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Structure and formation energy of carbon nanotube caps

S. Reich, L. Li, and J. Robertson
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom

We present a detailed study of the geometry, structure and energetics of carbon nanotube caps. We show that
the structure of a cap uniquely determines the chirality of the nanotube that can be attached to it. The structure
of the cap is specified in a geometrical way by defining the position of six pentagons on a hexagonal lattice.
Moving one (or more) pentagons systematically creates capsfor other nanotube chiralities. For the example of
the (10,0) tube we study the formation energy of different nanotube caps usingab-initio calculations. The caps
with isolated pentagons have an average formation energy(0.29±0.01) eV/atom. A pair of adjacent pentagons
requires a much larger formation energy of 1.5 eV. We show that the formation energy of adjacent pentagon pairs
explains the diameter distribution in small-diameter nanotube samples grown by chemical vapor deposition.

PACS numbers: 61.46.+w,61.48.+c,81.10.Aj

I. INTRODUCTION

When carbon nanotubes were discovered more than ten
years ago, they were generally looked at as elongated
fullerenes.1,2,3,4,5,6 A tube was described as several carbon
rings capped on both ends by half-spherical fullerene frag-
ments. Over the years this view changed. Presently, carbon
nanotubes are modeled as one-dimensional solids.7 A cylin-
drical unit cell is repeated infinitely along the nanotube axis.7

Considering single-walled carbon nanotubes as systems with
translational periodicity is appropriate for studying their phys-
ical properties, because nanotube aspect ratios range from
102−107 (Refs.8 and 9). The caps—normally only present at
one end of the tubes—have virtually no effect onto the prop-
erties of a tube. This is the reason why nanotube caps almost
disappeared from the literature, after a number of studies on
this subject in the earlier nanotube literature.10,11,12

Recently, however, the attention turned back to nanotube
caps in efforts to understand the growth of carbon nanotubes.
Single-walled tubes nucleate on a catalyst particle and then
normally grow by adding carbon atoms to the base (root
growth mechanism).8,13,14,15 Miyauchi et al.16 pointed out
the importance of caps when studying small-diameter tubes
grown by chemical vapor deposition (CVD). They argued that
there must be a correlation between the apparent preference
for some nanotube chiralities in their growth method and the
structures of the nanotube caps at nucleation. We recently sug-
gested that the caps of carbon nanotubes and their interaction
with the catalyst will be the key for controlling the chirality of
single-walled carbon nanotubes during growth.17 Our guiding
principle for chirality-selective growth was based on two fun-
damental concepts: (i) one cap can only grow into a unique
carbon nanotube and (ii) the cap structure can be controlled
by epitaxial growth on a metal surface.

In this paper we study the correlation between nanotube
caps and the tube that can be attached to it. We show that
the matching nanotube structure is defined by placing six pen-
tagons onto a hexagonal lattice. Moving one of the pentagons
creates different caps and hence different tubes in a rational
way. Moving one pentagon along the graphenea1 direction
changes the nanotube chirality(n1,n2) to (n1,n2 + 1), mov-
ing it alonga2 creates the(n1−1,n2+1) tube. We study the

energetics of various (10,0) nanotube caps usingab-initio cal-
culations. For caps obeying the isolated pentagon rule the av-
erage formation energy is 17.4±0.7eV per 60 carbon atoms.
One pair of adjacent pentagons requires an additional energy
of 1.5 eV. We show that the large formation energy of ad-
jacent pentagons explains the diameter distribution in low-
temperature CVD grown samples reported by Bachiloet al.18

and Miyauchiet al.16.

This paper is organized as follows. We first show how to
construct a nanotube cap by cutting out 60◦ cones from a
hexagonal lattice, Sect. II. We discuss the number of possi-
ble caps for a given nanotube—several hundreds to thousands
for tube diametersd ≈ 10Å—and the number of possible nan-
otubes for a given cap—just one in Sects. II and II A. We then
show in Sect. II B how caps for different tubes can be con-
structed by moving pentagons. After explaining the construc-
tion of nanotube caps we proceed by calculating the formation
energies of a total of 20 cap structures for the (10,0) nanotube
in Sect. III. Finally, we discuss the diameter distributionof
small-diameter tubes (d = 7−10Å) grown by CVD, Sect. IV.
Section V summarizes this work.

FIG. 1: (Color online) Constructing a cap for a (5,5) nanotube. (a)
Cut out the shaded areas and join the sides to obtain the cap in(b).
Light grey (orange) mark the pentagons. The cap hexagon (thick
line, red) in (a) points around the nanotube circumference in (b).
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FIG. 2: (Color online) Number of carbon capsversus tube diameter;
(a) all possible cap structures and (b) cap structures obeying the iso-
lated pentagon rule. The line in (a) is a fit by a function|d−dc|

v with
v = 7.8 anddc = 1.2; in (b) dc = 2.6. Data from Ref. 11.

II. CAP CONSTRUCTION

Carbon caps resemble half-fullerenes. They are composed
of six pentagons and a number hexagons.10,11,12The six pen-
tagons are necessary by Euler’s theorem of closed polyhedra
to introduce the necessary Gaussian curvature.6,19,20,21There
are three methods to represent carbon caps on a flat plane: flat-
tening the cap onto a hexagonal lattice22, unwrapping a half
tube with the cap attached to it10, and a network representa-
tion based on graph theory11. We use the flattening method
originally suggested by Yoshida and Osawa22, see also As-
takhovaet al.12. We found that this method best highlights
the pattern of six hexagons and its correlation to the nanotube
chiral vector.

Figure 1(a) shows the construction of a (5,5) nanotube
cap using the flattening method. The light grey (orange)
hexagons indicate the positions of the pentagons on the hexag-
onal graphene lattice. The dark shaded areas are cut and the
black lines joined to form a half-spherical structure,12 see
Fig. 1(b). The (red) lines in Fig. 1(a)—the cap hexagon—
define the rim of the cap; this line goes around the circumfer-
ence in the capped (5,5) in (b).

The (5,5) nanotube is the smallest diameter tube that has a
cap obeying the isolated pentagon rule.11 It has only a single
such structure fitting over it (half a C60 fullerene). The other
tubes with only one cap fulfilling the isolated pentagon rule
are (9,0), (9,1), (8,2), and (6,5) (diametersd = 6.8− 7.5Å).
Tubes of these diameters are found,e.g., in CoMoCat CVD
grown samples.16,18 With this growth method even smaller
tubes such as the (6,4) and the (7,3) have been reported. Al-
lowing adjacent pentagons the smallest capped tube is the
(5,0) tube. This sets the limit for the tube diameters that can
form by the standard growth method. Interestingly, for the
small-diameter CVD samples there is a marked decrease in
the abundance of tubes when going from the isolated pentagon
regime [(6,5), (8,3), (9,1)] to the diameters where only caps
with adjacent pentagons exist [(6,4) and (7,3)]. We discuss
the diameter distribution in these samples in Sect. IV.

Brinkmannet al.11 calculated the number of caps for nan-
otube diameters up to 20̊A. Similar numbers as reported by

Brinkmann and co-workers were obtained by Astakhovaet
al.12 for the subset of caps obeying the isolated pentagon rule
and tubes up to the (10,10) nanotube. With increasing diame-
ter the number of possible caps grows very rapidly followinga
power-law for caps with two or more adjacent pentagons, see
Fig. 2(a) (Ref. 11). In a first approximation one expects ad12

dependence for the number of caps (including adjacent pen-
tagons) by the following argument. The area of the hexagonal
lattice where we can place the six pentagons as in Fig. 1 grows
asd2, because the cap hexagon is equal to the circumference
of the tube. To specify the cap by the flattening method we
select six out ofd2 ≈ h2 elements (h integer). We show in
Sect. II A that specifying the six pentagons fully determines
the chirality of the nanotube. The number of distinct choices
for six elements out ofh2 is given by the binomial coefficient

h2C5. The highest power of this binomial ish12; from this
we obtain thed12 dependence for the number of carbon caps.
As can be seen from the fit in Fig. 2(a) the number of caps is
proportional tod7.8. There are three obvious reasons why the
number of caps is smaller for a givend than expected from
our argument.

First, the choice of the six pentagons is not independent.
By placing the first pentagon we remove a 60◦ cone from the
hexagonal lattice, Fig. 1(a). The remaining pentagons must
not be placed in this area. This becomes more and more re-
strictive the more pentagons we specify. Second, two appar-
ently different sets of six pentagons out ofh2 enumerated el-
ements can, in fact, correspond to the same geometrical pen-
tagon pattern. The pattern might be rotated or moved with
respect to the hexagonal lattice. For example, in Fig. 1(a) we
can rotate the six pentagons by 60◦ degree around the central
pentagon (the cones are rotated together with the pentagons).
This is a different subset in the argument outlined above, but
the two caps are identical. Third, the cap area is not necessar-
ily quadratic; it can be rectangular as well [examples are the
(8,4) caps in Fig. 4 of Sect. II A]. Then, the number of avail-
able hexagons is smaller thanh2, which results in a smaller bi-
nomial coefficient and hence a smaller exponent for the num-
ber of caps over tube diameter. Although we have several ar-
guments why the exponent in Fig. 2(a) is smaller than twelve,
we cannot explain why it is equal to 7.8. It would be interest-
ing to explain the exact dependence of the number of caps on
tube diameter.

For caps fulfilling the isolated pentagon rule in Fig. 2(b) the
number of caps is smaller for small diameters than for general
caps, but ford → ∞ we recover the power law behavior of
Fig. 2(a).11 This is understandable, since for a large cap area
(large tube diameters) the fraction of caps with adjacent pen-
tagons becomes negligible. For a given nanotube diameter
there are fewer caps for armchair and zigzag (closed symbols)
tubes than for chiral tubes (open). This is due to the higher
symmetry of the achiral tubes, which reduces the choices of
caps.

Although a given nanotube can have thousands of distinct
caps, quite the opposite is true for the inverse problem. A
given cap only fits onto one particular nanotube as we show in
the following section.
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A. One cap – one tube: The pentagon pattern determines the
tube chirality

As we showed in Fig. 1(a) and (b) a hexagon that includes
all six pentagons on the graphene lattice ends up as a closed
line around the nanotube circumference. Giving the vec-
tor around the nanotube circumference, on the other hand,
uniquely determines the microscopic structure of the tube (di-
ameterd and chiral angleΘ ). As is well known an(n1,n2)
nanotube is obtained by rolling up a graphene sheet along the
vector7

c= n1a1+ n2a2, (1)

wherea1 anda2 are the graphene lattice vectors. Once the
cap hexagon is defined as in Fig. 1(a) the edge of this cap
fixes the nanotube structure that can be attached to it.

In Fig. 3 we show the edge construction for a chiral nan-
otube. In this case the cap hexagon cannot be closed by cutting
the shaded areas. The steps [dashed lines in Fig. 3(a)] corre-
spond to going twice into the−a1+a2 direction of graphene,
see Fig. 3(b). The full (red) line representing the cap hexagon
has a length of 11a1. Adding the full and dashed lines we ob-
tain a chiral vectorc = (11−2)a1+2a2, i.e., the (9,2) nan-
otube as shown in Fig. 3(b).

The cap construction by flattening the half sphere onto the
graphene lattice involves three steps:12 (i) define the positions
of the hexagons, (ii) define the directions of the 60◦ cones to
be cut and (iii) define the cap hexagon. Which step fixes the
nanotube structure?

The last step—drawing the cap hexagon—is completely ar-
bitrarily and will not change the cap structure. Increasingthe
size of the hexagon by moving the lines in Fig. 3(a) away from
the pentagons, will simply add a tube segment to the cap. It

FIG. 3: (Color online) (a) pentagon pattern, cutting direction and cap
hexagon of a (9,2) cap. (b) The sum of the full (red) and dashed
(white) lines in (a) equals the (9,2) chiral vector (arrow).

FIG. 4: (Color online) (a) Construction of an (8,4) cap. (b) The
same arrangement of the six pentagons but a rotation of the cut cones
(dark grey areas) yields the same tube, see text. (c) Cuttingalong the
armchair direction and rotating the cap hexagon yields likewise an
(8,4) cap as shown in (d).

is also possible to “rotate” the hexagon,i.e., to change the
orientation of the line connecting two pentagons by 60◦ and
correspondingly the remaining lines between the other pen-
tagons. This changes the orientation of the full lines and the
steps with respect toa1 anda2. Adding up the lines and steps
one obtains the same chirality.

How abou step (ii) of the flattening method? Can we con-
struct two distinct caps from a given arrangement of pen-
tagons by cutting different segments of the graphene lattice?
The answer is no as is illustrated for the (8,4) nanotube in
Fig. 4(a)-(d). Cutting different segments of the graphene lat-
tice [Fig. 4(a) and (b)] results in the same chiral vector. The
construction of the (8,4) cap in Fig. 4(a) is equivalent to the
construction of the (9,2) cap in Fig. 3(a). The full line has a
length of 12a1 and we have four steps along−a1+a2. This
adds up to the (8,4) nanotube. In Fig. 4(b) we rotated the
shaded cones by 60◦ degree. On first sight the cap looks re-
markably different. The full lines have a length of 4a1 (we
rotated the cap hexagon together with the shaded cones to
keep the full lines parallel toa1). There are a total of 8 steps;
they are alonga1−a2. Thus, Fig. 4(b) shows a cap for the
(12,−4) tube. This is symmetry equivalent to the (8,4) nan-
otube because the(n1,n2) and the(n1 + n2,−n2) tube have
the same microscopic structure.7 In Fig. 4(c) we cut along the
armchair instead of the zigzag direction. Once more, we ob-
tain a cap for the (8,4) nanotube as is shown by the chiral
vector in Fig. 4(d).

The chiral vector of a nanotube is fixed by placing six pen-
tagons onto the graphene lattice,i.e., the first step in the con-
struction of the cap. This topological construction uniquely
specifies the structure of the carbon cap and the tube that can
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be attached to it. This also determines the formation energy
of the cap during nanotube nucleation and the nanotube that
finally grows from the carbon nucleus. We now study how
caps for different nanotube are constructed by changing the
pentagon pattern.

B. Constructing caps for different tube chiralities

To create different caps from a starting pentagon pattern we
need to move one (or more) of the pentagons. We now show
that this creates(n′1,n

′
2) nanotubes in a rational manner. In

Fig. 3(a) the lines forming the cap hexagon (full, red) are par-
allel to thea1 direction of what later becomes the rolled up
graphene sheet. Moving one pentagon alonga1 we increase
the length of the cap hexagon bya1 and introduce an addi-
tional−a1+a2 step, Fig. 5(a). Thus, the resulting nanotube is
given by(n′1,n

′
2)= (n1,n2+1). In our example this is the (9,3)

nanotube. For the cap thea1 direction is fixed with respect to
the cap hexagon, not the graphene sheet. At every point of the
lattice in Fig. 5(a)a1 is parallel to the line defining the cap
hexagon. When the direction of the full line changes by 120◦

a1 changes as well. Therefore, the displacement of a pentagon
in the directions shown in Fig. 5(b) also creates caps for the
(9,3) nanotube. These are six out of 364 patterns that match
the (9,3) nanotube or five out of 33 if we impose the isolated
pentagon rule.11 Moving the pentagon alonga2 results in an
additional−a1+a2 step, but does not change the length of
the hexagonal line. We thus obtain an(n1−1,n2+1) = (8,3)
cap. All other displacements can be described as the sum of
a1 anda2 displacements.

Figure 6(a) shows the caps we obtain starting from the (9,2).
The displacement of just one pentagon creates a large variety
of chiral indices. Some of the caps in Fig. 6(a) are irregular.
By this we mean that five pentagons are concentrated in one
part of the hexagonal lattice, whereas the sixth pentagon isfar
away from the others. More regular caps can be constructed
by displacing more than one pentagon. Take, for example, the
(12,2) nanotube in Fig. 6(a). To construct a regular cap for this
tube we start from the (9,2) pattern in Fig. 3(a). We take the

FIG. 5: (Color online) (a) (9,3) cap obtained from the (9,2) pattern in
Fig. 3 by moving the rightmost hexagon alonga1. For the capa1 is
parallel to the line of the cap hexagon (full, red). The displacement of
one of the six hexagons in (b) alonga1 (arrows) creates six distinct
(9,3) caps (one violates the isolated pentagon rule).

FIG. 6: (Color online) (a) Caps created from the (9,2) tube byfixing
five pentagons (light grey, orange) and moving the remainingpen-
tagon over the hexagonal lattice; (b) same as (a) but starting from the
high-symmetry (5,5) configuration in Fig. 1; (c) same as (a) staring
from a high-symmetry (9,0) cap. If we move the free pentagon next
to another pentagon the cap violates the isolated pentagon rule (bold,
red indices).

rightmost pentagon as the first pentagon [the one we moved
around in Fig. 6(a)] and then go counterclockwise through the
six pentagons II, III, IV and so forth. Moving one after the
other yields the series

(9,2)
0

−→
I

(9,2)
−a2−→

II
(10,1)

a1−→
III

(10,2)
a1−a2−→

IV

−→ (11,2)
−a2−→

V
(12,1)

a1−→
VI

(12,2), (2)

where the vectors above the arrows indicate the displacement;
the roman numerals count the hexagons. The resulting (12,2)
cap consists of two columns of pentagons along the armchair
direction of graphene. It looks similar to the (8,2) patternin
Fig. 6(a), but with more space between the armchair columns.

In Fig. 6(b) and (c) we present the caps obtained start-
ing from the (5,5) and (9,0) caps and displacing one pen-
tagon. The high symmetry of the original pentagon patterns is
reflected in the chiralities that result from the displacement
of one pentagon. The patterns of five pentagons shown in
Fig. 6(b) and (c) in grey (orange) have mirror planes. We thus
obtain pentagon patterns that are mirror images of each other
when we move the remaining pentagon over the hexagonal
lattice. These mirror images are (identical) caps for the same
pair of chiral indices. To highlight this, we always broughtthe
(n1,n2) indices back into the standard 0◦ ≤Θ ≤ 30◦ graphene
segment (n1,n2 > 0,n1 > n2) in Fig. 6(b) and (c). For exam-
ple, the series (9,1), (10,0), (10,1) and (10,2) in Fig. 6(c)is
equivalent to (9,1), (10,0), (11,-1), and (12,-2), becausethe
(n1,n2) and(n1+ n2,−n2) tube are identical. For tubes close
to the armchair direction we interchangedn1 andn2 in the left
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part of Fig. 6(b). This turns a left-handed tube into a right-
handed tube; otherwise the two tubes are identical.

Many chiral indices appear in more than one panel of Fig. 6.
E.g., the (8,4) and (9,4) tubes are present in (a) and (b) and all
chiral indices of (c) can be found in (a) as well. Some of the
repeated indices correspond to the same pentagon pattern,i.e.,
the same cap, see the (10,1) caps in Fig. 6(a) and (c). Most
repeated indices, however, describe two distinct caps for one
nanotube chirality. For example, the (10,0) cap in Fig. 6(c)is
very regular and obeys the isolated pentagon rule, whereas the
(10,0) cap in (a) contains two adjacent pentagons.

III. FORMATION ENERGIES OF (10,0) CAPS

Our original motivation for studying nanotube caps was
to calculate the formation energies of the caps on catalytic
particles.17 We found that the two important contributions for
the total energy of a nanotube nucleus were the cap forma-
tion energy and the carbon-metal binding energy. Here the
question arises whether distinct caps matching the same nan-
otube have different formation energies and would hence be
preferred in a growth process. To answer this question we cal-
culated the total energies of (10,0) caps from first-principles.

Ab-initio calculations were performed using the SIESTA

code.23 The core electrons were described by non-local norm-
conserving pseudopotentials24, the valence electrons by a
double-ζ basis set.25 The cutoff radii were 4.2a.u. for thes
and 5.0a.u. for thep orbitals. The cutoff in real space was
≈ 300Ry. We used the generalized gradient approximation
(GGA) as parameterized by Perdew, Burke, and Ernzehof.26

These input parameters are the same as we used for our calcu-
lations of the nanotube caps on Ni.17 The starting cap struc-
tures were obtained using the CAGE program.11 Two caps
were joined to form a fullerene and placed into a cubic unit
cell. The cell length was 20̊A, i.e., interactions between re-
peated images were strictly zero because of the finite length
of the basis functions.23 The fullerenes were relaxed by a
conjugate gradient optimization until all forces were below
0.04eV/Å. Our formation energies are given with respect to
the total energy of a graphene sheet with the same number of
carbon atoms.

The (10,0) tube has seven caps obeying the isolated pen-
tagon rule.11,12We calculated the formation energy of all these
seven caps plus 13 caps with adjacent pentagons (out of 251).
The formation energies we obtained are given in Table I. The
caps contained between 40 and 60 carbon atoms. For a fixed
number of adjacent pentagons the formation energyEc per
carbon atom decreases with increasing number of atoms in
the cap. This was expected, because the formation energy
of fullerenes scales with lnN6, whereN6 is the number of
hexagons in the fullerene.27,28 We corrected for this depen-
dence by adding the energy of carbon atoms in the (10,0) nan-
otubeEc(10,0) to obtain a constant number of hexagons (or
carbon atoms). This is equivalent to assuming that the chem-
ical potential for carbon is controlled by the sides of the tube.
E60 in Table I thus represents a capped (10,0) segment with 60

atoms

E60= Ec(cap)+ (60− na)Ec(10,0), (3)

whereEc(cap) is theab-initio formation energy for the cap,
na the number of carbon atoms in the cap andEc(10,0) =
0.137eV/C, see Table I.

The average formation energy for a segment with 60 carbon
atoms is 17.4eV if the cap obeys the isolated pentagon rule.
E60 varies by up to±0.7eV for the different caps; the most
stable structure is half aC84 fullerene withE60 = 16.8eV. Al-
lowing one pair of adjacent pentagonsE60 increases by 1.4eV
or 8%. A notable exception is the cap with 52 atoms that
only differs by 0.1 eV between the isolated-pentagon and two
adjacent-pentagons cap. With two pentagon pairs the aver-
age formation energy is 3.2eV (18%) higher than for isolated
pentagons. The typical formation energy of a pair of adja-
cent pentagons is thus around 1.5eV. Note that this is≈ 1/4th
of the energy necessary for a Stone-Wales defect (5.3−6 eV,
Refs. 29,30).

The increase in formation energy as shown in Table I is, in
fact, only a lower boundary for the energy required for caps
with adjacent pentagon pairs. The reason for this is the geom-
etry of the relaxed fullerenes with zero, two and four pentagon
pairs. The relaxed fullerenes obeying the isolated pentagon
rule typically had a circular cross section,i.e. the part of the
cap where the tube would be attached. The fullerenes con-
structed from caps with two or more adjacent pentagon pairs,
in contrast, were elliptical. Figure 7 shows as an example the
fullerenes corresponding to the cap with 48 carbon atoms in
Table I. The cross section changes from almost circular for
the isolated pentagon cap in Fig. 7(a) to elliptical for the caps
with two and four adjacent pentagons. The cross section in
Fig. 7(c) has an aspect ratio close to 2. Attaching an ellipti-
cal cap to a circular nanotube induces additional strain in the
cap or a part of the tube. This results in a further increase in
the energy required for the formation of adjacent pentagons.
Relaxed fullerene equivalents of caps with adjacent pentagons
are flat, because the adjacent pentagon pairs create large cur-
vature in a part of the cap. The remaining part of the cap

FIG. 7: (Color online) Relaxed fullerene equivalent of the nanotube
caps with 48 carbon atoms and (a) isolated pentagons, (b) twoad-
jacent pentagons and (c) four adjacent pentagons, compare Table I.
Thez axis of an attached (10,0) tube should be thought of as perpen-
dicular to the paper.
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TABLE I: Formation energy of (10,0) caps.Ec is the formation energy of the cap alone;E60 corresponds to the formation energy for a half
capped tube containing 60 carbon atoms, see text for details. The formation energy for the (10,0) tube andC70 are given for comparison. All
energies are referred to the total energy of a graphene sheet. “−” means no structure exists with isolated pentagons or this number of adjacent
pentagons for a givenna.

na isolated two adjacent four adjacent
Ec (eV) Ec/C (eV) E60 (eV) Ec (eV) Ec/C (eV) E60 (eV) Ec (eV) Ec/C (eV) E60 (eV)

40 14.8 0.370 17.5 − − − 17.2 0.438 20.0
42 14.4 0.342 16.8 15.7 0.375 18.2 16.7 0.400 19.2

14.7 0.350 17.2
46 16.0 0.348 17.9 17.3 0.376 19.2 19.4 0.422 21.3
48 15.3 0.320 17.0 17.3 0.359 18.9 20.2 0.421 21.8
52 17.0 0.328 18.1 17.1 0.329 18.2 19.1 0.367 20.2
54 − − − 18.9 0.350 19.7 21.2 0.392 22.0
60 17.4 0.290 17.4 18.8 0.313 18.8 19.6 0.326 19.6

average 17.4 18.8 20.6

(10,0) tube 0.137 8.2a

halfC70 13.2 0.376 17.8b

aformation energy of 60 atoms of an infinite (10,0) nanotube
bCalculated using 40C70 atoms for the cap and 20 (10,0) atoms for the tube

segment. This segment is then equivalent to the 40 atoms cap in the first row.

contains mainly hexagons and becomes flat. This gives rise to
the elliptical shape of the relaxed caps.

The ≈ 1.4 and 3.2eV difference in formation energy for
caps with adjacent pentagons is on the same order or larger
than the demarcation energy of carbon nanotubes during nu-
cleation (≈ 2.8eV at 1000 K, see Ref. 17). By this we mean
the energy difference necessary for the exclusive growth of
a specific carbon structure. When the formation energy of
two carbon nuclei differs by more than the demarcation en-
ergy, the nucleus with the higher energy is formed with a very
small yield. We thus find that for low-temperature growth,
the formation of nanotube caps obeying the isolated pentagon
rule is much preferred. The (10,0) tube has caps obeying
the isolated pentagon rule. Its cap and hence the (10,0) tube
can grow when isolated pentagons are preferred energetically.
This changes dramatically when we consider single-walled
carbon nanotubes with smaller diameters. We now show that
the narrow diameter distribution in certain CVD grown nan-
otubes can be understood from the formation energy of adja-
cent pentagon pairs.

IV. ADJACENT PENTAGONS AND DIAMETER
DISTRIBUTION OF CVD SAMPLES

Bachilo et al.18 and Miyauchi et al.16 reported single-
walled nanotube samples with mean diameters below 10Å.
The remarkable thing about these tubes was that they
showed a very narrow diameter and chiral angle distribu-
tion. To measure the chirality distribution both groups used
photoluminescence.16,18,32 This has to be treated with some
care, because the luminescence cross section varies from tube
to tube.31 This is most important for comparing tubes with dif-
ferent chiral angles. In our analysis here we will concentrate
on the diameter dependence of the tube abundance.
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FIG. 8: (Color online) Abundance of nanotubes as determinedfrom
photoluminescence (PL) spectroscopyversus tube diameter. PL data
were taken from Bachiloet al.18 (CoMoCat, closed symbols) and
Miyauchi et al.16 (ACCVD, open) and normalized to the intrin-
sic tube intensities following Reichet al.31. Tubes with diameters
smaller than 7.25̊A have only caps that violate the isolated pentagon
rule (dashed line). The full line is a guide to the eye (Gaussian cen-
tered at 7.75̊A with σ = 1.7Å). The chiral indices are indicated for
selected nanotubes. Only semiconducting tubes can be detected by
PL.

In Fig. 8 we show the abundance of tubes reported by
Bachilo et al.18 and Miyauchiet al.16. The data were cor-
rected by the calculated photoluminescence intensities ob-
tained by us.31 The correction depends on diameter as 1/d2,
and in a non-trivial way on the chiral angle and nanotube in-
dex family.31,33The conclusions presented here are, however,
insensitive to the details of the correction.

Starting from large diameters, the abundance of nanotubes
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in the CoMoCat (Ref. 18) and the ACCVD (Ref. 16) sample
in Fig. 8 increases with decreasing diameter. It peaks around
7.8Å. Below 7.2Å the abundance of tubes drops sharply to
zero. This drop happens exactly at the radius that separates
semiconducting nanotubes into tubes with isolated pentagon
caps [(6,5), (9,1), (7,5), and larger] and tubes that only have
caps with adjacent pentagons [(6,4), (7,3), and smaller], see
the chiral indices and the dashed line in Fig. 8. The thermal
energy at nucleation was thus too small for the formation of
adjacent pentagons, which cost 1.5 eV per pair as we showed
above.

The formation energy of the tubes with smallest diameters
increases further when taking into account the curvature en-
ergy of the tube in addition to the energy required for adja-
cent pentagons. The (6,4) cap, for example, contains 30 car-
bon atoms. An adjacent pentagon pair thus costs≈ 50meV
per atom in the cap. The difference in strain energy between
the (6,4) and the (6,5) nanotube is≈ 30meV/C (Ref. 34).
The total energy difference between a capped (6,4) and (6,5)
nanotube (neglecting the catalyst) will thus decrease from
80meV/C for the cap alone to 30 meV/C for a long tube where
the effect of the adjacent pentagon becomes negligible. From
ab-initio calculations we found a difference in formation en-
ergy 100 meV/C for the (6,4) and the (6,5) cap in good agree-
ment with the estimate given above.17 It is, however, impor-
tant to realize that the dependence of the strain energy on tube
diameter will never explain,e.g., the low abundance of the
(9,1) nanotube as compared to the (6,5), see Fig. 8. These two
tubes have exactly the same diameter. The formation of the
nanotube nucleus—the cap on the metal particle—is a limit-
ing step for the growth of a tube.

The line in Fig. 8 is a guide to the eye. It is a Gaussian with
a mean diameterd ≈ 7.75Å andσ = 1.7Å. As can be seen,
the abundance of tubes follows reasonably well a Gaussian
distribution for large diameters, but the tail towards small di-
ameters is missing. In particular, there is a marked asymmetry
between the very small or vanishing abundance below 7.2Å
and the comparatively broad distribution towards the large-
diameter end in Fig. 8.

The low-temperature CVD experiments confirm the impor-
tance of the cap structure and the cap formation energy for
the distribution of nanotube chiralities in a sample.17 Once a
cap is formed, it determines the(n1,n2) nanotube that grows
from it. This is somewhat similar to the growth of tubes using

other nanotubes as a seed.35 If the formation energy of a cer-
tain cap is larger than the energy available during nucleation,
this prevents the growth of the tube corresponding to the cap.
This holds even when the tube itself is otherwise favourable
energetically.

In this study we only considered the energy of the cap itself.
The second important contribution to the formation energy
during nucleation is the carbon-metal binding energy.17 This
can, in particular, introduce energy differences between caps
of similar diameter and hence similar cap formation energy
(curvature energy). The variations in the total carbon-metal
binding energy (1− 2 eV) are similar to the energy required
for adjacent pentagons (1.5 eV). The carbon-metal binding en-
ergy can thus be the origin of the preferential growth of certain
chiralities, whereas the adjacent-pentagon energy prevents the
growth of tubes with very small diameters.

V. CONCLUSIONS

In summary, we studied the structure and energetics of nan-
otube caps. We showed that the arrangement of pentagons
in the cap defines the chirality of the tube that matches to it.
Moving one (or more) pentagons across the hexagonal lattice
creates caps for different nanotubes in a rational way. The
isolated-pentagon caps for a (10,0) nanotube vary in forma-
tion energy by±0.7eV or 12meV/atom. Introducing adjacent
pentagons requires an energy of≈ 1.5eV per pentagon pair.
The large formation energy for two adjacent pentagons ex-
plains why tubes with diameters below 7.2Å had a very small
yield in low-temperature CVD growth. Our study shows that
the structures and energetics of carbon caps on a catalytic par-
ticle will be the key for chirality selective growth of single-
walled carbon nanotubes. A nanotube cap on a catalytic par-
ticle is the nucleus of a tube and uniquely determines its chi-
rality.
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