
ar
X

iv
:c

on
d-

m
at

/0
50

80
11

v1
  [

co
nd

-m
at

.m
es

-h
al

l] 
 3

0 
Ju

l 2
00

5
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As a step towards a more realistic modeling of vibrations in single-molecule devices, we investigate the ef-
fects of charge-dependent vibrational frequencies and anharmonic potentials on electronic transport. For weak
phonon relaxation, we find that in both cases vibrational steps split into a multitude of substeps. This effectively
leads to a bias-dependent broadening of vibrational features in current-voltage and conductance characteristics,
which provides a fingerprint of nonequilibrium vibrations whenever other broadening mechanisms are sec-
ondary. In the case of an asymmetric molecule-lead coupling, we observe that frequency differences can also
cause negative differential conductance.

PACS numbers: 73.23.Hk,73.63.-b,85.65.+h

Introduction.—Recently, several experiments have probed
the electron-phonon coupling in single-molecule devices by
detecting vibrational features in current-voltage characteris-
tics (IV s).1,2,3,4 This coupling and its consequences for elec-
tronic transport through molecules have also been at the focus
of theoretical studies ofIV s5,6,7,8,9,10and noise spectra,10,11

and it is perceived as a possible avenue towards the design of
molecular devices.12

The signatures of electron-phonon coupling differ depend-
ing on the transport regimes. Vibrational steps appear inIV s
in the sequential-tunneling regime,5,6,10,11and in the conduc-
tancedI/dV in the inelastic-cotunneling regime.8 The visi-
bility of these steps generally depends on the step heights and
spacings, as well as their broadening. Three main mechanisms
for broadening of vibrational steps inIV and conductance
of single-molecule devices have been identified: Broadening
induced by (i) temperature, (ii) vibrational dissipation,6 and
(iii) molecule-lead tunneling.7 In this paper, we discuss an ad-
ditional broadening mechanism which arises when going be-
yond the one-mode harmonic approximation of previous mod-
els.

Essentially, all studies to date, e.g. Refs. 5,6,7,8,10,11, are
based on two simplifying approximations. First, they restrict
the description of the molecular vibrations to the harmonicap-
proximation, and second, they assume the vibrational frequen-
cies to be identical for the different molecular charge states
relevant for the transport. In devices with symmetric voltage
splitting, the combination of these two approximations leads
to strictly equidistantsteps inIV for specific gate voltages.

Here, we take a step towards a more realistic modeling of
the vibrations by investigating both the case of vibrational
frequencies depending on the molecular charge state, and
the case of anharmonic oscillations within a Morse-potential
model. Using a rate-equations approach valid for the regime
of weak molecule-lead coupling, we calculateIV s and con-
ductances, and show that strictly equidistant vibrationalsteps
are indeed an artefact of the simplifications in previous mod-
els. Remarkably, we find that the strength of direct vibrational
relaxation can significantly alter the current-voltage charac-
teristics. For strong relaxation, the extended models mainly
lead to shifts of the step positions. In contrast, for weak vi-
brational relaxation they effectively result in abias-dependent

broadeningof vibrational steps due to the steps splitting into
a multitude of closely spaced substeps.

Model.—Our starting point is a generic model for a
molecule coupled to metallic leads.5,10,13,14 Transport is
assumed to be dominated by one spin-degenerate elec-
tronic level with energy ε (measured with respect to
the zero-bias Fermi energies of the leads), tunable by a
gate electrode. The system is described by the Hamil-
tonian H = Hmol + Hleads + Hmix, where Hleads =
∑

a=L,R

∑

p,σ ǫpc
†
apσcapσ describes the non-interacting

leads,Hmix =
∑

a=L,R

∑

p, σ

(

tac
†
apσdσ + h.c.

)

the tunnel-
ing between leads and molecule, and

Hmol =εnd +
U

2
nd(nd − 1) +

P 2

2µ
+ Vnd

(X) (1)

models the molecular degrees of freedom. Here,U is the
charging energy for double occupation,dσ (d†σ) annihilates
(creates) an electron with spin projectionσ on the molecule,
andnd =

∑

σ d
†
σdσ denotes the corresponding occupation-

number operator. Similarly,capσ (c†apσ) annihilates (creates)
an electron in leada (a = L,R) with momentump and spin
projectionσ.

The kinetic and potential energy terms in Eq. (1) re-
fer to the nuclear motion. For definiteness, we consider a
model with one dominant mode of vibrations. Then,X ,
P , andµ denote the corresponding normal coordinate, mo-
mentum, and reduced mass, respectively. For the singly
and doubly charged molecular ions, the potential energy
curves generally deviate from their neutral counterpart. In
the spirit of the Born-Oppenheimer approximation, we take
this into account by writing the potential energy in the form
Vnd

(X) =
∑

n vn(X) |n 〉 〈n |, using projectors onto the
electronic ground states with fixed molecular chargen =
0, 1, 2.

The coupling between molecule and leads, parameterized
by the tunneling matrix elementstL andtR, is assumed to be
weak, i.e. the tunneling-induced energy broadeningγ of elec-
tronic levels is small,γ ≪ kBT, ~ω0, whereT denotes the
temperature, andω0 the vibrational frequency. Then,Hmix

can be treated perturbatively and the solution of rate equa-
tions is sufficient for current and noise calculations.6,8,10 For
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simplicity, we assume symmetric voltage splitting throughout
this paper, and focus on the case of strong Coulomb blockade
(U → ∞).

In the absence of tunneling, the molecular states can be
written as |n, q 〉 with n denoting the charge state of the
molecule andq the number of excited phonons. The rates
Wn→n′

q→q′ =
∑

a=L,R Wn→n′

q→q′ ; a for transitions |n, q 〉 →
|n′, q′ 〉 are calculated via Fermi’s golden rule. The occupa-
tion probabilitiesPn

q are determined by the rate equations

dPn
q

dt
=

∑

n′,q′

[

Pn′

q′ W
n′→n
q′→q − Pn

q W
n→n′

q→q′

]

− 1

τ
[Pn

q − P eq
q

∑

q′ P
n
q′ ], (2)

where the last term describes direct vibrational relaxation
towards the equilibrium phonon distributionP eq

q = [1 −
e−β~ω0]e−βq~ω0 with rate 1/τ . The steady-state current is
calculated by solving the rate equations (2) in the stationary
case and evaluating

I = e
∑

n,q,q′

Pn
q

[

Wn→n−1
q→q′ ;R −Wn→n+1

q→q′ ;R

]

. (3)

Recent papers investigating the influence of molecular vi-
brations on current and noise have focused on the model
vn(X) = 1

2µω
2
0(X+

√
2nλℓosc)

2, i.e. vibrations are taken into
account within the harmonic approximation and their frequen-
cies are assumed to be independent of the molecular charge
state.5,6,7,8,10,11The position of the potential minimum explic-
itly depends on the charge state, and its shift, measured in
units of the oscillator lengthℓosc = (~/µω0)

1/2, is character-
ized by the electron-phonon coupling strengthλ.

We extend this model as follows. In the first case (M1), we
include frequency variations for the different charge states by
using

vn(X) =
1

2
µω2

n(X +
√
2nλℓosc)

2. (M1)

In the second case (M2), we investigate the effects of anhar-

monicities within a model based on the Morse potential15

vn(X) = D
{

(1− e−β(X−
√
2nλℓosc))2 − 1

}

, (M2)

whereD denotes the dissociation energy,β determines the
inverse range of the potential, andℓosc = (~/µωe)

1/2 char-
acterizes the range of the ground-state wave function with
ωe = β(2D/µ)1/2. The number of bound states is given by
⌈j⌉ + 1 wherej =

√
2µD/β~ − 1/2. The Morse potential

encompasses both bound and continuum states and is there-
fore also suitable to describe dissociation processes.16 In this
paper, we restrict the discussion to situations in which transi-
tions into continuum states can be neglected.

An important qualitative difference compared to the har-
monic approximation arises from theasymmetryof the Morse
potential under parity transformationsX → −X , which
causes the overlap of vibrational wavefunctions and hence the
transition rates to depend on thedirection of the shift of the
potential minima. In contrast to the case of symmetric po-
tentials, the FC matrix elements now behave differently de-
pending on the sign of the electron-phonon couplingλ.17 (For
symmetric potentials the sign is irrelevant andλ can be cho-
sen to be a positive number.) In the general case, this leads to
a dependence of the stationary current on the sign ofλ.

Calculations.—The calculation of the transition rates
Wn→n′

q→q′ essentially reduces to the evaluation of Franck-
Condon (FC) matrix elements,14 given by the overlap of the
oscillator wave functionsφn,q of the initial and final states
|n, q 〉 and|n′, q′ 〉,

Mn→n′

q→q′ =

∫ ∞

−∞
dxφ∗

n,q(x)φn′,q′(x). (4)

In harmonic models withω0 = ω1 = ω2 the FC matrix ele-
ments are independent ofn, n′ and can be compactly written
in terms of Laguerre polynomials, see e.g. Ref. 14. For the
harmonic model (M1) with different vibrational frequencies
ωn, and the Morse potential model (M2), no such simple ex-
pression is available21 and instead we evaluate the integrals

Mn→n′

q→q′ =
(αnαn′)1/4

(2q+q′q!q′!π)1/2

∫ ∞

−∞
dξ Hq(αnξ + αnn

√
2λ)Hq′(αn′ξ + αn′n′√2λ)e−

1
2
(αnξ+αnn

√
2λ)2− 1

2
(α

n′ξ+α
n′n′

√
2λ)2 ,

(5)

Mn→n′

q→q′ = 2

[

q!q′!(j − q)(j − q′)

Γ(2j − q + 1)Γ(2j − q′ + 1)

]1/2

aq
′−q

∫ ∞

0

dξ ξ2j−q−q′−1L2(j−q)
q (aξ)L

2(j−q′)
q′ (a−1ξ)e−

a+a
−1

2
ξ (6)

numerically, where Eqs. (5) and (6) correspond to (M1) and
(M2), respectively.Hq(x) denotes the Hermite polynomial of
orderq, Lα

n(x) the generalized Laguerre polynomial,αn =
√

ωn/ω0 anda = e−
1
2
β(n′−n)

√
2λℓosc.

Since the transition ratesWn→n′

q→q′ are bounded from above,
and the stationary occupation probabilities obeyPn

q → 0 for
q → ∞, the Eqs. (2) and (3) can be effectively solved for a fi-
nite number of relevant phonon excitations. For the Morse po-
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FIG. 1: (Color online)IV and conductance for a symmetric de-
vice (tL = tR, symmetric voltage splitting) with slightly differ-
ent vibrational frequencies for the neutral and charged molecule
(ω1 = 1.1ω0), andλ = 1.2, U → ∞. (a) IV at ε = 0 and
kBT ≪ ~ω0 for strong and weak vibrational relaxation. While for
equilibrated phonons, step locations are specified by Eq. (7), for un-
equilibrated phonons a multitude of steps is generated, leading to an
effective step-broadening even at low temperatures. For comparison,
the inset shows results with identical frequenciesω0 = ω1. (b),(c)
Conductance plots atkBT = 0.02~ω0 showing the subsplitting and
washing out of phonon features for unequilibrated phonons.

tential, this treatment requires the restriction to a sufficiently
high number of bound states and sufficiently low voltages so
that all relevant excitations remain far below the dissociation
threshold,q ≪ ⌈j⌉.

Results and interpretation.—We first discuss results for
model (M1) with harmonic vibrations and charge-dependent
frequencies. Representative results are depicted in Fig. 1. For
equilibrated phonons (τ → 0) and frequenciesω0 6= ω1, steps
appear at different positions than in the identical-frequencies
case, see Fig. 1(a). In principle, steps remain well-definedas
shown in the corresponding conductance plot, see Fig. 1(b),
where only small shifts of the series of vibrational sidebands
are caused by the entering of two different energy scalesω0

andω1. In contrast, for unequilibrated phonons (τ → ∞) a
splitting of vibrational steps into a multitude of substepsis ob-
served to cause an effective broadening, which increases with
bias voltage, see Fig. 1(a),(c). We now give a more quantita-
tive explanation for this behavior.

For equilibrated phonons and temperaturesγ ≪ kBT ≪
~ω0,1, the phonon distributionPq =

∑

n P
n
q is strongly

peaked for the phonon ground stateq = 0. Consequently,
phonon transitions predominantly occur in the channel0 → q.
Energy conservation limits the possible excitation processes,
and in the(eV, ǫ)-plane the boundaries at which the transi-
tions | 0, 0 〉 → | 1, q 〉 and| 1, 0 〉 → | 0, q 〉 become possible
are given by

ε = ∓eV/2+E0
0−E1

q , and ε = ∓eV/2+E0
q −E1

0 , (7)

whereEn
q = ~ωn(q + 1/2) denotes the phonon energy of the

state|n, q 〉, and the lower (upper) sign refers to the left (right)
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FIG. 2: (Color online) Current-voltage characteristics for an asym-
metric device (t2R = 0.3t2L, symmetric voltage splitting) in the un-
equilibrated regime withλ = 1.1, kBT ≪ ~ω, U → ∞. The com-
bination of asymmetric coupling and differing vibrationalfrequen-
cies is observed to lead to weak peaklike structures at the onsets of
phonon steps with negative differential conductance regions (marked
by arrows).

lead. In addition, current only flows if electrons can traverse
the molecule, leading to the condition

|eV/2| ≥
∣

∣ε− E0
0 + E1

0

∣

∣ , (8)

which together with Eq. (7) completely specifies the positions
of all vibrational sidebands for equilibrated phonons. In par-
ticular, even small frequency differences result inIV s with
non-equidistant phonon step spacings,22 and the central cross-
ing point is now located at(eV, ε) = (0, ~[ω0−ω1]/2) due to
the deviation of the zero-point energies of the oscillators.

In contrast, for unequilibrated phonons a multitude of ex-
citation and de-excitation processes| 0, q 〉 → | 1, q′ 〉 and
| 1, q 〉 → | 0, q′ 〉 are permitted, and Eq. (7) must be replaced
by

ε = ∓eV/2+E0
q−E1

q′ , and ε = ∓eV/2+E0
q′−E1

q . (9)

However, the range of the contributingq, q′ in Eq. (9) now
inherently depends on the nonequilibrium distributionPn

q ,
which makes concise statements about the occurence of cer-
tain steps more difficult. Generally, larger bias voltages|eV |
cause the nonequilibrium distribution to widen, and thus in-
crease the range of relevantq, q′ in Eq. (9). This corresponds
to a splitting of a vibrational step into an increasing number of
closely spaced substeps as observed in Fig. 1(a),(c), resulting
in an effective broadening of steps.

Interestingly, for asymmetric devices (tL 6= tR) we find that
frequency differences between molecular charge states canin-
duce negative differential conductance (NDC). A representa-
tive example for this behavior is shown in Fig. 2. The split-
ting of phonon steps causes peaklike structures at the onset
of phonon steps. For certain parameters, such NDC features
have been predicted for asymmetric coupling and harmonic
vibrations withω0 = ω1 in Refs. 5. Here, we report that
qualitatively similar NDC behavior can arise from differing
vibrational frequencies, for parameters where our numerical
results do not exhibit NDC forω0 = ω1. It is interesting to
note that NDC at onsets of phonon steps is also observed in
the experiment by Parket al.1,18

Results for the model (M2) with anharmonic vibrations are
depicted in Fig. 3. While the main effects are similar to those
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FIG. 3: (Color online)IV and conductance plots for a symmetric
device (tL = tR, symmetric voltage splitting) with a Morse potential
(j = 30), for λ = 1.5, U → ∞. (a)IV at ε = 0 andkBT ≪ ~ωe

for strong and weak vibrational relaxation. For equilibrated phonons
steps alongε = 0 are located at voltages specified by Eq. (7), for
unequilibrated phonons the step-splitting leads to an effective step-
broadening even at low temperatures. (b),(c) Conductance plots at
kBT = 0.02~ωe showing the subsplitting and broadening of phonon
features for unequilibrated phonons.

of model (M1) – steps inIV being non-equidistant, weak vi-
brational relaxation leading to the splitting of steps intosub-
steps – the underlying mechanism is different. In the Morse
model (M2), the potential curves are shifted depending on the
molecular charge state, but are identical otherwise. Here,the
appearance of different step spacings and splitting of steps is
purely due to the fact that the energy spectrum of an anhar-
monic oscillator is not equidistant.

In analogy to model (M1), for equilibrated phonons the po-
sitions of vibrational sidebands are fixed by substituting the
eigenenergies of the Morse potentialEq = −D + ~ωe(q +
1/2)− ~ωeχ(q + 1/2)2 into Eqs. (7) and (8). Here, we have
usedχ = (2j + 1)−1. This leads to a conductance plot
consisting of two sets of parallel lines with decreasing line
distances, reflecting the decreasing spacing of eigenenergies
of the Morse potential as the quantum numberq increases,
see Fig. 3(a),(b). Since the phonon ground state energies are
identical,E0

0 = E1
0 , the central crossing point is located at

(eV, ε) = (0, 0).

In the unequilibrated case, the anharmonicity of the poten-
tial and the occurence of various phonon excitation and de-
excitation processes give rise to a splitting of steps. As be-
fore, the range of relevantq, q′ in Eq. (9) depends on bias
and gate voltage, leading to a growing number of substeps
with increasing voltage, and hence an effective washing out
of phonon steps, see Fig. 3(a),(c).

Conclusions.—As a step towards a more realistic modeling
of molecular vibrations and their consequences for electronic
transport in single-molecule devices, we have investigated the
effects of charge dependences of vibrational frequencies and
anharmonicities in the sequential-tunneling regime. Evenfor
small frequency differences and anharmonicities, we find that
vibrational step spacings cease to be equidistant. In combi-
nation with weak vibrational relaxation, both frequency dif-
ferences and anharmonicities are shown to lead to a bias-
dependent splitting of levels, effectively resulting in a broad-
ening of phonon steps. For asymmetric molecule-lead cou-
pling, we find that this mechanism can also lead to negative
differential conductance behavior. We conclude that spac-
ings of vibrational features indI/dV provide information
about charge dependence of vibrational frequencies and an-
harmonicity of the potential. Whenever other broadening
mechanisms play a secondary role, the bias-dependent sub-
splitting or broadening acts as a fingerprint of nonequilibrium
vibrations.

It is interesting to note that the appearance of clusters of
vibrational substeps due to the emergence of differing energy
scales of phonon excitations resembles the splitting of tun-
neling peaks observed in transport through ultrasmall metallic
grains. In that context, Agamet al.19 argued that the Coulomb
interaction effectively results in a bias-dependent splitting of
resonance peaks in the nonequilibrium case, i.e. for suffi-
ciently slow electronic relaxation. Finally, we remark that
similar arguments also suggest a splitting of the conductance
fine structure for magnetic single-molecule devices,20 when-
ever the exchange coupling varies with the molecular charge
state.
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was supported by the Junge Akademie, Sfb 658, and Studi-
enstiftung des deutschen Volkes.
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