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We study the exchange interactions in half-metallic Heusler alloys using first-principles calcula-
tions in conjunction with the frozen-magnon approximation. The Curie temperature is estimated
within both mean-field (MF) and random-phase-approximation (RPA) approaches. For the half-
Heusler alloys NiMnSb and CoMnSb the dominant interaction is between the nearest Mn atoms. In
this case the MF and RPA estimations differ strongly. The RPA approach provides better agree-
ment with experiment. The exchange interactions are more complex in the case of full-Heusler alloys
Co2MnSi and Co2CrAl where the dominant effects are the inter-sublattice interactions between the
Mn(Cr) and Co atoms and between Co atoms at different sublattices. For these compounds we find
that both MF and RPA give very close values of the Curie temperature slightly underestimating
experimental quantities. We study the influence of the lattice compression on the magnetic proper-
ties. The temperature dependence of the magnetization is calculated using the RPA method within
both quantum mechanical and classical approaches.

PACS numbers: 75.50.Cc, 75.30.Et, 75.30.Ds, 75.60.-d

I. INTRODUCTION

During the last decade the half-metallic ferromagnets
have become one of the most studied classes of materials.
The existence of a gap in the minority-spin band struc-
ture leads to 100% spin-polarization of the electron states
at the Fermi level and makes these systems attractive
for applications in the emerging field of spintronics.1 In
half-metals the creation of a fully spin-polarized current
should be possible that should maximize the efficiency of
magnetoelectronics devices.2

The half-metallicity was first predicted by de Groot
and collaborators in 1983 when studying the band struc-
ture of a half-Heusler alloy NiMnSb.3 They found that
the spin-down channel is semiconducting. In 2002
Galanakis et al. have shown that the gap arises from the
interaction between the d-orbitals of Ni and Mn creat-
ing bonding and antibonding states separated by a gap.4

Ishida and collaborators have proposed that also the full-
Heusler compounds of the type Co2MnZ, where Z stands
for Si and Ge, are half-metals.5 In these compounds the
origin of half-metallicity is more complex than in the
half-Heusler alloys because of the presence of the states
located entirely at the Co sites.6 Several other Heusler
alloys have been predicted to be half-metals.7 Akinaga
and collaborators8 were able to crystallize a CrAs thin
film in the zinc-blende structure, that is similar to the
lattice of the Heusler alloys. The magnetic moment per
formula unit was found to be close to 3µB that corre-
sponds to the integer value characteristic for half-metals.
A number of further half-metallic materials are CrO2 in
a metastable cubic phase, Fe3O4, the manganites (e.g
La0.7Sr0.3MnO3)

9, the diluted magnetic semiconductors
(e.g. Mn impurities in Si or GaAs).10,11

Besides strong spin polarization of the charge carriers
in the ground state the spintronics materials must pos-
sess a high Curie temperature to allow the applications
in the devices operating at room temperature. Available
experimental information shows that the Heusler alloys
are promising systems also in this respect.12 Up to now
the main body of the theoretical studies was devoted
to the properties of the half-metallic gap.13 Recently,
Chioncel and collaborators studied the influence of the
correlation effects on the electron structure of CrAs.14

They found that the spin-magnon interaction leads to
the appearance of non-quasiparticle states in the spin-
minority channel. The states are shown to lie above
the Fermi level and to be sensitive to the value of the
lattice constant. For a number of Heusler alloys it was
shown that half-metallicity is preserved under tetragonal-
ization of the crystal lattice15 and application of the hy-
drostatic pressure16. Mavropoulos et al. studied the in-
fluence of the spin-orbit coupling on the spin-polarization
at the Fermi level and found the effect to be very small17

that is in agreement with a small orbital moment cal-
culated by Galanakis.18 Larson et al.19 have shown that
the structure of Heusler alloys is stable with respect to
the interchange of atoms and Orgassa and collaborators
and Picozzi and collaborators have demonstrated that
a small degree of disorder does not destroy the half-
metallic gap.20,21 Dowben and Skomski have shown that
at non-zero temperatures the spin-wave excitations lead
to the presence at the Fermi level of the electron states
with opposite spin projections leading to decreasing spin-
polarization of the charge carriers.22

Despite very strong interest to the half-metallic ferro-
magnetism in Heusler alloys the number of theoretical
studies of exchange interactions and Curie temperature
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in Heusler alloys is still very small. The first contribution
to the density functional theory of the exchange interac-
tions in these systems was made in an early paper by
Kübler et al.23 where the microscopic mechanisms of the
magnetism of Heusler alloys were discussed on the basis
of the comparison of the ferromagnetic and antiferromag-
netic configurations of the Mn moments. Recently, the
studies of the inter-atomic exchange interactions in sev-
eral Heusler compounds were reported by the present au-
thors and Kurtulus et al.24,25,26. Şaşıog̃lu et al. studied
the exchange interactions in non-half-metallic Ni2MnZ
(Z=Ga,In,Sn,Sb) and half-metallic Mn2VZ (Z=Al,Ge).
The importance of the inter-sublattice exchange interac-
tion has been demonstrated. For example, in the case
of Mn2VZ (Z=Al,Ge) it was shown that the antiferro-
magnetic coupling between the V and Mn moments sta-
bilizes the ferromagnetic alignment of the Mn moments.
Kübler27 estimated TC of NiMnSb to be 601 K to 701
K depending on the approach used in the calculations.
These values are in good correlation with experimental
value of 730 K.12

The main task of the present contribution is the study
of the exchange interactions in both half- and full-Heusler
alloys. We use the calculated exchange parameters to es-
timate the Curie temperature in both the random phase
(T RPA

C ) and the mean field approximations (T MFA
C ). In

Section II we briefly discuss the formalism employed in
the calculations. In Section III we present the results
on the spin magnetic moments and the density of states
(DOS) for four compounds studied: NiMnSb, CoMnSb,
Co2MnSi and Co2CrAl. In Section IV we discuss the cal-
culated exchange interactions and Curie temperatures.
Section V is devoted to the consideration of the temper-
ature dependence of magnetization. The films of Heusler
alloys grown on different substrates can have different
lattice parameters and, as a result, noticeable variation
of the electron structure. Section V contains the sum-
mary. In the Appendix, we present the formalism for the
calculation of the Curie temperature of a multi-sublattice
ferromagnet within the framework of the random phase
approximation.

II. CALCULATIONAL METHOD

Half- and full-Heusler alloys crystallize in the C1b and
L21 structures respectively (see Fig. 1). The lattice con-
sists from 4 interpenetrating fcc lattices. In the case of
the half-Heusler alloys (XYZ) one of the four sublattices
is vacant. The Bravais lattice is in both cases fcc. In full-
Heusler alloy the atomic basis consists of four atoms. For
example, in Co2MnSi the positions of the basis atoms in
Wyckoff coordinates are the following: Co atoms at (000)
and (1

2
1
2

1
2 ), Mn at (1

4
1
4

1
4 ), Si at (3

4
3
4

3
4 ). The Co atoms

at the two different sublattices have the same local envi-
ronment rotated by 90o with respect to the [001] axis. In
half-Heusler compounds the position (1

2
1
2

1
2 ) is vacant.

The calculations are carried out with the aug-
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FIG. 1: C1b and L21 structures adapted by the half- and full-
Heusler alloys. The lattice consists from 4 interpenetrating fcc
lattices. In the case of the half-Heusler alloys (XYZ) one of
the four sublattices is vacant. If all atoms were identical, the
crystal structure would be a simple bcc lattice

mented spherical waves method (ASW)28 within the
atomic-sphere approximation (ASA).29 The exchange-
correlation potential is chosen in the generalized gradient
approximation.30 A dense Brillouin zone (BZ) sampling
30 × 30 × 30 is used. The radii of all atomic spheres are
chosen equal. In the case of half-Heusler alloys we intro-
duce an empty sphere located at the unoccupied site.

A. Exchange parameters

The method for the calculation of exchange constants
has been presented elsewhere.24 Here we give a brief
overview.

We describe the interatomic exchange interactions in
terms of the classical Heisenberg Hamiltonian

Heff = −
∑

µ,ν

∑

R,R′

(µR 6=νR′)

Jµν
RR′e

µ
Reν

R′ (1)

In Eq. (1), the indices µ and ν number different sublat-
tices and R and R′ are the lattice vectors specifying the
atoms within sublattices, e

µ
R is the unit vector pointing

in the direction of the magnetic moment at site (µ,R).
We employ the frozen-magnon approach to calculate

interatomic Heisenberg exchange parameters.31 The cal-
culations involve few steps. In the first step, the exchange
parameters between the atoms of a given sublattice µ are
computed. The calculation is based on the evaluation of
the energy of the frozen-magnon configurations defined
by the following atomic polar and azimuthal angles

θν
R = θ, φν

R = q ·R + φν . (2)

The constant phase φν is chosen equal to zero. The mag-
netic moments of all other sublattices are kept parallel to
the z axis. Within the Heisenberg model (1) the energy
of such configuration takes the form

Eµµ(θ,q) = Eµµ
0 (θ) + sin2 θJµµ(q) (3)
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where Eµµ
0 does not depend on q and the Fourier trans-

form Jµν(q) is defined by

Jµν(q) =
∑

R

Jµν
0R exp(iq · R). (4)

In the case of ν = µ the sum in Eq. (4) does not
include R = 0. Calculating Eµµ(θ,q) for a regular q-
mesh in the Brillouin zone of the crystal and performing
back Fourier transformation one gets exchange parame-
ters Jµµ

0R for sublattice µ. The determination of the ex-
change interactions between the atoms of two different
sublattices µ and ν is discussed in Ref. 24.

B. Curie temperature

The Curie temperature is estimated within two dif-
ferent approaches: the mean–field approximation (MFA)
and random phase approximation (RPA). The MFA for
a multi-sublattice material requires solving the system of
coupled equations24,32

〈eµ〉 =
2

3kBT

∑

ν

Jµν
0 〈eν〉 (5)

where 〈eν〉 is the average z component of eν
R and Jµν

0 ≡
∑

R Jµν
0R. Eq. 5 can be represented in the form of eigen-

value matrix-problem

(Θ − T I)E = 0 (6)

where Θµν = 2
3kB

Jµν
0 , I is a unit matrix and E is the

vector of 〈eν〉. The largest eigenvalue of matrix Θ gives
the value of T MFA

C .32

A more consequent method for the study of the ther-
modynamics of Heisenberg systems is provided by the
RPA approach.33,34 The RPA technique is intensively
used for studies of both single-sublattice35,36and multi-
sublattice37,38,39,40,41,42,43,44,45 systems. In the case that
only the exchange interactions within one sublattice are
important the Curie temperature within the RPA is given
by the relation35

1

kBT RPA
C

=
3

2

1

N

∑

q

1

J(0) − J(q)
, (7)

We use the RPA approach to study the temperature de-
pendence of the magnetization in the temperature inter-
val from 0 K to TC . The RPA technique for a multi-
sublattice system is briefly presented in Appendix.

III. DOS AND MAGNETIC MOMENTS

A. NiMnSb and CoMnSb

In this section we report the calculation of DOS and
magnetic moments at different lattice parameters for

TABLE I: Calculated atom-resolved and total spin moments
in µB for NiMnSb, CoMnSb, Co2CrAl and Co2MnSi. All
compounds are half-metallic at the experimental lattice con-
stants taken from Ref. 12. aII means the use of the lattice
constant that places the Fermi level at the upper edge of the
half-metallic gap and aIII corresponds to 1% contraction of
the lattice constant with respect to aII .

Compound a(Å) X Y Z Void Total
NiMnSb - aI[exp] 5.93 0.20 3.85 -0.09 0.04 4.00
NiMnSb - aII 5.68 0.32 3.68 -0.05 0.05 4.00
NiMnSb - aIII 5.62 0.33 3.64 -0.04 0.05 3.97
CoMnSb - aI[exp] 5.87 -0.32 3.41 -0.11 0.02 3.00
CoMnSb - aII 5.22 0.45 2.57 -0.06 0.04 3.00
CoMnSb - aIII 5.17 0.48 2.52 -0.05 0.04 2.99
Co2CrAl - aI[exp] 5.74 0.62 1.83 -0.08 - 3.00
Co2CrAl - aII 5.55 0.69 1.68 -0.06 - 3.00
Co2CrAl - aIII 5.49 0.69 1.66 -0.05 - 2.99
Co2MnSi - aI[exp] 5.65 0.93 3.21 -0.06 - 5.00
Co2MnSi - aII 5.49 0.97 3.10 -0.04 - 5.00
Co2MnSi - aIII 5.43 0.97 3.01 -0.04 - 4.97

NiMnSb and for CoMnSb compound that has one elec-
tron per formula unit less than NiMnSb. The electronic
structure of both compounds has been extensively stud-
ied earlier and the reader is referred to the review 49
and references therein for detailed discussion. Here we
present a brief description of the calculational results
aiming to provide the basis for further considerations and
to allow the comparison with previous work.

In Table I we collect the atomic and total spin moments
for three different lattice parameters. The investigation
of the influence of the value of the lattice parameter on
the properties of the Heusler alloys is important since the
samples grown on different substrates can have different
lattice spacings. The first calculation is performed for
the experimental bulk lattice constant.12 The calculated
densities of states (DOS) for this case are presented in the
upper panel of Fig. 2. For both NiMnSb and CoMnSb
the Fermi level lies in the low-energy part of the half-
metallic gap. The compression of the lattice pushes the
majority p states to higher energies that results in in-
creased energy position of the Fermi level with respect
to the half-metallic gap. At the lattice parameter aII

the Fermi level coincides with the upper edge of the gap
(Fig. 2). In the next step we further contracted the lattice
constant by 1% (lattice parameter aIII , bottom panel in
Fig. 2). In this case the Fermi level is slightly above the
gap and the total spin moment is slightly smaller than
the integer values of 3 and 4 µB for CoMnSb and NiMnSb
respectively.

The contraction of the lattice leads to an increase
of the hybridization between the d orbitals of different
transition-metal atoms. This results in a decrease of the
spin moment of Mn. In the case of NiMnSb this change
is small: the reduction of the Mn spin moment under
lattice contraction from the experimental lattice param-
eter to aII is ∼0.2 µB. The Ni spin moment increases by
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FIG. 2: (a) Calculated spin-resolved density of states of NiMnSb and CoMnSb for three values of the lattice parameter. (b)
The same for Co2CrAl and Co2MnSi. The upper panels present the results for the experimental lattice constant.12 The middle
panels show the results for the lattice parameter aII that is determined by the coincidence of the Fermi level with the upper edge
of the half-metallic gap. The bottom panels present the results for lattice parameter aIII that is obtained by a 1% contraction
of aII .

about the same value to preserve the integer value of the
total spin moment of 4 µB.

In CoMnSb, the half-metallic gap is larger than in
NiMnSb. As a result, the transition of the Fermi level
to the upper gap-edge requires a large lattice contraction
of 11% (Table I). This leads to a strong decrease of the
Mn moment by 0.84µB. To compensate this decrease the
Co moment changes its sign transforming the magnetic
structure from ferrimagnetic to ferromagnetic.

The influence of the lattice contraction on the exchange
interactions and Curie temperature is discussed in the
next Section.

B. Co2CrAl and Co2MnSi

The second group of materials studied in the paper
is formed by the full-Heusler compounds Co2MnSi and
Co2CrAl. The electronic structure of these systems has
been studied earlier.6 Compared to half-Heusler systems,
the presence of two Co atoms per formula unit results
in an increased coordination number of Co atoms sur-
rounding Mn atoms (eight instead of four in CoMnSb).
This leads to an increased hybridization between the 3d
orbitals of the Mn and Co atoms. The spin moment of
Co in Co2MnSi is about 1 µB that is considerably larger
than the Co moment in CoMnSb. In Co2CrAl the Co
moment is about 1/3rd smaller than in Co2MnSi that

reflects a smaller value of the Cr moment compared to
the Mn moment (Table I).

As in the case of the half-Heusler compounds discussed
above, the variation of the lattice parameter leads to the
change in the position of the Fermi level. At the ex-
perimental lattice parameter the Fermi level of Co2CrAl
lies in the lower part of the half-metallic gap while for
Co2MnSi it is close to the middle of the gap (Fig. 2b).
The contraction of the lattice needed to place the Fermi
level at the upper edge of the gap is smaller than for
CoMnSb. As a result, the change in the magnetic mo-
ments is also relatively weak (Table I).

IV. EXCHANGE PARAMETERS AND CURIE

TEMPERATURE

A. NiMnSb and CoMnSb

In Fig. 3 we present the exchange constants calculated
for various lattice spacings. The Co-Co, Ni-Ni exchange
interactions as well as the exchange interactions between
the moments of the 3d atoms and the induced moments of
Sb atoms are very weak and are not shown. The weakness
of the effective Co-Co and Ni-Ni exchange interactions
can be explained by a relatively large distance between
atoms (Fig. 1) and relatively small atomic moments.

On the other hand, each Ni(Co) atom is surrounded
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by four Mn atoms as nearest neighbors that results in
strong Mn-Ni(Co) exchange interaction (Fig. 3). Also
the exchange interaction between large Mn moments is
strong.

The ferromagnetic Mn-Mn interactions are mainly re-
sponsible for the stable ferromagnetism of these materi-
als. For both systems and for all lattice spacings stud-
ied the leading Mn-Mn exchange interaction is strongly
positive. In NiMnSb, the Mn-Ni interaction of the near-
est neighbors is positive for all three lattice parameters
leading to the parallel orientation of the spins of the Mn
and Ni atoms. In CoMnSb the situation is different. At
the experimental lattice parameter the leading Mn-Co
interaction is negative resulting in the ferrimagnetism of
the system. For the contracted lattices the interaction
changes sign resulting in the ferromagnetic ground state
of the alloy.

The analysis of the strength of the exchange interac-
tion as a function of the lattice parameter shows that
in CoMnSb the contraction leads to a strong increase of
both leading Mn-Co and Mn-Mn interactions. On the
other hand, in NiMnSb the increase of the Mn-Ni in-
teraction is accompanied by a decrease of the leading
Mn-Mn interaction. Simultaneously, the interaction be-
tween the second-nearest Mn atoms increases with con-
traction in the case of NiMnSb staying almost unchanged
in CoMnSb. This complexity of the behavior reflects the
complexity of the electronic structure of the systems.

The interatomic exchange parameters are used to eval-
uate the Curie temperature within two different ap-
proaches: MFA and RPA. In Table II we present the
values of the Curie temperature obtained, first, by taking
into account the Mn-Mn interactions only and, second,
with account for both Mn-Mn and Mn-Ni(Co) interac-
tions. The contribution of the inter-sublattice interac-
tions to the Curie temperature appears to be less than
5 % for both compounds and the Curie temperature is
mainly determined by the intra-sublattice Mn-Mn inter-
action.

The MFA and RPA estimations of the Curie tempera-
ture differ rather strongly (Table II). The relative differ-
ence of two estimations is about 20%. The reason behind
this difference will be discussed in the following section.
For the systems considered here the RPA estimations of
the Curie temperatures are in good agreement with the
experiment, somewhat overestimating the experimental
values.

Recently Kübler27 reported estimations of the Curie
temperature of NiMnSb. His approach is based on the
evaluation of the non-uniform magnetic susceptibility on
the basis of the Landau-type expansion for the free en-
ergy. Within some approximations the parameters used
in the study of the thermodynamical properties can be
expressed in terms of the quantities evaluated within the
first-principles DFT calculations. The estimated values
of the Curie temperature are 601 K for a static approach
and 701 K if the frequency dependence of the suscepti-
bility is taken into account. These estimations are some-
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FIG. 3: The variation of the interatomic exchange parame-
ters for NiMnSb (upper panel) and CoMnSb (bottom panel)
as a function of the interatomic distance. The left panel cor-
responds to the experimental lattice constant, the middle and
right panels correspond respectively to aII and aIII parame-
ters.

TABLE II: Calculated Curie temperatures. The second and

third columns contain the T
MF A(RPA)
C obtained with the ac-

count for Mn-Mn (Cr-Cr) interactions only. In the next two
columns all interactions are taken into account. The last col-
umn presents the experimental values of the Curie tempera-
ture from Ref. 12.

TC (K) MFA-Y RPA-Y MFA-all RPA-all Exp.
NiMnSb - aI[exp] 1096 880 1112 900 730
NiMnSb - aII 1060 853 1107 908 -
NiMnSb - aIII 1008 802 1063 869 -
CoMnSb - aI[exp] 785 619 815 671 490
CoMnSb - aII 1185 940 1276 1052 -
CoMnSb - aIII 1140 893 1252 1032 -
Co2CrAl - aI[exp] 148 141 280 270 334
Co2CrAl - aII 168 159 384 365 -
Co2CrAl - aIII 164 154 400 379 -
Co2MnSi - aI[exp] 232 196 857 740 985
Co2MnSi - aII 142 118 934 804 -
Co2MnSi - aIII 110 75 957 817 -

what lower than the value of 880 K given by the RPA
approach (Table II). A detailed comparative analysis of
the two calculational schemes is needed to get an insight
in the physical origin of this difference.

The contraction of the lattice in the case of the NiMnSb
compound leads to an increase of the Mn-Ni interactions
(Fig. 3). This results in increased difference between the
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FIG. 4: (a) The exchange constants for Co2CrAl as a function of the interatomic distance. (b) The same for Co2MnSi. The left
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The superscripts 1 and 2 denote Co atoms belonging to different sublattices (Fig. 1). For comparison, the exchange parameters
of Co2MnSi obtained in Ref. 26 at the experimental lattice parameter (aI[exp]) are shown. The following symbols are used in

the presentation: + for the Mn-Mn and Mn-Co interactions and ⋆ for the Co-Co and Co1-Co2 interactions.

Curie temperatures calculated with the Mn-Mn interac-
tions only and with both Mn-Mn and Ni-Mn interactions
taken into account (Table II). For CoMnSb, the leading
exchange interactions of both Mn-Mn and Mn-Co types
increase in the value under transition from the experi-
mental lattice constant to aII (Fig. 3). As a result, the
Curie temperature increases with contraction by about
50%.

B. Co2CrAl and Co2MnSi

The presence of an extra Co atom in the full-Heusler
alloys makes the interactions more complex than in the
case of the half-Heusler alloys. In CoMnSb the impor-
tant interactions arise between nearest Mn atoms (Mn-
Mn interactions) and between nearest Mn and Co atoms
(Mn-Co interaction). In the case of Co2MnSi (Fig. 4)
the interactions between Co atoms at the same sublat-
tice (Co-Co) and between Co atoms at different sublat-
tices (Co1-Co2) must be taken into account. The cobalt
atoms at different sublattices have the same local envi-
ronment rotated by 90o about the [001] axis. The leading
interaction responsible for the stability of the ferromag-
netism is the Mn-Co interaction between Mn atoms and
eight nearest Co atoms (Fig. 4). This interaction changes
weakly with the contraction of the lattice. Our exchange

parameters agree well with the parameters of Kurtulus
et al. (Fig. 4) who also found the Co-Mn exchange inter-
action to be leading.26

The interaction between nearest Co atoms at different
sublattices (empty squares in Fig. 4) favors the ferromag-
netism also and is stronger than the ferromagnetic inter-
action between the nearest Mn atoms (filled spheres). Al-
though the spin moment of Mn atoms is larger than the
moment of Co atoms (Table I) the opposite relation be-
tween exchange parameters can be the consequence of the
smaller distance between the Co atoms: a/2 between the

Co atoms and
√

2a/2 between the Mn atoms. An inter-
esting feature of the intra-sublattice Mn-Mn and Co-Co
interactions is different signs of the exchange parameters
for different distances between atoms. This leads to a
RKKY-like oscillations of the parameters (Fig. 4).

In Co2CrAl the leading Cr-Co interactions (filled tri-
angles) are much smaller than corresponding Mn-Co in-
teractions in Co2MnSi. On the other hand, the lead-
ing inter-sublattice ferromagnetic Co-Co interactions are
comparable in both systems. The compression of the
lattice leads to an increase of the magnitude of the
inter-sublattice Co-Cr and Co1-Co2 coupling. The intra-
sublattice Cr-Cr and Co-Co interactions oscillate with
varying inter-atomic distances.

The difference in the properties of the exchange pa-
rameters of the half- and full-Heusler alloys is reflected
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FIG. 5: The frozen-magnon dispersions for NiMnSb and
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of NiMnSb and to the Cr sublattice in the case of Co2CrAl.
For Co2CrAl, the frozen-magnon energies are multiplied by a
factor of 8.

in the calculated Curie temperatures (Table II). In con-
trast to CoMnSb where the Mn-Mn exchange interactions
are dominant, in Co2MnSi they play a secondary role.

The T
MFA(RPA)
C calculated taking into account these in-

teractions only is much smaller than the Curie temper-
ature calculated with all inter-atomic exchange interac-
tions taken into account (Table II). The same conclusion
is valid for Co2CrAl where the Cr-Cr interactions give
about half of the Curie temperature obtained with all
interactions included into consideration.

A striking feature of the full Heusler compound
Co2CrAl that differs it strongly from the half-Heusler sys-
tems considered in the previous Section is a very small
difference between the TC values calculated within the
MFA and RPA approaches. A similar behavior was ob-
tained for the Curie temperatures of the zincblende MnSi
and MnC.46 In Co2MnSi, the relative difference of the
MFA and RPA estimations assumes an intermediate po-
sition between the half-Heusler systems and Co2CrAl.

To understand the origin of the strong variation of the
relative difference of the MFA and RPA estimations of
the Curie temperature we compare in Fig. 5 the frozen
magnon dispersions for two compounds. The magnons
correspond to the Mn sublattice in the case of NiMnSb
and to the Cr sublattice in the case of Co2CrAl. As
seen from Table II the MFA and RPA estimations ob-
tained with the use of these dispersions differ by 20% for
NiMnSb and by 5% for Co2CrAl.

The Curie temperature is given by the average value
of the magnon energies. In MFA this is the arithmetic
average while in RPA this is harmonic average. There-
fore we need to understand why for Co2CrAl these two
averages are much closer than for NiMnSb. The follow-
ing properties of the averages are important for us. The

0
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8

ω
(q

) 
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R
y)
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16

24

32

ω
(q
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(m
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NiMnSb

Co2CrAl

FIG. 6: The spin wave dispersions for NiMnSb and Co2CrAl
along the symmetry lines in the Brillouin zone. Filled and
empty spheres denote the acoustic and optical branches, re-
spectively.

arithmetic average takes all the magnon values with equal
weight whereas in the harmonic average the weight de-
creases with increasing energy of the magnon.35,36,46,47,48

It is an arithmetic property that the MFA estimation is
larger than the RPA one or equal to it if all numbers to
be averaged are equal to each other. In terms of magnon
energies, T MFA

C is equal to T RPA
C in the case that the

magnon spectrum is dispersion-less.
Considering the frozen-magnon dispersions from the

viewpoint of these properties we indeed can expect that
the arithmetic and harmonic averages will be closer for
Co2CrAl. In Fig. 5 both curves are scaled to have almost
the same maximal value. It is seen that the Co2CrAl
dispersion has smaller relative contribution of the low-
energy magnons because of the steeper increase of the
curve at small wave vectors. It has also smaller contri-
bution of the magnons with the largest energies because
the maxima have the form of well-defined peaks oppo-
site to NiMnSb where we get a plateau. Thus the main
contribution in the case of Co2CrAl comes from interme-
diate energies that makes the MFA and RPA estimations
closer.

In Fig. 6 we present the calculated spin-wave spec-
tra for NiMnSb and Co2CrAl. The spin-wave energies
are obtained by the diagonalization of the matrix of ex-
change parameters that contains all important intra- and
inter-sublattice interactions. The number of branches in
the spectrum is equal to the number of magnetic atoms
in the unit cell: two in NiMnSb and three in Co2CrAl.
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One of the branches is acoustic and has zero energy for
zero wave vector. Also in the spin-wave spectra, we see
strong difference between two systems. In NiMnSb, the
acoustic branch is predominantly of the Ni type stem-
ming from the weak interaction between Mn and Ni mag-
netic moments (see Fig. 3). On the other hand, the
optical branch is of predominantly the Mn type. The
strong hybridization between two sublattices is obtained
only about q = 0. In Co2CrAl, the energy scale of the
branches differs much smaller and the hybridization be-
tween sublattices is stronger than for NiMnSb.

Coming back to the considerations of the Curie tem-
peratures, we conclude that, in general, the Curie tem-
peratures of Co2MnSi and Co2CrAl calculated within
both MFA and RPA are in good agreement with exper-
iment while the MFA values in the case of NiMnSb and
CoMnSb overestimate the Curie temperature strongly.

The lattice contraction leads in both compounds to an
enhancement of the Mn-Co(Cr-Co) exchange constants
that results in an increase of the Curie temperature.

Kurtulus and collaborators have calculated the Curie
temperature for Co2MnSi within MFA and found the
value of 1251 K that is considerably larger than our MFA
estimate of 857 K. This difference is unexpected since the
values of the exchange parameters obtained by Kurtulus
et al. agree well with our parameters (Fig.4). To re-
veal the origin of the discrepancy we performed the MFA
calculation of the Curie temperature with the exchange
parameters of Kurtulus et al. and obtained the TC value
of 942 K which is in reasonable agreement with our es-
timate. Apparently the reason for the inconsistency is
in the procedure of the solving of the multiple-sublattice
MFA problem used by Kurtulus et al. that should devi-
ate from the standard one.32

V. TEMPERATURE DEPENDENCE OF THE

MAGNETIZATION

The study of the temperature dependence of the mag-
netic properties of itinerant ferromagnets is one of the
fundamental problems of ongoing researches. Although
density functional theory can formally be extended to
the finite temperatures51, it is rarely used because of
the lack of suitable exchange-correlation potentials for
magnetic systems at finite temperatures. Statistical me-
chanics treatment of model Hamiltonians is usually em-
ployed. In this section we will present the results of the
calculation of the temperature dependence of magnetiza-
tion that is based on the consideration of the Heisenberg
hamiltonian with exchange parameters calculated within
a parameter-free DFT approach (Sect. II).

To calculate the temperature dependence of the mag-
netization we use the RPA method as described in ap-
pendix. We consider both classical-spin and quantum-
spin cases.

In the classical-spin calculations the calculated values
of the magnetic moments (Table I) are used. To perform

quantum-mechanical RPA calculation we assign integer
values to the atomic moments. In the semi Heusler com-
pounds we ignore the induced moments on Ni and Co
atoms and assign the whole moment per formula unit
to the Mn atom: 4µB (S = 2) in NiMnSb and 3µB

(S = 3/2) in CoMnSb. In Co2MnSi we take the values of
3µB (S = 3/2) and 1µB (S = 1/2) for Mn and Co atoms
respectively. This assignment preserves the value of the
total spin moment per chemical unit. In Co2CrAl we use
in the quantum-RPA calculations the atomic moment of
2µB (S = 1) for Cr and 1µB (S = 1/2) for Co.

In Fig. 7(a), we present in the normalized form the cal-
culated temperature dependence of the magnetization for
both families of Heusler compounds. The calculations are
performed for the experimental lattice parameter. For
comparison, the experimental curves are presented. The
nature of the spin (quantum or classical) influences the
form of the curves considerably. The classical curve lies
lower than the quantum one. This results from a faster
drop of the magnetization in the low-temperature region
in the case of classical spins. In general, the quantum
consideration gives better agreement of the form of the
temperature dependence of the magnetization with ex-
periment.

In Fig. 7(b) we present the temperature dependence of
the magnetization of individual sublattices. As expected
from the previous discussions in half-Heusler systems the
main contribution to the magnetization comes from the
Mn sublattice while for the full-Heusler systems both 3d
atoms contribute substantially.

Considering the calculated Curie temperatures we no-
tice that the value of TC calculated within the quantum-
mechanical RPA is substantially larger than the corre-
sponding classical estimation (see Fig. 7). This prop-
erty is well-known and has its mathematical origin in
the factor (S +1)/S entering the RPA expression for the
Curie temperature (Eq. A14). In Fig. 8 we show the
dependence of the Curie temperature calculated within
the quantum mechanical RPA approach on the value
of S. The exchange parameters are kept unchanged in
these calculations. We see that the dependence has a
monotonous character tending to a classical limit for
large S.

Presently we do not have an explanation why
quantum-mechanical calculations give better form of the
temperature dependence while the classical calculation
provides better value of the Curie temperature. We can
suggest the following arguments. The quantum treat-
ment is more appropriate than the classical one in the
low-temperature region. At high temperatures charac-
terized by strong deviation of the atomic spins from the
magnetization axis the quantum treatment gives too slow
decrease of the magnetization. It is worth noting that the
consequent theory should take into account not only the
orientational disorder of the atomic moments but also
the single-particle (Stoner-type) excitations leading to
the decrease of atomic moments. Another important as-
pect is related to the fact that the exchange parameters
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FIG. 7: (a) The calculated temperature dependence of the total magnetization for both families of Heusler alloys. For com-
parison the experimental temperature dependences12 are presented. The calculations are performed for both classical and
quantum Hamiltonians. Both the magnetization and the temperature are given in reduced form. (b) Calculated sublattice
magnetizations as a function of temperature. The temperature is given in reduced form.

used in the calculations are estimated within the picture
of classical atomic moments described above. It is pos-
sible that the values of the exchange parameters must
be modified for the use in the quantum-mechanical case.
These questions belong to fundamental problems of the
quantum-mechanical description of the magnetic systems
with itinerant electrons.

VI. SUMMARY AND CONCLUSIONS

We studied the electronic structure of several Heusler
alloys using the augmented spherical waves method in
conjunction with the generalized gradient approxima-
tion to the exchange and correlation potential. Using
the frozen-magnon approximation we calculated inter-
atomic exchange parameters that were used to estimate
the Curie temperature. The Curie temperature was esti-
mated within both mean-field and random-phase approx-
imation techniques.

For the half-Heusler alloys NiMnSb and CoMnSb the
dominant interaction is between the Mn atoms. The lat-
tice compression results in considerable change of the ex-
change parameters and Curie temperature.

The magnetic interactions are more complex in full-
Heusler alloys Co2MnSi and Co2CrAl. In both cases the
ferromagnetism is stabilized by the inter-sublattice inter-
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FIG. 8: Curie temperature of NiMnSb and CoMnSb as a
function of spin quantum number S. The horizontal broken
lines correspond to the classical limit (S =∞).

actions between the Mn(Cr) and Co atoms and between
Co atoms belonging to different sublattices. Both the
random phase and mean field approximations slightly un-
derestimate the values of the Curie temperature. Com-
pression of the lattice constant has little effect on the
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magnetic properties of the full-Heusler alloys.
We study the temperature dependence of the magneti-

zation within the quantum mechanical and classical RPA.
The quantum-mechanical approach gives the form of the
temperature dependence that is in good agreement with
experiment. The value of the Curie temperature is, how-
ever, overestimated in the quantum-mechanical calcula-
tion.
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APPENDIX A: THE RANDOM PHASE

APPROXIMATION FOR MULTI-SUBLATTICE

HEISENBERG HAMILTONIAN

The Green function approach is a powerful tool
in the study of the magnetism of complex sys-
tems. (See, e.g., the application of the method to
antiferromagnet37, ferrimagnets38,39, random alloys40,
layered systems41,42,43, disordered dilute magnetic
systems44, multi-sublattice ferromagnets45.) In this ap-
pendix we briefly overview the formalism to study the
temperature dependence of the magnetization of multi-
sublattice systems within the random phase approxima-
tion.

We start with the Heisenberg Hamiltonian for quan-
tum spins

H = −
∑

ij

∑

µν

Jµν
ij ei,µej,ν (A1)

where ei,µ = (ŝx
i,µ, ŝy

i,µ, ŝz
i,µ)/(Sµ) is the normalized spin

operator corresponding to site (i, µ).
In terms of the creation and destruction operators

ŝ∓i,µ = ŝx
i,µ ∓ ŝy

i,µ the Hamiltonian can be written in the
form

H = −
∑

ij

∑

µν

J̃µν
ij [ŝ+

i,µŝ−j,ν + ŝz
i,µŝz

j,ν ] (A2)

where J̃µν
ij = Jµν

ij /SµSν .

Following Callen34 let us introduce Green function

Gµν
ij (τ) = − i

~
θ(τ)〈[ŝ+

i,µ(τ), exp(ηŝz
j,ν)ŝ−j,ν ]〉 (A3)

where η is a parameter, θ(τ) is the step function (θ(τ) = 1
for τ ≥ 0), [. . .] denotes the commutator and 〈. . .〉 is the
thermal average over the canonical ensemble, ie., 〈F 〉 =
Tr[exp(−βH)F ]/Tr[exp(−βH)] with β = 1/kBT

Writing the equation of motion for Gµν
ij (τ) we obtain

∂

∂τ
Gµν

ij (τ) = − i

h
δ(τ)〈[ŝ+

i,µ(τ), exp(ηŝz
j,ν)ŝ−j,ν ]〉 − 1

~2
θ(τ)

×〈[[ŝ+
i,µ(τ), Ĥ ], exp(ηŝz

j,ν)ŝ−j,ν ]〉 (A4)

The last commutator term in Eq. (A4) generates higher-
order Green functions. These functions can be reduced
to lower-order functions by using Tyablikov decoupling
(random phase approximation) scheme33:

〈[ŝ+
i,µ(τ)ŝz

k,µ, ŝ−j,ν ]〉 ≈ 〈ŝz
k,µ〉〈[ŝ+

i,µ(τ), ŝ−j,ν ]〉 (A5)

Applying this decoupling procedure to Eq. (A4) we get

∂

∂τ
Gµν

ij (τ) = − i

h
δ(τ)〈[ŝ+

i,µ(τ), exp(ηŝz
j,ν)ŝ−j,ν ]〉

+
2i

~

∑

k,ξ

J̃µξ
i,k[〈ŝz

i,µ〉Gξν
kj (τ)

−〈ŝz
k,ξ〉Gµν

ij (τ)] (A6)

After a Fourier transformation to energy and momentum
space [g(q, ω) = 1

2π

∑

l

∫

dωe−iqRlGl0(τ)] we obtain

~ωgµν(q, ω) =
1

2π
〈[ŝ+

µ , exp(ηŝz
ν)ŝ−ν ]〉δµν

−2
∑

ξ

{J̃µξ(q)〈ŝz
i,µ〉gξν(q, ω)

−J̃µξ(0)〈ŝz
k,ξ〉gµν(q, ω)} (A7)

Eq. (A7) can be written in a compact matrix form

[~ωI− M(q)]g(q, ω) = u (A8)

where g(q, ω) is a symmetric square matrix, I is a unit
matrix and the inhomogeneity matrix u is expressed by

uµν =
1

2π
〈[ŝ+

µ , exp(ηŝz
ν)ŝ−ν ]〉δµν , (A9)

matrix M(q) is defined by

Mµν(q) =

{

∑

ξ

2J̃µξ(0)〈ŝz
ξ〉

}

δµν − 2J̃µν(q)〈ŝz
µ〉 (A10)

Next, we introduce the transformation which diagonal-
izes matrix M(q):43

L(q)M(q)R(q) = Ω(q) (A11)

where Ω(q) is the diagonal matrix whose elements give
the spin wave energies ωµ(q). The number of branches in
the spin wave spectrum is equal to the number of mag-
netic atoms in the unit cell. The transformation matrix
R(q) and its inverse R−1(q) = L(q) are obtained from
the right eigenvectors of M(q) as columns and from the
left eigenvectors as rows, respectively.



11

Using the spectral theorem and Callen’s technique34

one obtains the thermal averages of the sublattice mag-
netizations:

〈ŝz
µ〉 =

(Sµ − Φµ)(1 + Φµ)2Sµ+1 + (Sµ + 1 + Φµ)Φ
2Sµ+1
µ

(1 + Φµ)2Sµ+1 − (Φµ)2Sµ+1

(A12)
where Φµ is an auxiliary function given by

Φµ =
1

N

∑

q

∑

ν

Lµν(q)
1

eβων(q) − 1
Rµν(q) (A13)

In Eq. (A13), N is the number of q points in the first
BZ.

Eq. (A12) is the central equation for the calculation
of the sublattice magnetizations. It must be solved self-
consistently. The Curie temperature TC is determined as
the point where all sublattice magnetizations vanish.

Near TC (Φµ → ∞ and 〈ŝz
µ〉 → 0) Eq. (A12) can be

simplified. Expanding in Φµ and using Eq. (A13) one
obtains

〈ŝz
µ〉 =

(Sµ + 1)

3Sµ

{

1

S2
µN

∑

q,ν

Lµν(q)
1

eβων(q) − 1
Rµν(q)

}−1

.

(A14)

From Eq. (A14), it follows that for spin-independent
Heisenberg exchange parameters [Eq. (A1)] the depen-
dence of the Curie temperature on the spin value is de-
fined by the factor (Sµ + 1)/Sµ.

The classical limit can be obtained by letting Sµ →
∞ in Eqs. (A12) and (A14).45 Factor (Sµ + 1)/Sµ in
Eq. (A14) becomes in this case unity. The temperature
dependence of the magnetization can be calculated using
a semiclassical analog of Eq. (A12) given by45,52

〈ez
µ〉 = L

({

1

N

∑

q,ν

Lµν(q)
1

eβων(q) − 1
Rµν(q)

}−1)

(A15)
where L(x) = coth(x)−1/x is the Langevin function and
eµ is the angular momentum vector of size one.

∗ Electronic address: ersoy@mpi-halle.de
† Electronic address: lsandr@mpi-halle.de
‡ Electronic address: bruno@mpi-halle.de
§ Electronic address: i.galanakis@fz-juelich.de
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