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Structure and formation energy of carbon nanotube caps

S. Reich, L. Li, and J. Robertson
Department of Engineering, University of Cambridge, Trumpington Sreet, Cambridge CB2 1PZ, United Kingdom

We present a detailed study of the geometry, structure amgetics of carbon nanotube caps. We show that
the structure of a cap uniquely determines the chiralityhefrianotube that can be attached to it. The structure
of the cap is specified in a geometrical way by defining thetjprsbf six pentagons on a hexagonal lattice.
Moving one (or more) pentagons systematically creates feaymgher nanotube chiralities. For the example of
the (10,0) tube we study the formation energy of differematabe caps usingb-initio calculations. The caps
with isolated pentagons have an average formation er{@g89+ 0.01) eV/atom. A pair of adjacent pentagons
requires a much larger formation energy of 1.5 eV. We showtligsformation energy of adjacent pentagon pairs
explains the diameter distribution in small-diameter nahe samples grown by chemical vapor deposition.

PACS numbers: 61.46.+w,61.48.+c,81.10.A]

I. INTRODUCTION energetics of various (10,0) nanotube caps uamnitio cal-
culations. For caps obeying the isolated pentagon rulevthe a
When carbon nanotubes were discovered more than teg oo fc_)rmatlo_n energy is Wt 0.7evV per 60 carb_o_n atoms.
ne pair of adjacent pentagons requires an additional gnerg
years ago, they were generally looked at as elongate 156V We sh hat the | f . f ad
fullerenest 23455 A tube was described as several carbonol > €V: We show that the large formation energy of ad-
) i . jacent pentagons explains the diameter distribution in-low
rings capped on both ends by half-spherical fullerene frag; .18
o temperature CVD grown samples reported by Bactila .
ments. Over the years this view changed. Presently, carban : . 16
; ; . ] and Miyauchiet al =2.
nanotubes are modeled as one-dimensional sbligylin-

drical unit cell is repeated infinitely along the nanotubis&x

Considering single-walled carbon nanotubes as systenhs wit This paper is organized as follows. We first show how to
translational periodicity is appropriate for studyingitihys-  construct a nanotube cap by cutting out G@nes from a
ical properties, because nanotube aspect ratios range fropgxagonal lattice, Sedflll. We discuss the number of possi-
107 - 10’ (Refs.8 andl9). The caps—normally only present atyle caps for a given nanotube—several hundreds to thousands
one end of the tubes—have virtually no effect onto the propfor tube diameterd ~ 10A—and the number of possible nan-
erties of a tube. This is the reason why nanotube caps almogtubes for a given cap—just one in SeEfs. Il BEadlil A. We then
disappeared from the literature, after a number of studies oshow in SectCIIB how caps for different tubes can be con-
this subject in the earlier nanotube literatd:?é:12 structed by moving pentagons. After explaining the comstru
Recently, however, the attention turned back to nanotub#ion of nanotube caps we proceed by calculating the formatio
caps in efforts to understand the growth of carbon nanotubesnergies of a total of 20 cap structures for the (10,0) ndeotu
Single-walled tubes nucleate on a catalyst particle and thein SectIll. Finally, we discuss the diameter distributioin
normally grow by adding carbon atoms to the base (roosmall-diameter tubesl(= 7 — 10A) grown by CVD, Sec{1V.
growth mechanism§13:1415 Miyauchi et al 6 pointed out  SectiorllY summarizes this work.
the importance of caps when studying small-diameter tubes
grown by chemical vapor deposition (CVD). They argued that
there must be a correlation between the apparent preference
for some nanotube chiralities in their growth method and the
structures of the nanotube caps at nucleation. We recerglys
gested that the caps of carbon nanotubes and their int@macti (a)
with the catalyst will be the key for controlling the chirglof 0
single-walled carbon nanotubes during grodi®ur guiding
principle for chirality-selective growth was based on two{
damental concepts: (i) one cap can only grow into a unique
carbon nanotube and (ii) the cap structure can be controlle
by epitaxial growth on a metal surface.

In this paper we study the correlation between nanotubel/
caps and the tube that can be attached to it. We show the
the matching nanotube structure is defined by placing six pen
tagons onto a hexagonal lattice. Moving one of the pentagons
creates different caps and hence different tubes in a @dtionFIG. 1: (Color online) Constructing a cap for a (5,5) nanetuka)
way. Moving one pentagon along the graphenedirection Cut out the shaded areas and join the sides to obtain the dap.in
changes the nanotube chirality, nz) to (ny,ny + 1), mov- Light grey (orange) mark the pentagons. The cap hexagook(thi
ing it alongas creates thén; — 1,n, + 1) tube. We study the line, red) in (a) points around the nanotube circumferendb).
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Brinkmann and co-workers were obtained by Astakheva

al 12 for the subset of caps obeying the isolated pentagon rule
and tubes up to the (10,10) nanotube. With increasing diame-
] ter the number of possible caps grows very rapidly follovang
power-law for caps with two or more adjacent pentagons, see
Fig.[d(a) (Refl_11). In a first approximation one expectdéa

Number of caps
[
o

10 ¢ (o{ E dependence for the number of caps (including adjacent pen-

10'F ] tagons) by the following argument. The area of the hexagonal

ok o ] lattice where we can place the six pentagons as iflFig. 1 grows
: T s 0 e 0 asd?, because the cap hexagon is equal to the circumference

of the tube. To specify the cap by the flattening method we
select six out ofd? ~ h? elements f integer). We show in
Sect[A that specifying the six pentagons fully deternsine
(a) all possible cap structures and (b) cap structures nbekie iso- the thrallty of the nangt_ube_. The numb_er of _d'St'nCt _chslce
lated pentagon rule. The line in (a) is a fit by a functidr- dc|Y with ~ fOr Six elements out dfi” is given by the binomial coefficient
v=7.8 andd; = 1.2; in (b) d; = 2.6. Data from Ref_11. n2Cs. The highest power of this binomial I$2; from this

we obtain thed!? dependence for the number of carbon caps.

As can be seen from the fit in Figl. 2(a) the number of caps is

II. CAP CONSTRUCTION proportional tod”8. There are three obvious reasons why the

number of caps is smaller for a givehthan expected from

Diameter (A)

FIG. 2: (Color online) Number of carbon capssus tube diameter;

Carbon caps resemble half-fullerenes. They are compose(ﬂJr argument.
of six pentagons and a number hexag&he:12The six pen- First, the choice of the six pentagons is not independent.
tagons are necessary by Euler’s theorem of closed polyhedBy placing the first pentagon we remove & @ne from the
to introduce the necessary Gaussian curvat?&%21There  hexagonal lattice, Figd1(a). The remaining pentagons must
are three methods to represent carbon caps on aflat plare: flajot be placed in this area. This becomes more and more re-
tening the cap onto a hexagonal latéeunwrapping a half  strictive the more pentagons we specify. Second, two appar-
tube with the cap attached tédt and a network representa- ently different sets of six pentagons outi8fenumerated el-
tion based on graph theédy We use the flattening method ements can, in fact, correspond to the same geometrical pen-
originally suggested by Yoshida and Osaf%asee also As- tagon pattern. The pattern might be rotated or moved with
takhovaet al22. We found that this method best highlights respect to the hexagonal lattice. For example, in[Big. 1) w
the pattern of six hexagons and its correlation to the ndmetu can rotate the six pentagons by’ @fegree around the central
chiral vector. pentagon (the cones are rotated together with the pentagons

Figure[d(a) shows the construction of a (5,5) nanotubdhis is a different subset in the argument outlined above, bu
cap using the flattening method. The light grey (orange}he two caps are identical. Third, the cap area is not necessa
hexagons indicate the positions of the pentagons on theghexaily quadratic; it can be rectangular as well [examples aee th
onal graphene lattice. The dark shaded areas are cut and t{&4) caps in Figll4 of SedtIllA]. Then, the number of avail-
black lines joined to form a half-spherical structdfesee  able hexagons is smaller thafy which results in a smaller bi-
Fig.(b). The (red) lines in Fidl 1(a)—the cap hexagon—nomial coefficient and hence a smaller exponent for the num-
define the rim of the cap; this line goes around the circumferber of caps over tube diameter. Although we have several ar-
ence in the capped (5,5) in (b). guments why the exponentin FIg. 2(a) is smaller than twelve,

The (5,5) nanotube is the smallest diameter tube that haswae cannot explain why it is equal to& It would be interest-
cap obeying the isolated pentagon ridt has only a single  ing to explain the exact dependence of the number of caps on
such structure fitting over it (half aggfullerene). The other tube diameter.
tubes with only one cap fulfilling the isolated pentagon rule

are (9,0), (9,1), (8,2), and (6,5) (diameters- 6.8 — 7.5'&). For caps fulfilling the isolated pentagon rule in Fily. 2(® th

Tubes of these diameters are fourdy., in CoMoCat CVD number of caps is smaller for small diameters than forgénera
caps, but ford —  we recover the power law behavior of

46,18 \pfi i
grown samples> With this growth method even smaller F_ig.lZ(a).11 This is understandable, since for a large cap area

tubes such as the (6,4) and the (7,3) have been reported. . . . .
lowing adjacent pe(nta)gons the (smzzlllest capped tﬂbe is tqzarge tube diameters) the fraction of caps with adjacent pe

(5,0) tube. This sets the limit for the tube diameters that ca agons becomes negligible. For a given nanotube diameter

. there are fewer caps for armchair and zigzag (closed symbols
form by_ the standard growth methoq. Interestingly, for thetHbes than for chiral tubes (open). This is due to the higher
small-diameter CVD samples there is a marked decrease i : ! :

: : sI¥mmetry of the achiral tubes, which reduces the choices of
the abundance of tubes when going from the isolated pentagoCa S
regime [(6,5), (8,3), (9,1)] to the diameters where onlysap pS.
with adjacent pentagons exist [(6,4) and (7,3)]. We discuss Although a given nanotube can have thousands of distinct
the diameter distribution in these samples in 9edt. IV. caps, quite the opposite is true for the inverse problem. A
Brinkmannet al ! calculated the number of caps for nan- given cap only fits onto one particular nanotube as we show in

otube diameters up to 20 Similar numbers as reported by the following section.



A. One cap —one tube: The pentagon pattern determines the (a)
tube chirality

As we showed in FidJ1(a) and (b) a hexagon that includes
all six pentagons on the graphene lattice ends up as a close
line around the nanotube circumference. Giving the vec-
tor around the nanotube circumference, on the other hanc
uniguely determines the microscopic structure of the tdbe (
ameterd and chiral angle®). As is well known an(ny, ny)
nanotube is obtained by rolling up a graphene sheet along th
vecto¥ (c)

c=nia1+may, 1)

wherea; anda; are the graphene lattice vectors. Once the
cap hexagon is defined as in Fig. 1(a) the edge of this caj
fixes the nanotube structure that can be attached to it.

In Fig.[d we show the edge construction for a chiral nan-
otube. Inthis case the cap hexagon cannot be closed bygulttir
the shaded areas. The steps [dashed lines ifFig. 3(a)} corré
spond to going twice into the a1 + a direction of graphene, ) _
see Fig[B(b). The full (red) line representing the cap herag FIG. 4. (Color online) (a) Construction of an (8,4) cap. (H)eT

has a lenath of 1d+. Addina the full and dashed lines we ob- S&Me arrangement_of the six pentagons but a rotation of Fhmnas
tain a Chi?al vectolb o (:UE 2)ay + 2ay, i.e, the (9,2) nan- (dark grey areas) yields the same tube, see text. (c) Cuathimgy the
otube as shown in Fi_El 3(b) 1 25 15 ’ armchair direction and rotating the cap hexagon yieldsnlige an

; . (8,4) cap as shown in (d).
The cap construction by flattening the half sphere onto the

graphene lattice involves three stédgi) define the positions
of the hexagons, (ii) define the directions of theé 6dnes to

be cut and (iii) define the cap hexagon. Which step fixes the iantation of the line connecting two pentagons by &ad

nanotube structure? ) ) correspondingly the remaining lines between the other pen-
The last step—drawing the cap hexagon—is completely arg, ons. This changes the orientation of the full lines ared th

bitrarily and will not change the cap structure. Increashey steps with respect ta; anda,. Adding up the lines and steps
size of the hexagon by moving the lines in . 3(a) away froMyne obtains the same chirality.

the pentagons, will simply add a tube segment to the cap. It How abou step (ii) of the flattening method? Can we con-

struct two distinct caps from a given arrangement of pen-
tagons by cutting different segments of the graphene éttic
The answer is no as is illustrated for the (8,4) nanotube in
Fig.[(a)-(d). Cutting different segments of the graphexte |
tice [Fig.[4(a) and (b)] results in the same chiral vectore Th
construction of the (8,4) cap in Fill 4(a) is equivalent te th
construction of the (9,2) cap in Figl 3(a). The full line has a
length of 121, and we have four steps alorgz; + a». This
adds up to the (8,4) nanotube. In Fig. 4(b) we rotated the
shaded cones by 6@legree. On first sight the cap looks re-
markably different. The full lines have a length ofA(we
rotated the cap hexagon together with the shaded cones to
keep the full lines parallel ta1). There are a total of 8 steps;
they are alongi; — ay. Thus, Fig[l(b) shows a cap for the
(12,—4) tube. This is symmetry equivalent to the (8,4) nan-
otube because th@g,n) and the(ny + ny, —ny) tube have
the same microscopic structufén Fig.[E(c) we cut along the
armchair instead of the zigzag direction. Once more, we ob-
tain a cap for the (8,4) nanotube as is shown by the chiral
vector in Fig[Z(d).

The chiral vector of a nanotube is fixed by placing six pen-
FIG. 3: (Color online) (a) pentagon pattern, cutting dir@etand cap  tagons onto the graphene lattice,, the first step in the con-
hexagon of a (9,2) cap. (b) The sum of the full (red) and dashedryction of the cap. This topological construction unigue
(white) lines in (a) equals the (9,2) chiral vector (arrow). specifies the structure of the carbon cap and the tube that can

is also possible to “rotate” the hexagarg., to change the




be attached to it. This also determines the formation energ)
of the cap during nanotube nucleation and the nanotube the
finally grows from the carbon nucleus. We now study how
caps for different nanotube are constructed by changing tht
pentagon pattern.

B. Constructing caps for different tube chiralities

To create different caps from a starting pentagon pattern We(h)
need to move one (or more) of the pentagons. We now shov
that this create$n},n,) nanotubes in a rational manner. In
Fig.[3(a) the lines forming the cap hexagon (full, red) ane pa
allel to thea; direction of what later becomes the rolled up
graphene sheet. Moving one pentagon alaagve increase
the length of the cap hexagon lay and introduce an addi-
tional —a; +ay step, Figlb(a). Thus, the resulting nanotube is
given by(n},n,) = (ny,nz+1). In our example this is the (9,3)
nanotube. For the cap tlag direction is fixed with respect to
the cap hexagon, not the graphene sheet. Atevery pointofthg 6. (color online) (a) Caps created from the (9,2) tubdiing
lattice in Fig.[b(a)as is parallel to the line defining the cap five pentagons (light grey, orange) and moving the remaipien
hexagon. When the direction of the full line Changes by°120 tagon over the hexagonal lattice; (b) same as (a) but sgefrtim the
a1 changes as well. Therefore, the displacement of a pentagargh-symmetry (5,5) configuration in Fil 1; (c) same as (ajisg
in the directions shown in Fi§ll 5(b) also creates caps for thérom a high-symmetry (9,0) cap. If we move the free pentagext n
(9,3) nanotube. These are six out of 364 patterns that matdh another pentagon the cap violates the isolated pentad@(tiold,
the (9,3) nanotube or five out of 33 if we impose the isolateded indices).
pentagon rulél Moving the pentagon alongs results in an

additional—a1 + a; step, but does not change the length of . '
the hexagonal line. We thus obtain @ — 1,n, + 1) = (8,3) rightmost pentagon as the first pentagon [the one we moved

cap. All other displacements can be described as the sum gfound in FiglB(a)] and then go counterclockwise through th
a1 anda,, displacements six pentagons I, Ill, IV and so forth. Moving one after the

Figurd®(a) shows the caps we obtain starting from the (9,2)(?ther yields the series
The displacement of just one pentagon creates a largeyariet 0 a a a1—ap
of chiral indices. Some of the caps in Fig. 6(a) are irregular (9:2) == (9,2) ﬁ (10.1) -~ (10.2) ==
By this we mean that five pentagons are concentrated in one a a1
part of the hexagonal lattice, whereas the sixth pentagfam is — (11,2 ﬁ (121) -~ (122), (2)
away from the others. More regular caps can be constructed
by displacing more than one pentagon. Take, for example, thethere the vectors above the arrows indicate the displacemen
(12,2) nanotube in Fill 6(a). To construct a regular caghiert  the roman numerals count the hexagons. The resulting (12,2)
tube we start from the (9,2) pattern in Fig. 3(a). We take thecap consists of two columns of pentagons along the armchair
direction of graphene. It looks similar to the (8,2) pattarn
Fig.[@(a), but with more space between the armchair columns.

In Fig. @(b) and (c) we present the caps obtained start-
ing from the (5,5) and (9,0) caps and displacing one pen-
tagon. The high symmetry of the original pentagon patteyns i
reflected in the chiralities that result from the displacatme
of one pentagon. The patterns of five pentagons shown in
Fig.[@(b) and (c) in grey (orange) have mirror planes. We thus
obtain pentagon patterns that are mirror images of eachi othe
when we move the remaining pentagon over the hexagonal
lattice. These mirror images are (identical) caps for theesa
pair of chiral indices. To highlight this, we always brougjt
(n1,ny) indices back into the standard € © < 30° graphene
FIG. 5: (Color online) (a) (9,3) cap obtained from the (9,8)tprnin  segmentify, n, > 0,n; > ny) in Fig.[@(b) and (c). For exam-
Fig.[d by moving the rightmost hexagon aloag. For the cap is ple, the series (9,1), (10,0), (10,1) and (10,2) in Elg. G£c)
parallel to the line of the cap hexagon (full, red). The dispiment of equivalent to (9,1), (10,0), (11,-1), and (12,-2), becainse
one of the six hexagons in (b) alomg (arrows) creates six distinct  (n; n,) and(ny 4 ny, —ny) tube are identical. For tubes close
(9,3) caps (one violates the isolated pentagon rule). to the armchair direction we interchangedandn; in the left




part of Fig.[(b). This turns a left-handed tube into a right-atoms
handed tube; otherwise the two tubes are identical.
Many chiral indices appear in more than one panel ofBig. 6. Eeo = Ec(cap + (60— na)Ec(10,0), 3)
E.g., the (8,4) and (9,4) tubes are presentin (a) and (b) and all , . ,
chiral indices of (c) can be found in (a) as well. Some of theWhereEc(cap) is theab-initio formation energy for the cap,
repeated indices correspond to the same pentagon pagern, Na the number of carbon atoms in the cap @ad10,0) =
the same cap, see the (10,1) caps in Hig. 6(a) and (c). Mo&137eV/C, see Tab[ I. _
repeated indices, however, describe two distinct capsrier o | e average formation energy for a segment with 60 carbon
nanotube chirality. For example, the (10,0) cap in Elg. &(c) atoms is 174 eV if the cap obeys the isolated pentagon rule.

very regular and obeys the isolated pentagon rule, wheneas t Eeo varies by up tot0.7eV for the different caps; the most
lowing one pair of adjacent pentagdag increases by eV

or 8%. A notable exception is the cap with 52 atoms that
only differs by 0.1 eV between the isolated-pentagon and two
Ill. FORMATION ENERGIES OF (10,0) CAPS adjacent-pentagons cap. With two pentagon pairs the aver-
age formation energy is.3eV (18%) higher than for isolated
asPentagons. The typical formation energy of a pair of adja-
gent pentagons is thus aroun& &V. Note that this isv 1/4th
of the energy necessary for a Stone-Wales defe8t{B eV,

Our original motivation for studying nanotube caps w
to calculate the formation energies of the caps on catalyti
particlest! We found that the two important contributions for ¥
the total energy of a nanotube nucleus were the cap formdRefs: 2_‘:“30)' _ _ i o
tion energy and the carbon-metal binding energy. Here the The increase in formation energy as shown m_TBJIe lis, in
question arises whether distinct caps matching the same nalfCt only a lower boundary for the energy required for caps
otube have different formation energies and would hence p¥ith adjacent pentagon pairs. The reason for this is the geom
preferred in a growth process. To answer this question we caf"y ©f the relaxed fullerenes with zero, two and four peatag

culated the total energies of (10,0) caps from first-priep ~ Pairs- The relaxed fullerenes obeying the isolated pemtago
Ab-initio calculations were performed using theSTA rule typically had a circular cross sectidre. the part of the

codeZ® The core electrons were described by non-local norm<2P where the tube would be attached. The fullerenes con-

. 24 structed from caps with two or more adjacent pentagon pairs,
conserving pseudopotenti&ls the valence electrons by a o ;
X 25 . in contrast, were elliptical. Figufé 7 shows as an exampe th
double< basis set2 The cutoff radii were £a.u. for thes . - .
. . fullerenes corresponding to the cap with 48 carbon atoms in
and 50a.u. for thep orbitals. The cutoff in real space was

~ 300Ry. We used the generalized gradient approximatioﬁrqableu' The cross section changes from almost circular for
(GGA) as parameterized by Perdew, Burke, and Ernz&hof. the isolated pentagon cap in Hig. 7(a) to elliptical for thpss

. with two and four adjacent pentagons. The cross section in
These input parameters are the same as we used for our calq.yl- [(c) has an aspect ratio close to 2. Attaching an ellipti
lations of the nanotube caps onMiThe starting cap struc- 9- P ' 9 P

tures were obtained using theaGE programil Two caps cal cap to a circular nanotube induces additional straihén t

were joined to form a fullerene and placed into a cubic unitcaP or a part of the tube. This results in a further increase in

cell. The cell length was 2R, i.e, interactions between re- the energy required for the formation of adjacent pentagons

) ; e ﬁelaxed fullerene equivalents of caps with adjacent pemtag
peated images were strictly zero because of the finite Iengtare flat. because the adiacent pentacon pairs create larde cu
of the basis function&® The fullerenes were relaxed by a : ! b gonp arg

conjugate gradient optimization until all forces were belo vature in a part of the cap. The remaining part of the cap
0.04eVA. Our formation energies are given with respect to

the total energy of a graphene sheet with the same number ¢ Za) 0 ad. p. (b) 2 ad. p. (c) 4 ad. p.

carbon atoms.

The (10,0) tube has seven caps obeying the isolated per
tagon rulet:?We calculated the formation energy of all these
seven caps plus 13 caps with adjacent pentagons (out of 251 (4}
The formation energies we obtained are given in THble I. The ‘
caps contained between 40 and 60 carbon atoms. For a fixe
number of adjacent pentagons the formation enétgyper
carbon atom decreases with increasing number of atoms i
the cap. This was expected, because the formation energ
of fullerenes scales with Mg, whereNg is the number of
hexagons in the fullerer®€:2 We corrected for this depen-
dence by adding the energy of carbon atoms in the (10,0) namHG. 7: (Color online) Relaxed fullerene equivalent of tramatube
otubeE(10,0) to obtain a constant number of hexagons (orcaps with 48 carbon atoms and (a) isolated pentagons, (badwo
carbon atoms). This is equivalent to assuming that the chenjacent pentagons and (c) four adjacent pentagons, compate{ll
ical potential for carbon is controlled by the sides of thisetu Thezaxis of an attached (10,0) tube should be thought of as perpen

Esoin Tabldl thus represents a capped (10,0) segment with 6gcular to the paper.




TABLE I: Formation energy of (10,0) cap& is the formation energy of the cap alori&;g corresponds to the formation energy for a half
capped tube containing 60 carbon atoms, see text for deTdiks formation energy for the (10,0) tube aBgh are given for comparison. All
energies are referred to the total energy of a graphene. shélaieans no structure exists with isolated pentagons or tisher of adjacent
pentagons for a givens.

Na isolated two adjacent four adjacent
E: (eV) E./C (eV) Ego (V) E: (eV) E:/C (eV) Eso (V) E: (eV) E./C (eV) Ego (V)
40 148 0.370 175 — — — 17.2 0.438 200
42 144 0.342 168 157 0.375 182 167 0.400 192
14.7 0.350 172
46 160 0.348 179 17.3 0.376 192 194 0.422 213
48 153 0.320 170 17.3 0.359 189 202 0421 218
52 170 0.328 181 17.1 0.329 182 191 0.367 202
54 - - - 189 0.350 197 212 0.392 220
60 174 0.290 174 188 0.313 188 196 0.326 196
average 12 188 206
(10,0) tube Q37 822
half C7g 13.2 0.376 178°
aformation energy of 60 atoms of an infinite (10,0) nanotube
bCalculated using 4G7o atoms for the cap and 20 (10,0) atoms for the tube
segment. This segment is then equivalent to the 40 atomsahp first row.
contains mainly hexagons and becomes flat. This gives rise to Ty Y
y g 9 30 ® (CoMoCat

the elliptical shape of the relaxed caps.

The ~ 1.4 and 32eV difference in formation energy for
caps with adjacent pentagons is on the same order or largers
than the demarcation energy of carbon nanotubes during nu> 20
cleation & 2.8eV at 1000K, see Ref. [17). By this we mean @
the energy difference necessary for the exclusive growth of c
a specific carbon structure. When the formation energy of-"és 10k
two carbon nuclei differs by more than the demarcation en- g
ergy, the nucleus with the higher energy is formed with a very
small yield. We thus find that for low-temperature growth,
the formation of nanotube caps obeying the isolated pentago ok ° ® 10 o e e
rule is much preferred. The (10,0) tube has caps obeying (?,4) (7'.3)' 9,1) . (10,2) .
the isolated pentagon rule. Its cap and hence the (10,0) tube 6 ' 7 — 3 ' 9 ' 10
can grow when isolated pentagons are preferred enerdgtical Di ter (A
This changes dramatically when we consider single-walled iameter (A)
carbon nanotubes with smaller diameters. We now show that
the narrow diameter distribution in certain CVD grown nan-FIG. 8: (Color online) Abundance of nanotubes as determired

otubes can be understood from the formation energy of adjg2notoluminescence (PL) spectroscofysus tube diameter. PL data
cent pentagon pairs. were taken from Bachil@t al=° (CoMoCat, closed symbols) and

Miyauchi et al 18 (ACCVD, open) and normalized to the intrin-
sic tube intensities following Reictt a3l Tubes with diameters
smaller than 7.2B have only caps that violate the isolated pentagon

9,2) o ACCVD

IV. ADJACENT PENTAGONS AND DIAMETER rule (dashed line). The full line is a guide to the eye (Garssen-
DISTRIBUTION OF CVD SAMPLES tered at 7.7%8\ with g = 1.7A). The chiral. indices are indicated for
selected nanotubes. Only semiconducting tubes can beteldteyr
PL.

Bachilo et al 1 and Miyauchiet al.X reported single-
walled nanotube samples with mean diameters belo.10
The remarkable thing about these tubes was that they In Fig. [ we show the abundance of tubes reported by
showed a very narrow diameter and chiral angle distribuBachilo et al 8 and Miyauchiet al®. The data were cor-
tion. To measure the chirality distribution both groupsduse rected by the calculated photoluminescence intensities ob
photoluminescenc¥:18:32 This has to be treated with some tained by us?! The correction depends on diameter g2
care, because the luminescence cross section varies fbem tuand in a non-trivial way on the chiral angle and nanotube in-
to tube3! This is most important for comparing tubes with dif- dex family21:33The conclusions presented here are, however,
ferent chiral angles. In our analysis here we will concértra insensitive to the details of the correction.
on the diameter dependence of the tube abundance. Starting from large diameters, the abundance of nanotubes
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in the CoMoCat (Ref._18) and the ACCVD (R&f] 16) sampleother nanotubes as a se¥df the formation energy of a cer-

in Fig.[d increases with decreasing diameter. It peaks @ountain cap is larger than the energy available during nudeati

7.8A. Below 7.2A the abundance of tubes drops sharply tothis prevents the growth of the tube corresponding to the cap

zero. This drop happens exactly at the radius that separatd@is holds even when the tube itself is otherwise favourable

semiconducting nanotubes into tubes with isolated pemtagoenergetically.

caps [(6,5), (9.1), (7,5), and larger] and tubes that onlyeha  In this study we only considered the energy of the cap itself.

caps with adjacent pentagons [(6,4), (7,3), and smalled, s The second important contribution to the formation energy

the chiral indices and the dashed line in fib. 8. The thermadiuring nucleation is the carbon-metal binding enég¥his

energy at nucleation was thus too small for the formation otcan, in particular, introduce energy differences betwesrsc

adjacent pentagons, which cost 1.5 eV per pair as we showetf similar diameter and hence similar cap formation energy

above. (curvature energy). The variations in the total carbonainet
The formation energy of the tubes with smallest diametersinding energy (- 2eV) are similar to the energy required

increases further when taking into account the curvature erfor adjacent pentagons (1.5 eV). The carbon-metal binding e

ergy of the tube in addition to the energy required for adja-ergy can thus be the origin of the preferential growth ofaiart

cent pentagons. The (6,4) cap, for example, contains 30 cachiralities, whereas the adjacent-pentagon energy pteties

bon atoms. An adjacent pentagon pair thus cesB0meV  growth of tubes with very small diameters.

per atom in the cap. The difference in strain energy between

the (6,4) and the (6,5) nanotube As30meV/C (Refl 34).

The total energy difference between a capped (6,4) and (6,5) V. CONCLUSIONS

nanotube (neglecting the catalyst) will thus decrease from

80meV/Cfor the cap alone to 30 meV/C for a long tube where In summary, we studied the structure and energetics of nan-

the effect of the adjacent pentagon becomes negligiblenFro otube caps. We showed that the arrangement of bentagons
ab-initio calculations we found a difference in formation en- . ps. A L 9 P g
ergy 100 meV/C for the (6,4) and the (6,5) cap in good agree'—n thg cap defines the chirality of the tube that matches to _|t.
ment with the estimate given abo¥lt is, however, impor- Moving one (or more) pentagons across the h_exagonal lattice
tant to realize that the dependence of the strain energyben tu creates caps for different nanotubes in a rational way. The
diameter will never explaing.g., the low abundance of the |_solated-pentagon caps for a (10,0) nanotube vary in forma-
(9,1) nanotube as compared to the (6,5), sedTig. 8. These t\/\t/'gn energy bﬁo.j eV or 12meV/atom. Introducing adjacgnt
tubes have exactly the same diameter. The formation of th ﬁnt?gonsfrequwgs an ener%y:oﬂ.Se\{j.per pentagon pair.
nanotube nucleus—the cap on the metal particle—is a limit- e large formation energy for two adjacent pentagons ex-
ing step for the growth of a tube plains why tubes with diameters below?’A had a very small
The line in Fig® is a guide to the eye. Itis a Gaussian Witr,>/|eld in low-temperature CVD growth. Our study shows that

a mean diameted ~ 7.75A and o — 1.7A. As can be seen, the structures and energetics of carbon caps on a catadytic p

the abundance of tubes follows reasonably well a GaussiatrllCle will be the key for chirality selective growth of siregl

distribution for large diameters, but the tail towards drdal \t,ivcfllgeig fhagk:q%rz:lgigoc:?getibé Qﬁgﬂtﬁibiéap dgtne?r:i?\?sl,yig cprﬁr-
ameters is missing. In particular, there is a marked asymymet quely

between the very small or vanishing abundance belowA7.2 rality.
and the comparatively broad distribution towards the large
diameter end in Fidl]8.
The low-temperature CVD experiments confirm the impor- Acknowledgments
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