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Conductance of deformable molecules with interaction
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Zero temperature linear response conductance of moleculeswith Coulomb interaction and with various types
of phonon modes is analysed together with local occupation,local moment, charge fluctuations and fluctuations
of molecular deformation. Deformation fluctuations are quantitatively related to charge fluctuations which
exhibit similarity also to static charge susceptibility.

The evidence for phonon assisted tunneling was found al-
ready in early conductance measurements in double-barrier
heterostructures.1 In conductance measurements of nanoscale
systems such as quantum dots or real molecules, the Coulomb
interaction leads to the Coulomb blockade or the Kondo
effects.2 The electron-phonon interaction also proved to play
an essential role in such systems. In particular, in single or-
ganic molecules electronic transport is influenced by vibra-
tional fine structure.3,4

Phonon degrees of freedom lead to a mass enhancement of
a single electron in the empty conduction band. The prob-
lem is known as the conventional polaron problem.5 The local
form of the polaron problem arises when the coupling between
electrons and phonons is confined to only one site.6 Here, the
main effect of phonons is a narrowing of the level width, anal-
ogous to the electron-phonon mass enhancement and is sim-
ilar to the level width renormalization due to electron-hole
pairs.7 Theoretical investigations of the combined effect, the
electron-electron and the electron-phonon interaction, show
that quite diverse impurity systems can be described by An-
derson model with renormalized effective parameters.8

Early studies of conductance of various types of quan-
tum systems with electron-phonon interaction were based on
the calculation of the transmission probability as a function
of incident energy for an electron interacting with Einstein
phonons as it tunnels through a double-barrier structure.9 The
transmission probability for single injected electrons exhibits
phonon-assisted transmission resonances – side-bands – aten-
ergies near the main elastic resonance.9,10 Such side-bands
appear also in the linear conductance calculation results if
the coupling to the Fermi sea in the leads is not correctly
taken into account.11 However, vibrational side-bands would
be discernible in non-linear conductance measurements.12,13

Recently, the numerical renormalization group method ap-
plied to a single-molecule device14,15showed that the problem
can in certain regimes be mapped onto the anisotropic Kondo
model.16 Phonon effects in molecular transistors were investi-
gated also in quantal and classical treatment.17

In this paper we concentrate on the deformation of a
molecule in a linear response conductance measurement. In
particular, the molecule is attached to the left and right non-
interacting lead, schematically presented in Fig. 1, and de-
scribed with the Anderson model
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FIG. 1: Non-interacting leads attached to an Anderson site,e.g.,
molecule (gray-shaded site) with various phonon modes.

He = −
∑

〈ij〉σ

tijc
†
iσcjσ + ǫdnd + Und↑nd↓, (1)

where〈ij〉 represents nearest neighbor hopping. In the leads
tij ≡ t and t±1,0 = t0,±1 ≡ t′ is the hopping matrix el-
ement from the leads to the molecule. The occupation of
the molecule isnd =

∑

σ ndσ with ndσ = d†σdσ, where
dσ ≡ c0σ. The deformation of the molecule is modeled with
a general form of electron-phonon coupling and the molecule
coupled to the leads is described with

H = He +
∑

α

Ωαa
†
αaα +

∑

α

[

Mα (nd − 1)

+Nα

∑

σ

(

d†σc−1σ + d†σc1σ + h.c.
)

]

xα, (2)

whereMα andNα are the local and nearest neighbor electron-
phonon coupling constants corresponding to arbitrary number
of orthogonal vibrational modes with energiesΩα and corre-
sponding displacementsxα = a†α + aα.

The zero temperature linear response conductance through
the molecule is calculated from the sine formula,18,19 G =
G0 sin

2[(E+ − E−)/4tL], whereG0 = 2e2/h andE± are
the ground state energies of a large auxiliary ring consisted of
L non-interacting sites and an embedded interacting system
(molecule), with periodic and antiperiodic boundary condi-
tions, respectively. The chemical potential is set at the middle
of the band in the leads, which corresponds toL electrons in
the system. To determine the ground state energy, we gener-
alized the projection-operator method proposed by Gunnars-
son and Schönhammer.20 The variational expression for the
ground state is

http://arxiv.org/abs/cond-mat/0504425v1


2

0

0.5

1

G
/G

0

0

1n

U>0
U=0
U<0

-5 0 5 10
(ε

d
+U/2)/∆

0

0.4∆n
2

0 5

0.4

0 5

0.5

U=10∆

(a)

(b)

(c)

U=-6∆

(π∆/4)χ
c

0

0

M
loc

FIG. 2: (Color online) (a) Conductance for the bare Andersonmodel
with −6∆ ≤ U ≤ 10∆ in increments of2∆ (full lines for U > 0,
dashed lines forU < 0 and a thicker full line forU = 0). (b) Local
occupancyn and local momentMloc (inset). (c) Charge fluctuations
∆n2 = 2n − n2 −M2

loc. Inset: renormalized charge susceptibility
(π∆/4)χc.

|Ψ〉 =
∑

λ{mα}

Cλ{mα}Pλ

∏

α

a†mα

α

∣

∣0̃
〉

, (3)

wherePλ are projection operators to multi-electron states
of an isolated molecule,P0 = (1− nd↑) (1− nd↓), P1 =
∑

σ ndσ (1− ndσ̄), and P2 = nd↑nd↓, as well as addi-
tional operators involving hopping of electrons between the
molecule and leads (for details, see Ref. 20). The vacuum
state

∣

∣0̃
〉

is the ground-state of a decoupled, non-interacting
electron-phonon system, described by renormalized matrixel-
ements̃t′ and ǫ̃d. An approximation to the ground-state en-
ergy is obtained by minimizing the total energy with respect
to coefficientsCλ{mα} and parameters̃t′ and ǫ̃d while allow-
ing a sufficiently large number of excited phonons, in order to
obtain a converged result.

In the limit of large frequencies,Ωα, finiteMα andNα = 0,
the model is equivalent to the bare Anderson model with
renormalized parametersUeff = U −

∑

α 2M2
α/Ωα and

ǫd,eff = ǫd −
∑

α M2
α/Ωα.6 We first test our numerical for-

malism in this regime. In Fig. 2(a) the conductance through
an undeformable molecule (Mα = Nα = 0), for variousU
and a fixed∆ = 2t′2/t = t/5 is presented.

For a positiveU the conductance exhibits a plateau in

the Kondo regime and the results obtained with the present
method accurately reproduce18 the exact solution based on
the Bethe ansatz.21 Local electron densityn = 〈nd〉 is re-
lated to the conductance through the Friedel sum rule23 and is
characterized with a plateaun ∼ 1 in the Kondo regime, as
presented in Fig. 2(b). Kondo physics is signalled also with

the increase of the local momentMloc =
〈

(nd↑ − nd↓)
2
〉1/2

,
presented in the inset. The related occupancy (charge) fluc-
tuations,∆n2 =

〈

(nd − n)
2
〉

, are presented in Fig. 2(c)
and in the inset is given the corresponding charge suscepti-
bility, χc = −∂n/∂ǫd. In accordance with the fluctuation-
dissipation theorem, charge fluctuations are similar to the
charge susceptibility,∆n2 ∼ (π∆/4)χc.22 Fluctuations are
suppressed in the Kondo regime, and are larger in the mixed
valence regime,|ǫd| <∼ ∆ or |ǫd + U | <∼ ∆.

For sufficiently strong electron-phonon couplingMα the
effective electron-electron interaction is attractive,Ueff < 0.
In this regime the situation is opposite to the more standard
spin Kondo regime because at the impurity the system favors
electron (hole) pairs rather than local moments due to sin-
gle electrons.24 Therefore strong charge fluctuations emerge
in the particle hole symmetric point when the chemical poten-
tial is level with the local bipolaron energy leading to charge-
fluctuation (anisotropic) Kondo effect.16 In Fig. 2(a) the con-
ductance for various attractiveU < 0 in the bare Anderson
model is presented with dashed lines. The first observation
is a narrowing of the conductance curve and the correspond-
ing enhanced charge fluctuations [Fig. 2(c)], consistent with
a sharp transition in the local occupation and a suppresion
of the local moment, Fig. 2(b). For increasing (negative)U ,
charge susceptibility is not limited and overshoots chargefluc-
tuations. However, the comparison of∆n2 andχc confirms
at least qualitative proportionality. Our analysis showedthat
these results for the renormalized bare Anderson model repre-
sent also generic behavior of the general model withNα = 0.

In Fig. 3 the results of the analysis of a molecule with
a single vibrational mode usingU = 10∆ are presented.
The coupling–frequency ratio is kept constant,Mα/Ωα ≡
M/Ω = 1, while the electron-phonon couplingM is var-
ied from M = ∆ to M = 6∆ in increments of∆. The
results for conductance, occupancy and occupancy fluctua-
tions [Figs. 3(a, b, c)] resemble the results of the bare An-
derson model with renormalized parameters.8 There are no
discernible side-bands in the conductance. For comparison
also the result for undeformable molecule(M = 0) is pre-
sented. The molecule deformations, i.e.xα, are related to
the occupation of the impurity. The displacement of individ-
ual modes is in general given with〈xα〉 = −2Mα/Ωα(n −
1) − 16Nα/ΩαRe〈d†σc1σ〉.

15 Fluctuations of the deforma-
tion, ∆x2

α =
〈

(xα − 〈xα〉)
2
〉

, are related to the average
number of particular phonons in the system,∆x2

α = 1 +

2
〈

a†αaα
〉

+ 2Re
〈

a†αa
†
α

〉

− 〈xα〉
2. A deviation of∆x2

α from
unity signals deviations from the coherent state of the oscil-
lator. In the limit of large phonon frequencies (fast modes)
the oscillator deformations can follow charge fluctuations,
∆x2

α − 1 = (2Mα/Ωα)
2∆n2, while in general they are

smaller than that. In the limit of small phonon frequencies
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FIG. 3: (Color online) Results forU = 10∆ and a single phonon
mode with a fixedM = Ω. (a) Conductance vs.(ǫd + U/2) /∆ for
0 ≤ M ≤ 6∆ in increments of∆. The dotted line represents the
results for an undeformable molecule,M = 0. (b) Occupation, (c)
occupation fluctuations and (d) deformation fluctuations.

(slow modes), phonons feel the average occupation of the
molecule and∆x2

α − 1 = 0. The fluctuations correspond-
ing to a single mode system,∆x2

α ≡ ∆x2, for the same set of
parameters and labeled as above, are presented in Fig. 3(d).

Next we turn our attention to the case of a molecule with
multiple vibrational modes. Here we give results for the case
U = 10∆ with mode 1 with frequencyΩ1 = ∆ and mode
2 with frequencyΩ2 = 10∆. The effective Coulomb in-
teraction is reduced due to coupling to both modesUeff =
U − 2M2

1 /Ω1 − 2M2
2/Ω2. We takeNα = 0 and thus the sys-

tem retains the particle-hole symmetry. Therefore, in Fig.4
only ǫd + U/2 > 0 regime is shown. In order to study both,
particular and mutual influence of different modes, we fix
Ueff ≡ 5∆, and set2M2

1 /Ω1 = r (U − Ueff), 2M2
2/Ω2 =

(1− r) (U − Ueff) where by varyingr one can explore the
effect of particular modes. For a single stiffer mode 2,r = 0,
the conductance curve, Fig. 4(a), is suppressed in the Kondo
regime and enhanced in the empty orbital region compared to
the softer mode 1,r = 1. As a limiting case of this regime the
bare Anderson model results forU = 5∆ are presented.

As a representative of the opposite limit, we consider very
soft phonons withΩ = ∆/100. In the Kondo regime the
conductance is close to the unrenormalized Anderson model
result with U = 10∆. In the mixed valence regime the
curve is much steeper, due to strong renormalization of hop-
ping parameter̃t′. In the empty-orbital regime the conduc-
tance approaches the result obtained with doubly reduced
electron-electron interactioñU = U − 4M2/Ω, which can
be understood as follows. First the oscillator displacement is
shifted,x → x̃+ 2λ thus the Hamiltonian is transformed into
H̃ = (ǫd + 2λM)nd + x̃ [M (nd − 1) + Ωλ] + Ωã†ã + ...,
whereλ = −M (n− 1) /Ω, with vanishing transformed dis-
placement. This Hamiltonian can be solved with trial wave
functions withmα = 0. Renormalized local energies are then
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FIG. 4: (Color online) A fixedUeff = 5∆ with U = 10∆ and
Ω1 = ∆, Ω2 = 10∆ for variousM1,2 (corresponding tor = 0,
1/4, 1/2, 3/4 and 1) - full lines. Also plotted are the resultsfor a bare
Anderson model withU = 10∆, U = 5∆ andU = 0 (dotted,
short-dashed and dashed-dotted, respectively). Long-dashed lines
correspond to a single softer mode withΩ = ∆/100 and the same
Ueff = 5∆. (a) Conductance, (b) occupation fluctuations and (c)
deformation fluctuations for modes 1 and 2. In the inset, the defor-
mation fluctuations for a single softer mode are shown.

ǫd + 2M2/Ω, ǫd, andǫd − 2M2/Ω for n = 0, 1, 2, respec-
tively. The shifts ofǫd wheren = 0, 2 in turn correspond to
reducedŨ = U − 4M2/Ω and toŨ = U for n = 1.

Occupancyn is related to the conductance similarly as in
the previous figures and is not presented for this case. Charge
fluctuations, Fig. 4(b), are similar to the relation between∆n2

andχc as in the above single mode case: the fluctuations are
larger for stiffer phonon modes, except in the mixed-valence
regime, where∆n2 is very weakly dependent ofΩα. Charge
fluctuations for the case of softer modeΩ = ∆/100 exhibit
limiting behavior consistent withG as discussed above. De-
formation fluctuations,∆x2

α=1,2, are shown in Fig. 4(c). As
expected, the fluctuations of the softer mode 1 are enhanced in
comparison with the stiffer mode 2. This effect is even more
pronounced forΩ = ∆/100 [inset of Fig. 4(d)].

In Fig. 5 we present the results for a general case of single
electron-phonon mode coupling withU = 10∆ andΩ = 5∆.
As pointed out by Cornagliaet al.15, Nα terms together with
Mα break the particle-hole symmetry, while the symmetry
is conserved if only one of the terms is non-vanishing. In
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FIG. 5: (Color online) (a) Conductance, (b) occupation fluctuations,
and (c) deformation fluctuations for various types of electron-phonon
interaction (U = 10∆, Ω = 5∆).

Fig. 5(a) the conductance for three typical cases is shown. Full
line represents theM = 0 andN = 5∆ results where the res-
onance width is severely increased, because theN -terms in-
crease the effectivet′. If both electron-phonon coupling terms
are relevant, e.g.,M = 3.5∆ andN = 3∆, the conductance
exhibits asymmetry (dashed line), compared to theN = 0

case (dotted line). In Fig. 5(b) the corresponding occupation
fluctuations are presented. Displacement fluctuations∆xα,
Fig. 5(c), in this case are not related solely to occupation fluc-
tuations, but also to fluctuations of the hopping operatord†σc1σ
(not shown here).

We have presented results of a comprehensive analysis of
linear response conductance through a deformable molecule
with electron-electron interaction and different orthogonal
phonon modes. In general, the conductance does not exhibit
side-bands and is related to the Anderson model with renor-
malized parameters for the single- or multiple-phonon interac-
tion. Additionally, the emphasis of our analysis was on the de-
formation fluctuations of the molecule due to multiple phonon
modes. Phonons in slow phonon modes are permanently in
a coherent state corresponding to the average occupation of
the molecule and the deformation fluctuations are minimal in
this limit (except close to the charge fluctuations maxima).
In the opposite limit of a fast phonon mode, phonons form
a coherent state corresponding to the occupation at a given
moment in time. Therefore, deformation fluctuations are en-
hanced proportionally to charge fluctuations, the proportional-
ity coefficient being−(2Mα/Ωα)

2. In general, the deforma-
tion fluctuations take a value between these two limits. It was
also shown that charge fluctuations are approximately pro-
portional to static charge susceptibility of the molecule.The
method used here proved to be robust and appropriate for a
wide range of generalizations due to specific electron-phonon
interaction or the topology of the interaction region, for exam-
ple, a molecule with several interconnected sites.
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