the peak positions are still correct.

For the Na2 cluster, we actually use norm-conserving TM pseudopotential47 for the Na

atom, which is a special limiting case of our USPP-TDDFT code. The supercell is a tetrag-

onal box of 12× 10× 10 Å
3
and the Na2 cluster is along the x-direction with a bond length

of 3.0 Å. The planewave basis has a kinetic energy cutoff of 300 eV. The time integration

is carried out for 10, 000 steps with a timestep of ∆t = 1.97 attoseconds, and ǫ = 0.01/Å,

γ = 0.02eV2/~2. In the dipole strength plot (Fig. 1), the three peaks agree very well with

TDLDA result from Octopus56, and differ by ∼ 0.4 eV from the experimental peaks58,59. In

this case, the f -sum rule is verified to be satisfied to within 0.1% numerically.

For the benzene molecule, ultrasoft pseudopotentials are used for both carbon and hy-

drogen atoms. The calculation is performed in a tetragonal box of 12.94 × 10 × 7 Å
3
with

the benzene molecule placed on the x − y plane. The C-C bond length is 1.39 Å and the

13



FIG. 1: Optical absorption spectra of Na2 cluster obtained from direct time-stepping TDLDA

calculation using norm-conserving TM pseudopotential. The results should be compared with Fig.

1 of Marques et al.56.

C-H bond length is 1.1 Å. The kinetic energy cutoff is 250 eV, ǫ = 0.01/Å, γ = 0.1eV2/~2,

and the time integration is carried out for 5000 steps with a timestep of ∆t = 2.37 at-

toseconds. In the dipole strength function plot (Fig. 2), the peak at 6.95 eV represents

the π → π∗ transition and the broad peak above 9 eV corresponds to the σ → σ∗ transi-

tion. The dipole strength function agrees very well with other TDLDA calculations20,22 and

experiment60. The slight difference is mostly due to our ad hoc approximation that ψn’s

instead of ψ̃n’s are used in (40). The more formally rigorous implementation of the electric

impulse perturbation, Eq. (46), will be performed in future work.

In this section we have verified the soundness of our time stepper with planewave basis

through two examples of explicit electronic dynamics, where the charge density and effec-

tive potential are updated at every timestep, employing both norm-conserving and ultrasoft

pseudopotentials. This validation is important for the following non-perturbative propaga-

tion of electrons in more complex systems.
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FIG. 2: Optical absorption spectrum of benzene (C6H6) molecule. The results should be compared

with Fig. 2 of Marques et al.22

V. FERMI ELECTRON TRANSMISSION

We first briefly review the setup of the Landauer transmission equation,33,34,35 before

performing an explicit TDDFT simulation. In its simplest form, two identical metallic leads

(see Fig. (3)) are connected to a device. The metallic lead is so narrow in y and z that only

one channel (lowest quantum number in the y, z quantum well) needs to be considered. In

the language of band structure, this means that one and only one branch of the 1D band

structure crosses the Fermi level EF for kx > 0. Analogous to the universal density of states

expression dN = 2Ωdkxdkydkz/(2π)
3 for 3D bulk metals, where Ω is the volume and the

factor of 2 accounts for up- and down-spins, the density of state of such 1D system is simply

dN =
2Ldkx
2π

. (47)
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In other words, the number of electrons per unit length with wave vector ∈ (kx, kx + dkx) is

just dkx/π. These electrons move with group velocity61:

vG =
dE(kx)

~dkx
, (48)

so there are (dkx/π)(dE(kx)/(~dkx)) = 2dE/h such electrons hitting the device from either

side per unit time.

FIG. 3: Illustration of the Landauer transmission formalism.

Under a small bias voltage dV , the Fermi level of the left lead is raised to EF + edV/2,

while that of the right lead drops to EF−edV/2. The number of electrons hitting the device

from the left with wave vector (kx, kx + dkx) is exactly equal to the number of electrons

hitting the device from the right with wave vector (−kx,−kx − dkx), except in the small

energy window (EF−edV/2, EF+edV/2), where the right has no electrons to balance against

the left. Thus, a net number of 2(edV )/h electrons will attempt to cross from left and right,

whose energies are very close to the original EF. Some of them are scattered back by the

device, and only a fraction of T ∈ (0, 1] gets through. So the current they carry is:

dI

dV

∣∣∣∣
V=0

=
2e2

h
T (EF), (49)

where 2e2/h = 77.481µS = (12.906kΩ)−1.

Clearly, if the device is also of the same material and structure as the metallic leads,

then T (EF) should be 1, when we ignore electron-electron and electron-phonon scattering.

This can be used as a sanity check of the code. For a nontrivial device however such as a

molecular junction, T (EF) would be smaller than 1, and would sensitively depend on the

alignment of the molecular levels and EF, as well as the overlap between these localized

molecular states and the metallic states.

Here we report two USPP-TDDFT case studies along the line of the above discussion.

One is an infinite defect-free gold chain (Fig. 4(a)). The other case uses gold chains as metal-
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lic leads and connects them to a -S-C6H4-S- (benzene-(1,4)-dithiolate, or BDT) molecular

junction (Fig. 4(b)).

(a)

(b)

FIG. 4: Atomistic configurations of our USPP-TDDFT simulations (Au: yellow, S: magenta, C:

black, and H: white). (a) 12-atom Au chain. Bond length: Au-Au 2.88 Å. (b) BDT (-S-C6H4-S-)

junction connected to Au chain contacts. Bond lengths: Au-Au 2.88 Å, Au-S 2.41 Å, S-C 1.83 Å,

C-C 1.39 Å, and C-H 1.1 Å.

In the semi-classical Landauer picture explained above, the metallic electrons are repre-

sented by very wide Gaussian wavepacks61 moving along with the group velocity vG, and

with negligible rate of broadening compare to vG. Due to limitation of computational cost,

we can only simulate rather small systems. In our experience with 1D lithium and gold

chains, a Gaussian envelop of 3-4 lattice constants in full width half maximum is suffi-

cient to propagate at the Fermi velocity vG(kF) with 100% transmissions and maintain its

Gaussian-profile envelop with little broadening for several femto-seconds.
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A. Fermi electron propagation in gold chain

The ground-state electronic configurations of pure gold chains are calculated using the

free USPP-DFT package DACAPO,47,48,49 with local density functional (LDA)28,29 and

planewave kinetic energy cutoff of 250 eV. The ultrasoft pseudopotential is generated using

the free package uspp (ver. 7.3.3)42,43,44, with 5d, 6s, 6p, and auxiliary channels. Fig. 4(a)

shows a chain of 12 Au atoms in a tetragonal supercell (34.56 × 12 × 12 Å3), with equal

Au-Au bond length of 2.88 Å. Theoretically, 1D metal is always unstable against period-

doubling Peierls distortion61,62. However, the magnitude of the Peierls distortion is so small

in the Au chain that room-temperature thermal fluctuations will readily erase its effect. For

simplicity, we constrain the metallic chain to maintain single periodicity. Only the Γ-point

wavefunctions are considered for the 12-atom configuration.

The Fermi level EF is found to be −6.65 eV, which is confirmed by a more accurate

calculation of a one-Au-atom system with k-sampling (Fig. 5). The Fermi state is doubly

degenerate due to the time-inversion symmetry, corresponding to two Bloch wavefunctions

of opposite wave vectors kF and −kF.

FIG. 5: Band structure of a one-atom Au chain with 64 Monkhorst-Pack63 k-sampling in the chain

direction. The Fermi level, located at −6.65 eV, is marked as the dashed line.
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From the Γ-point calculation, two energetically degenerate and real eigen-wavefunctions,

ψ+(x) and ψ−(x), are obtained. The complex traveling wavefunction is reconstructed as

ψkF(x) =
ψ+(x) + iψ−(x)√

2
. (50)

The phase velocity of ψkF(x, t) computed from our TDLDA runs matches the Fermi frequency

EF/~. We use the integration scheme (37) and a timestep of 2.37 attoseconds.

We then calculate the Fermi electron group velocity vG(kF) by adding a perturbation

modulation of

ψ̃kF(x, t = 0) = ψkF(x)(1 + λ sin(2πx/L)) (51)

to the Fermi wavefunction ψkF(x), where λ is 0.02 and L is the x-length of the supercell.

Fig. 6 shows the electron density plot along two axes, x and t. From the line connecting the

red-lobe edges, one can estimate the Fermi electron group velocity to be ∼10.0 Å/fs. The

Fermi group velocity can also be obtained analytically from Eq. (48) at kx = kF. A value

of 10 Å/fs is found according to Fig. 5, consistent with the TDLDA result.

FIG. 6: Evolution of modulated Fermi electron density in time along the chain direction. The

electron density, in the unit of Å
−1

, is an integral over the perpendicular y-z plane and normalized

along the x direction, which is then color coded.

19



Lastly, the angular momentum projected densities of states are shown in Fig. 7, which

indicate that the Fermi wavefunction mainly has s and px characteristics.

FIG. 7: Projected density of states of the 12-atom Au chain.

B. Fermi electron transmission through Au-BDT-Au junction

At small bias voltages, the electric conductance of a molecular junction (Fig. 4(b)) is

controlled by the transmission of Fermi electrons, as shown in Eq. (49). In this section, we

start from the Fermi electron wavefunction of a perfect 1D gold chain (Fig. 4(a)), and apply

a Gaussian window centered at x0 with a half width of σ, to obtain a localized wave pack

ψ̃kF(x, t = 0) = ψkF(x)G

(
x− x0

σ

)
, (52)

at the left lead. This localized Fermi electron wave pack is then propagated in real time by

the TDLDA-USPP algorithm (37) with a timestep of 2.37 attoseconds, leaving from the left

Au lead and traversing across the -S-C6H4-S- molecular junction (Fig. 4(b)). While crossing

the junction the electron will be scattered, after which we collect the electron density entering

the right Au lead to compute the transmission probability T (EF) literally. The calculation

is performed in a tetragonal box (42.94×12×12 Å3) with a kinetic energy cutoff of 250 eV.
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FIG. 8: Evolution of filtered wave package density in time along the chain direction. The electron

density, in the unit of Å
−1

, is a sum over the perpendicular y-z plane and normalized along the x

direction. The normalized electron density is color coded by the absolute value.

Fig. 8 shows the Fermi electron density evolution in x-t. A group velocity of 10 Å/fs is

obtained from the initial wave pack center trajectory, consistent with the perfect Au chain

result. This free propagation lasts for about 0.8 fs, followed by a sharp density turnover that

indicates the occurrence of strong electron scattering at the junction. A very small portion

of the wave pack goes through the molecule. After about 1.7 fs, the reflected portion of the

wave pack enters the right side of the supercell through PBC.

To separate the transmitted density from the reflected density as clearly as possible, we

define and calculate the following cumulative charge on the right side

R(x′, t) ≡
∫ x′

xS

dx

∫ Ly

0

dy

∫ Lz

0

dzρ(x, y, z, t), (53)

where xS is the position of the right sulfur atom. R(x′, t) is plotted in Fig. 9 for ten x′-

positions starting from the right sulfur atom up to the right boundary Lx. A shoulder can

be seen in all 10 curves, at t = 1.5-2 fs, beyond which R(x′, t) starts to rise sharply again,

indicating that the reflected density has entered from the right boundary. Two solid curves
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are highlighted in Fig. 9. The lower curve is at x′ = xS + 7.2 Å, which shows a clear

transmission plateau of about 5%. The upper curve, which is for x′ exactly at the right

PBC boundary, shows R(x′, t) ≈ 7% at the shoulder. From these two curves, we estimate a

transmission probability T (EF) of 5-7%, which corresponds to a conductance of 4.0-5.6 µS

according to Eq. (49). This result from planewave TDLDA-USPP calculation is comparable

to the transmission probability estimate of 10% from complex band structure calculation51,52

for one benzene linker (-C6H4-) without the sulfur atoms, and the non-equilibrium Green’s

function estimate of 5 µS11 for the similar system.

FIG. 9: R(x′, t) versus time plot. Curves are measured in 10 different regions with different x′

positions, which equally divide the region from the right S atom to the boundary on the right hand

side.

VI. SUMMARY

In this work, we develop TDDFT based on Vanderbilt ultrasoft pseudopotentials and

benchmark this USPP-TDDFT scheme by calculating optical absorption spectra, which

agree with both experiments and other TDDFT calculations. We also demonstrate a new
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approach to compute the electron conductance through single-molecule junction via wave

pack propagation using TDDFT. The small conductance of 4.0-5.6 µS is a result of our fixed

band approximation, assuming the electron added was a small testing electron and therefore

generated little disturbing effects of the incoming electrons on the electronic structure of the

junction. This result is of the same order of magnitude as the results given by the Green’s

function and the complex band approaches, both requiring similar assumptions.
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