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For hexagonal nets, descriptive of �111� fcc surfaces, we derive from combinatoric arguments a simple,
low-temperature formula for the orientation dependence of the surface step line tension and stiffness, as well
as the leading correction, based on the Ising model with nearest-neighbor �NN� interactions. Our formula
agrees well with experimental data for both Ag and Cu�111� surfaces, indicating that NN interactions alone can
account for the data in these cases �in contrast to results for Cu�001��. Experimentally significant corollaries of
the low-temperature derivation show that the step line tension cannot be extracted from the stiffness and that
with plausible assumptions the low-temperature stiffness should have six-fold symmetry, in contrast to the
three fold symmetry of the crystal shape. We examine Zia’s exact implicit solution in detail, using numerical
methods for general orientations and deriving many analytic results including explicit solutions in the two
high-symmetry directions. From these exact results we rederive our simple result and explore subtle behavior
near close-packed directions. To account for the three-fold symmetry in a lattice gas model, we invoke an
orientation-dependent trio interaction and examine its consequences.
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I. INTRODUCTION

Most of our current understanding of surface morphology
is based on the step-continuum model,1 which treats the step
itself as the fundamental unit controlling the evolution of a

surface. In this model, the step stiffness �̃ serves as one of
the three fundamental parameters; it gauges the “resistance”
of the step to meandering and ultimately accounts for the
inertia of the step in the face of driving forces. The stiffness
can be derived from the step line tension ����, the excess
free energy per length associated with a step edge of a speci-
fied azimuthal orientation �. From �, the two-dimensional
equilibrium crystal shape �i.e., the shape of the islands� is
determined.

The goal of this paper is to find low-temperature �T� for-

mulas for ���� and thence �̃��������+����� as functions of
the azimuthal misorientation �, assuming just nearest-
neighbor interactions in plane and an underlying �111� sur-
face. Such surfaces are characterized by a sixfold symmetric
triangular �hexagonal� lattice, allowing all calculations to be
done in the first sextant alone �from 0° to 60°�. In contrast to

����, we shall find that at low T , �̃��� is insensitive, under
plausible assumptions, to the symmetry breaking by the sec-
ond substrate layer, so that plots from 0° to 30° suffice. Al-
though an analytic solution exists for the orientation depen-
dence of ���� on a square lattice,2–4 only an implicit solution
to a sixth-order equation has been found for a hexagonal
lattice.5 This makes comparisons to experiment rather ardu-

ous, particularly when trying to compare data on �̃���, which
is related to ���� through a double derivative with respect to
�. Fortunately, we will see that a remarkably simple formula

exists for the orientation dependence of �̃ at temperatures
which are low compared to the characteristic energy of step

fluctuations �i.e., the kink energy or the energy per length
along the step�. For noble metals, room temperature lies in
this limit, facilitating direct comparisons to experiment.

Motivating this work is a recent finding6 that the square-
lattice nearest-neighbor �NN� Ising model underestimates �̃
by a factor of 4 away from close-packed directions on
Cu�001�. Later work7–9 showed that much �but not all� of this
discrepancy could be understood by considering the addition
of next-nearest-neighbor �NNN� interactions. For the trian-
gular lattice, we will see that such a longer-range interaction
is not required to describe the orientation dependence of �̃.

In the following section, we characterize steps on a hex-
agonal lattice and perform a low-temperature expansion of
the lattice-gas partition function, assuming only NN bonds
are relevant, and derive both ���� and �̃���. We obtain a
remarkably simple expression for the latter in Eq. �18�. Since
this low-T limit is determined by geometric-configurational
considerations, it becomes problematic near close-packed
orientations ��=0° �, where the kinks must be thermally ac-
tivated. Therefore, we make use of exact results to assess in
several ways how small � can be before the simple expres-
sion becomes unreliable. In Sec. III, we present three general
results for island stiffness that are valid in the experimentally
relevant low-T limit when configurational considerations
dominate the thermodynamics. We show that the line tension
cannot be �re�generated from the stiffness and that the stiff-
ness can have full six-fold symmetry even though the sub-
strate and the line tension have just three-fold symmetry.
Accounting for such three-fold symmetry with a lattice-gas
model on a hexagonal grid requires an extension from the
conventional parametrization; we posit orientation-
dependent interactions between three atoms at the apexes of
an equilateral triangle with NN legs. In Sec. IV, we compare
our results to experiments on Ag and Cu�111� surfaces,
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showing that Eq. �18� provides a good approximation and,
thus, that NNN interactions are much less important than on
Cu�001�. The final section offers a concluding discussion.
Three appendixes give detailed calculations of the leading
correction of the low-T expansion, of explicit analytic and
numerical results based on Zia’s exact implicit solution,5 and
of Eq. �18� as the low-T limit of Zia’s solution.

II. ISING EXPANSION ON A TRIANGULAR LATTICE

A. Recap of results for square lattice

The orientation dependence of � on �111� surfaces can be
determined by first calculating the free energy F of a single
step oriented at a fixed angle �. To approximate this, we
perform a low-temperature Ising expansion of the partition
function, similar to the one used by Rottman and Wortis.3

They considered a step on a square lattice with one end fixed
to the origin and the other end, a distance L away, fixed to
the point �M �L cos � , N�L sin ��. Such a step is shown in
Fig. 1�a�. The single-layer island �or compact adatom-filled
region� is in the lower region, separated by the step edge—
which is drawn as a bold solid line—from the upper part of
the figure, representing the“plain” region. They found the
step energies associated with the broken bonds of the step-
edge to be

En = ��M + N + 2n�, n = 0,1,2,… , �1�

where �, sometimes10 called the “Ising parameter,” is the
bonding energy associated with the “severed half” of the NN
lattice-gas bond. Since the NN lattice-gas energy �1 is attrac-
tive �negative�, and half of it is attributed to the atom on each
end, it “costs” a positive energy �=− 1

2�1 for each step-edge
atom. Because longer steps require more step-edge atoms,
the step energy is only a function of the step length, M +N
+2n. Thus, E0 corresponds to the shortest possible step. To
increase the length of this step, two more step-edge links—
corresponding to one more step-edge atom—must be added,
one going away from the fixed endpoint and one going to-
ward it. Because this corresponds to two more broken bonds,
in general, En+1−En��E=2�. With these energies, we can

write down the partition function Z�, assuming � is fixed but
L is large enough so that integer values of M and N can be
found,

Z� = gM,N�0�e−E0/kT + gM,N�1�e−E1/kT + ¯ , �2�

where gM,N�n� corresponds to the number of ways a step of
length M +N+2n can be arranged between the two end-
points.

For low temperatures, only the first term in Eq. �2� need
be considered �Appendix A provides the leading correction
term, which gives a correction of order exp�−2� /kBT��. To
lowest order, then, F is

F � E0 − kBT ln	M + N

M

 , �3�

where we have inserted the value of gM,N�0� obtained from a
simple combinatorial analysis.3,11 After taking the thermody-
namic limit �M ,N�1� and using Stirling’s approximation, F
becomes

F � E0 − kBT��M + N�ln�M + N� − M ln M − N ln N� .

�4�

B. Triangular lattice step energy

In order to extend this result to a step on a triangular
lattice, we need to make a few minor adjustments. First, we
introduce a linear operator L that transforms the coordinates
of a point on a square lattice �M ,N� to those on a triangular
lattice �M� ,N��; cf. Fig. 1�b�. This operator finds the position
of a point in a coordinate system whose positive y axis is
bent at 60° with respect to the positive x axis,

	M�

N�

 = L	M

N

 = 	1 − 1/�3

0 2/�3

	M

N

 . �5�

With the aid of L, we can see how E0 changes on a
triangular lattice. To begin, we imagine a step in the first
sextant �from 0° to 60° degrees in the plane� starting at �0,0�
and ending at �M� ,N��. Such a step is shown in Fig. 1�b�. As
before, the bold solid line represents the step edge with the
bottom region a layer higher than the top �or, alternatively
phrased, it separates the upper, adatom-free region from the
lower, adatom-filled region�. The broken bonds required to
form the step will have only three orientations, 0°, 60°, and
120°. If we consider the shortest step between the two points
�corresponding to energy E0�, then there will be exactly M�
+N� broken bonds oriented at 0° and 60° �these bonds are
analogous to those oriented at 0° and 90° on a square lattice�.
There will be another M�+N� broken bonds oriented at 120°
�drawn as bold, dashed lines in Fig. 1�. In total, there will be
2�M�+N�� broken bonds. Since � is the energy of these sev-
ered bonds, E0

�=2��M�+N��. Thus, the energy is propor-
tional to the step length, as was the case on a square lattice.
Using L to write M� and N� in terms of M and N gives

E0
� = 2�	M +

N
�3


 = 2�L	cos � +
sin �

�3

 . �6�

FIG. 1. There is a one-to-one correspondence between the
shortest-distance steps connecting points on a square lattice ��a�, left
panel� and the shortest distance steps connecting points on a trian-
gular lattice ��b�, right panel�. This figure shows two corresponding
steps. Analogous to the M +N broken bonds oriented at 0° and 90°
on a square lattice, there are M�+N� broken bonds oriented at 0°
and at 60° on a triangular lattice. However, there are another M�
+N� broken bonds oriented at 120° on a triangular lattice �drawn as
bold dashed lines�.
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C. Triangular lattice step degeneracy

Next we consider the degeneracy factors g��n� on a trian-
gular lattice. For the ground state g��0� there is a one-to-one
correspondence between the shortest distance steps connect-
ing two points on a square lattice and the corresponding
steps on a triangular lattice �see Fig. 1�. Therefore, we know
that the degeneracy factor gM�,N�

� �0� for steps of energy E0
�

on a triangular lattice must be identical to gM�,N��0� implicit
in Eq. �3�. More precisely, if we assume the point �M ,N� is
in the first quadrant, and �M� ,N�� is in the first sextant, then
on a square lattice, shortest-distance step-links are oriented at
either 0° or 90°, whereas on a triangular lattice they are
oriented at either 0° or 60° �i.e., in the first sextant, the short-
est path cannot have links oriented at 120°�. In both cases,
the individual step-links can only be oriented in one of two
directions and, therefore, besides the transformation between
coordinates, the total number of path arrangements is the
same.

Using Eq. �3� and Stirling’s approximation, we find the
low-temperature free energy �Appendix A provides the
lowest-order correction�,

F � E0
� − kBT ln�gM�,N��0�� � E0

� − kBT��M� + N��ln�M�

+ N�� − M� ln M� − N� ln N�� . �7�

Alternatively, we can transform Eq. �4� for the square
lattice to the triangular lattice by just replacing N /M
� tan � with �2 tan �� / ��3−tan ��. �This ratio is just N� /M�,
so it might be termed tan ��.� �We must also make a simple
�and ultimately inconsequential� change to E0.�

We now take the thermodynamic limit �M� ,N��1� and
write M� and N� in terms of M �L cos � and N�L sin � via
Eq. �5�. Then dividing by L and defining12

�±��� = cos � ±
sin �

�3
, �0��� =

2
�3

sin � , �8�

all non-negative in the first sextant, we straightforwardly find
the step-edge line tension �or free energy per unit length13�
����,

a����� = 2��+��� − kBT�s+��� − s−��� − s0���� , �9�

where a� is the nearest-neighbor spacing and

si��� = �i���ln �i���, i = + ,0,− . �10�

For the special case of the maximally kinked orientation,
Eqs. �8�–�10� reduce to

ak��30 ° � = 2� − kBT ln 2, �11�

where ak= ��3/2�a� for the �111� surface. This result for the
maximally kinked case �including steps at �=45° on a square
lattice� was derived earlier from a direct examination of
entropy.14

For specificity, we recall some established results. For a
hexagonal lattice with just nearest-neighbor attractions, the
critical temperature Tc is long known,15

kBTc = 2�/ln 3 � 1.82� . �12�

From the equilibrium shape of islands over a broad tempera-
ture range, Giesen et al.10 deduced that the free energy per
lattice spacing in the maximally kinked directions is
0.27±0.03 eV on Cu�111� and slightly smaller,
0.25±0.03 eV, on Ag�111�. Combining these results with Eq.
�11�, we find � is 0.126 eV on Cu�111� and 0.117 eV on
Ag�111�. In both cases, then, room temperature is some-
where between Tc /9 and Tc /8.

D. Main result: Simple expression for low-T stiffness

As shown just above, the step stiffness �̃=����+�����
computed from Eq. �9� depends to leading order only on the
combinatoric entropy terms s0 and s± of Eqs. �9� and �10�.
Hence,

d2si

d�2 � si� = − �i ln �i +
�i�

2 − �i
2

�i
, �13�

so that16

s̃i � si + si� =
�i�

2 − �i
2

�i
. �14�

With this notation, the reduced stiffness is

�̃a�

kBT
= s̃0 + s̃− − s̃+, �15�

where

s̃0 =
2
�3

cos 2�

sin �
, �16�

s̃± =
− 2 cos 2� 	 2�3 sin 2�

3 cos � ± �3 sin �
. �17�

Adding these terms together gives our main result—a re-
markably simple form for the reduced stiffness in the low-
temperature �T
� /kB� limit,

kBT

�̃a�

=
sin�3��

2�3
=

3m − m3

2�3�1 + m2�3/2
, �18�

where m=tan �.

E. Synopsis of exact results and application to range of
breakdown of low-T limit near �=0

To test how low the temperature should be for Eq. �18� to
be a good approximation, we compare it to a numerical
evaluation of the exact implicit solution of the Ising model.
The derivation of this solution, outlined by Zia,5 gives a sixth
order equation for ����. In essence, after conversion to our
notation, his key result for the step free energy � is given
by17

�a�

kBT
= �0����1��,T/Tc� + �−����2��,T/Tc� , �19�

where the �’s are the solutions of the pair of simultaneous
equations for the angular constraint,

LOW-TEMPERATURE ORIENTATION DEPENDENCE OF… PHYSICAL REVIEW B 71, 245414 �2005�

245414-3



sinh �2 − sinh��1 − �2�
sinh �1 + sinh��1 − �2�

=
�−

�0
=

�3 cot � − 1

2
, �20�

and the thermal constraint,

cosh �1 + cosh �2 + cosh��1 − �2� = f�z� �
1 + 3z2

2�z − z2�
,

�21�

where z�exp�−2� /kBT�=3−Tc/T, via Eq. �12�. The ratio
�− /�0 of Eq. �20� is a monotonically decreasing function
which is � at �=0°, 1 at �=30°, and 0 at �=60°.

In these high-symmetry directions, Eqs. �20� and �21�
yield analytic solutions for � and �̃,

��0�a�

kBT
= 2 cosh−1	− 1 + �3 + 2f

2

 , �22�

�̃�0�a�

kBT
=

2

3

�2�3 + 2f��f − �3 + 2f�
�3 + 2f − 1

, �23�

��
/6�a�

kBT
=

2
�3

cosh−1	 f − 1

2

 , �24�

�̃�
/6�a�

kBT
=

2�3�f − 3��f + 1�
f + 3

. �25�

Details are provided in Appendix B. Akutsu and Akutsu18

also derived these equations, in different notation19 and from
the more formal perspective of the imaginary path-weight
method. Symmetry dictates that the solution at �=60°
=
 /3 is the same solution as that at �=0°. Furthermore, at
T=Tc , f�z�=3, so Eqs. �22�–�25� all go to 0, as expected.

To find �̃ in general directions, we solve Eqs. �20� and
�21� �or, equivalently, Eq. �B4�� numerically. As Fig. 2
shows, once T decreases to nearly Tc /9, Eq. �18� more or
less coincides with the exact numerical solution for the stiff-
ness. At such low temperatures �compared to Tc�, the ap-
proximation only fails below some very small, temperature-
sensitive critical angle �c. Although it might seem easy to
determine this angle by eye, estimating it quantitatively turns
out to be a subtle and somewhat ambiguous task. We discuss
two possible estimation techniques below.

In the first approach, we estimate �c to be the angle �1 at
which the curvature of the exact solution changes sign. The
points on the solid curve in Fig. 3 show �1 at several tem-
peratures ranging from Tc /9 to Tc /4. At temperatures near
and above Tc /4 ,�1 does not reliably estimate �c because
there is a sizable curvature-independent difference between
the exact solution and the approximation given in Eq. �18�
evident even at �=30° �see Fig. 2�. On the other hand, as the
temperature dips below Tc /5, this difference fades, and the
use of �1 to estimate �c becomes ever more precise.

A second, more fundamental way to estimate �c comes
from an examination of the assumptions required to derive
the simple expression for the low-T limit Eq. �18� directly

from the exact solutions Eqs. �20� and �21�. In Appendix C
we show that to do so � must be greater than some �2 satis-
fying

cot �2 
 	4f − 1
�3


 . �26�

To give definite meaning to this inequality, we estimate �c
directly from Fig. 2 at a single temperature, say Tc /5. At that
temperature, �c is nearly 10°. If �2 is to accurately represent

FIG. 2. �Color online� As the temperature drops close to Tc /9
�just below room temperature for Cu and Ag�111� surfaces�, the
numerical evaluation of the exact stiffness �Ref. 5� approaches the
solid line representing the low-temperature approximation given in
Eq. �18�. The small circles indicate evaluations using the exact re-
sults of Eqs. �23� and �25�. At Tc /9, when � decreases, the exact
solution begins to deviate from the approximation when its curva-
ture changes sign near ��
 /100=1.8°. The scale here is linear, in
contrast to the logarithmic scale of Fig. 2 of Ref. 6. The inset shows
more fully how the exact stiffness approaches the low-temperature
limit for the particular azimuthal angle �=
 /24=7.5°.

FIG. 3. �Color online� Two estimates for the critical angle �c,
below which the approximation given in Eq. �18� begins to fail, as
a function of Tc /T. The black dots connected by the solid, blue line
represent the first estimate, defined to be the angle �1 at which the
curvature of the numerically determined inverse stiffness changes
sign. The dashed, red line represents the second estimate, �2

=cot−1��4f −1� / �50�3��. At angles below �c, the three theorems of
Sec. III break down, and higher order terms are required in the
expansion of the step partition function. At temperatures between
Tc /9 and Tc /8 �roughly room temperature for Cu and Ag�111� sur-
faces�, �c is on the order of a few degrees.
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�c, it should also be around 10° at Tc /5. We enforce this by
interpreting the 
 in Eq. �26� to mean =1/50. The dashed
�red online� curve in Fig. 3 shows the resulting �2 as a func-
tion of temperature. Clearly �1 and �2 are very different es-
timates for �c. While �2 is reliable at all temperatures �unlike
�1�, it is less precise than �1 at lower temperatures. A com-
bination of �1 and �2 is therefore the best estimate for �c,
being closer to �1 at lower temperatures, and closer to �2 at
higher temperatures.

In essence, �c is no more than a few degrees between Tc /9
and Tc /8, regardless of which estimation technique is used.
We therefore reach the practical conclusion that Eq. �18� is
valid for almost all angles at temperatures near and below
Tc /8, which fortunately happens to be around room tempera-
ture for Cu and Ag�111�.

Finally, we emphasize that �̃ varies significantly with
angle, especially at lower temperatures �where the equilib-
rium crystal shape �ECS� is hexagonal rather than circular�.
If one wants to approximate �̃ as isotropic rather than using
Eq. �18�, one should not pick its value in the close-packed
direction �viz. �=0°�; Fig. 4 provides stunning evidence of
this conclusion. From Eq. �18� we also see that at low-
temperatures the stiffness actually increases linearly with
temperature. This contrasts with its behavior at high tem-

peratures, where �̃ must ultimately decrease as the ECS be-
comes more nearly circular and the steps fluctuate more
easily.

III. GENERAL RESULTS FOR STIFFNESS IN LATTICE-
GAS MODELS IN LOW-TEMPERATURE

APPROXIMATION

In this section we present three “theorems” that are valid
under two conditions: First, the energy term in the free en-
ergy must be a linear combination of cos � and sin �. From

Eq. �6� and �implicitly� Eq. �3� we see that this property
holds true in general for lattice-gas models, even when con-
sidering next-nearest neighbors and beyond.20 Second, the
temperature must be low enough so that the entropy is ad-
equately approximated by the contribution of the lowest or-
der term, kB ln g�0�. This entropic contribution is due exclu-
sively to geometry or combinatorics of arranging the fixed
number of kinks forced by azimuthal misorientation. Hence,
it must vanish near close-packed directions �0° and 60° in the
first sextant�. For angles sufficiently close to these directions,
in our case less than �c, the leading term becomes dominated
by higher-order terms, and the three results no longer apply.

A. No contribution from energy to
lowest-order stiffness (LOS)

The first theorem is a remarkable consequence of the first
condition, that the energy term in the free energy is a linear

combination of cos � and sin �. Since the stiffness �̃���
�����+����� and since cos� �=−cos � and sin� �=−sin �,
we see that the lattice-gas energy makes no contribution
whatsoever to the low-T limit of reduced stiffness, as shown
explicitly for square lattices long ago.3,11 Thus, we retrieve
the result that the leading term in a low-temperature expan-

sion of the reduced stiffness �̃��� /kBT depends only on g�0�,
which is determined solely by geometric �combinatoric�
properties. Of course, higher-order terms �which are crucial
near close-packed directions� do have weightings of the vari-
ous configurations that depend on Boltzmann factors involv-
ing the characteristic lattice-gas energies. Furthermore, next-
nearest-neighbor interactions can �at least partially� lift the
g�0�-fold degeneracy of the lowest energy paths.9

B. Step line tension not extractable from LOS

An important corollary is that from the stiffness it is im-
possible to retrieve the energetic part of the step free energy,
the major component of ���� at lower temperatures when the
islands are noncircular. Thus, contrary to a proposed method

of data analysis,21 one cannot regenerate ���� from �̃��� by
fitting the stiffness to a simple functional form and then in-
tegrating twice. In this framework, the linear coefficients of
cos � and sin � can be viewed as the two integration con-
stants associated with integrating a second-order differential
equation.22

C. LOS on fcc{111} has six-fold symmetry

1. General argument

Another important result is that the leading term in the
stiffness at low temperature has the full symmetry of the 2D
net of binding sites rather than the possibly lower symmetry
associated with the full lattice. Specifically, for the present

problem of the �111� face of an fcc crystal, the stiffness �̃���
to lowest order has the full six-fold symmetry of the top
layer rather than the three-fold symmetry due to symmetry
breaking by the second layer. In contrast, the step energy of
B steps ��111� microfacets� differs from that of A-steps

FIG. 4. �Color online� Ratio of the stiffness �solid red curve, left
ordinate� and the free energy per length �dashed blue curve, right
ordinate� for edges oriented in the maximally zig-zagged ��=30° �
and close-packed ��=0° � directions, based on taking the ratios of
Eqs. �25� and �23� and of Eqs. �24� and �22�, respectively. The
line-tension ratio increases slowly but monotonically to the T=0
limit 2 /�3�1.15. In contrast, the stiffness ratio plummets toward 0,
the value predicted by Eq. �18�, providing an indicator how low T
must be for this simple low-T formula to be a good approximation
at all angles.
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��100� microfacets�, leading to islands with the shape of
equiangular hexagons with rounded corners, but with sides
of alternating lengths �i.e., ABABAB�.

To see the origin of the six-fold symmetry of the stiffness,
suppose without loss of generality that steps in the X� direc-
tion have energy EA per lattice spacing, so that those in the
Y� direction have energy EB. Furthermore, we must make the
crucial assumption that any corner energy is negligible. Then
all shortest paths to �M� ,N�� have the same energy M�EA

+N�EB, with degeneracy still gM�,N��0�. Thus, the free energy
is M�EA+N�EB−kBT ln gM�,N��0�, while that of its mirror
point �through the line at �=30°� is N�EA+M�EB
−kBT ln gN�,M��0�. The crux of the proof is that gN�,M��0�
=gM�,N��0�. Thus, while the free energies at the pair of mirror
points differ, the energy parts are obliterated when the stiff-
ness is computed �since M� and N� are linear combinations
of cos � and sin ��, leaving just the contribution from the
entropies, which are the same to lowest order.

2. Orientation-dependent three-atom interaction

Within lattice-gas models with only pair interactions,
there is no obvious way to distinguish A and B steps; the
minimalist way to obtain different step energies for A and B
steps within the lattice-gas model is to invoke a nonpairwise
three-site “trio” interaction associated with three �occupied�
sites forming an equilateral triangle with NN sides �See Fig.
5�. In contrast to the ones considered heretofore,23,24 these
trio interactions must be orientation dependent: If the tri-
angle points in one direction �say up�, the interaction energy
has a different value than if it points in the opposite �down�
direction. Alternatively, one can separate out the average of
these two values as an ordinary trio energy with full 6-fold
symmetry �the main effect of which presumably is to renor-
malize the NN interaction9�; then we can write the new con-
tribution as an antisymmetric term which changes sign with
each rotation of the triangle by 
 /3. The contributions from
such a symmetry-breaking interaction would cancel in the
interior of an island �in the 2D bulk�, but would distinguish A
and B edges. Specifically, each side of the equilateral triangle
is associated with a link, so that 1 /3 of its strength can be
attributed to each. Each link has a triangle on both sides, one
of each orientation. Hence, the difference between the energy
per a� of A and B steps is 1 /3 the difference between the trio
interactions in the two opposite orientations.

For the ground-state, minimum-number-of-links configu-
rations, such a term will not lift the degeneracy since each
configuration has the same �1� number of horizontal �X��
links, �2� number of right-tilted diagonal links �Y��, and �3�
difference between the number of convex and concave
“kinks” �i.e., bends�. Since this statement is not true for
higher-energy configurations, the six-fold symmetry is not
preserved at higher orders. Nonetheless, at low T it should be
a decent approximation for the stiffness �much better than for
the island shape�.

Thus, our result that the breaking of six-fold symmetry on
an fcc �111� is much smaller for the stiffness than for the free
energy—is more general than the nearest-neighbor lattice gas
model which underlies Eqs. �9� and �10� and the resulting
Eq. �18� derived below. We reemphasize that the necessary

assumptions are �1� that the orientational dependence of the
step energy be just a linear combination of sin � and cos �
and �2� that no interaction break the degeneracy of the short-
est path corresponding to orientation �. As above, for angles
near close-packed directions, the higher-order terms become
important at lower temperatures than for general directions.
This feature is illustrated in Fig. 2, and its associated formal-
ism is given in Appendixes A and C.

IV. COMPARISON TO EXPERIMENT

In Fig. 6 we compare Eq. �18� to measurements on
Cu�111� and Ag�111�. The experimental data were derived
from the equilibrium shape of 2D islands using the method
described in Ref. 6. The solid black line corresponds to Eq.
�18�, while the thick dashed blue line corresponds to the
average of the experimental measurements. Equation �18�
captures the overall trend and is satisfactory at most angles
and temperatures. As expected, Eq. �18� somewhat overesti-

mates �̃ near �=0° �since the T=0 singularity remains�. Fur-
thermore, near �=30° Eq. �18� somewhat underestimates the

experimental �̃, but only by a factor of 1 /6 for Cu�111� and
1/4 for Ag�111�. This is in striking contrast to the analogous

NN theory for Cu�001� near 45°, which understimates �̃ by a
factor of 4. Finally, notice there is no clear temperature de-
pendence in the measured data. This is further evidence that

FIG. 5. �Color online� Illustration of A and B steps on fcc �111�
surfaces and how orientation-dependent NN equilateral triangles
can, within the lattice-gas framework, account for their energy
difference—an asymmetry for which one cannot account with just
pair interactions. A horizontal link on the A step edge of the �blue�
partial overlayer will contribute to a white downward-pointing trio
�three-atom, non-pairwise� interaction but not to a light-gray �yel-
low online� upward-pointing trio. Similarly, a horizontal link on a B
step contributes to an upward-pointing but not a downward-pointing
trio. As discussed in the text, in this simple picture the energy of an
A step per link exceeds that of a B step by 1/3 the energy that a
down trio exceeds an up trio. Other trios may also contribute to the
asymmetry, most notably from obtuse isosceles triangle configura-
tions with two NN sides and one NNN side.
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�̃ /kBT is a constant at low temperatures, as Eq. �18� sug-
gests.

The agreement between theory and experiment is a pleas-
ant surprise considering analogous comparisons made for

Cu�001� �Ref. 6� found �̃ to be 4 times as large as the theo-
retical value at large angles �near �=45°�. It was later
shown7–9 that this discrepancy could be partially accounted
for by considering next-nearest-neighbor �NNN� interactions

�or right-triangle trio interactions, which turn out to affect �̃
at low temperatures in the same way�. Clearly, the success of
Eq. �18� suggests that these interactions are less relevant for
�111� surfaces. This is reasonable because the ratio of NNN
distance to NN distance is smaller by a factor of �2/3 on a
triangular lattice compared to on a square lattice. Further-
more, in the close-packed direction ��=0° �, for every broken
NN bond there are only one-and-one-half broken NNN

bonds on a triangular lattice, compared to two broken NNN
bonds on a square lattice. These simple arguments help ex-

plain why NNN interactions may increase �̃ by only 20% to
30% on Cu/Ag�111�, as opposed to 400% on Cu�001� sur-
faces.

V. CONCLUDING DISCUSSION

By generalizing the low-temperature expansion of the
nearest-neighbor square lattice-gas �Ising� model to a trian-
gular lattice, we have found a remarkably simple formula for
the orientation dependence of the �111� surface step stiffness.
This formula, unlike its square lattice analog, fits experimen-
tal data well at general angles, suggesting that NNN interac-
tions are relatively unimportant on �111� surfaces.

To corroborate this picture and explain the success of Eq.
�18�, we are currently using the VASP package25 to perform
first-principle calculations. In particular, we are examining
the ratio of the NNN to NN interaction strength. Preliminary
results26 suggest that this ratio is roughly an order of magni-
tude smaller on Cu�111� than on Cu�001�, and essentially
indistinguishable from zero. This tentative finding is consis-
tent with expectations from the semiempirical embedded
atom method, which predicts that indirect interactions are
insignificant/negligible between atoms sharing no common
substrate atoms.24 We are also calculating the difference in
trio interactions between oppositely oriented triangle con-
figurations.

We expect that our formula, as well as the general six-fold
symmetry of the stiffness �except in close-packed directions�,
should be broadly applicable to systems in which multisite or
corner energies are small and for which the bond energies are
considerably higher than the measurement temperature.
Studies which ignore the three-fold symmetry breaking on
metallic fcc �111� substrates, such as a recent investigation of
nanoisland fluctuations on Pb�111�,27 should be good repre-
sentations. Many recent investigations29,30 focus on the
larger asymmetry of the kinetic coefficient,31 taking the stiff-
ness to be isotropic. In such cases, this stiffness should not
be characterized by its value in close-packed directions.
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APPENDIX A: LEADING TERM IN LOW-TEMPERATURE
EXPANSION

1. Review of results for square lattice

In this appendix we discuss the lowest-order correction to
the ground state entropy of the step running from the origin

FIG. 6. �Color online� A comparison between Eq. �18� and ex-
periments on Cu and Ag�111�. Equation �18� appears as a solid
black line, while the average of the experimental data is a thick
dashed blue line. The agreement is reasonable at all angles. In either
case the thin dashed red line is a �smoothed� average of the data for
the given angle while the thin solid purple line corresponds to the
angle mirror-reflected through a radial at 30°, i.e., at 60°−�.
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to an arbitrary particular point. First we review results for a
square lattice. We can rewrite Eq. �2� as

Z� = gM,N�0�e−E0/kT	1 +
gM,N�1�
gM,N�0�

e−�E/kT + ¯
 . �A1�

Then, assuming the exponential is small, we have

F � E0 − kBT	ln�gM,N�0�� +
gM,N�1�
gM,N�0�

e−2�/kBT
 . �A2�

A combinatorial analysis3,11,28 shows that

gM,N�1� = 	M + N

M − 1

�M + 1� + 	M + N

N − 1

�N + 1� . �A3�

Then Eq. �4� generalizes to

F � E0 − kBT	�M + N�ln�M + N� − M ln M − N ln N

+ e−2�/kBT M3 + N3

MN

 . �A4�

2. Results for triangular lattice

For the triangular lattice we find important differences
from the square lattice for the higher-order terms. Specifi-
cally, we consider how g�1� changes. In contrast to g�0�, we
cannot simply replace M and N with M� and N�. There is no
one-to-one correspondence between paths of energy E1 on a
square lattice and those of energy E1

� on a triangular lattice.
This failed correspondence for higher terms follows from the
observation that E1

� configurations are only one link longer
than E0

� steps, whereas E1 configurations are two links longer
than E0 steps, En+1

� −En
���E�=�, or

En
� = �	2N

�3
+ 2M + n
, n = 0,1,2,… . �A5�

Hence, we require a separate combinatorial analysis.
We imagine a step of energy E1 in the first sextant. Such

a step �see Fig. 7� will have either �1� �M�+1� links oriented
at 0° �denoted “X links”�, �N�−1� links oriented at 60° �de-
noted “Y links”�, and one link oriented at 120° �denoted “�
links”�, or �2� �M�−1� links oriented at 0°, �N�+1� links
oriented at 60°, and one link oriented at −60°. In the first
case, the problem can be reworded as follows: how many
ways to arrange an �M�+N�+1�-lettered word with �M�
+1�X’s, �N�−1�Y’s, and one �. In the second case, the prob-
lem is the same, only with M and N switched. Thus, the
solution of this traditional combinatorial problem gives the
total number of next-to-shortest paths g��1�,

g��1� = 	M� + N� + 1

M� + 1

N� + 	M� + N� + 1

N� + 1

M�. �A6�

With g��0/1� and En
� in hand, we can write the low-

temperature partition function expansion for a triangular lat-
tice. Using Eq. �3� and expanding the logarithm as in Eq.
�28�, we have

F � E0
� − kBT	ln�g�0�� +

g��1�
g�0�

e−�E�/kBT
 . �A7�

Taking the thermodynamic limit �M� ,N��1� and using
Stirling’s approximation gives

F � E0
� − kBT	�M� + N��ln�M� + N�� − M� ln M� − N� ln N�

+ e−�/kBT M�3 + N�3 + M�N�2 + N�M�2

M�N�

 . �A8�

The pair of cross factors in the last coefficient are absent in
Eq. �A4� for the square lattice.

The correction term becomes non-negligible when the fi-
nal term in Eq. �A8� becomes of order unity. At low T this
occurs only near close-packed directions, so for small values
of �. In this regime, to lowest order in � ,N�= �2L /�3�sin �
→2L� /�3 and M�=L cos �−N� /2→L. Then the critical
value of � is

�c
��� �

�3

2
e−�/kBT =

�3

2
z1/2. �A9�

Specifically, based on Eq. �A9� and using ��0.12 eV for
Cu�111�, we find that �c

��� is 0.353°, 3.18°, and 5.51° for
T /Tc of 1/9 , 1 /5, and 1/4, respectively. From Fig. 3, this
criterion turns out to underestimate the values for �c obtained
in Sec. II D, mainly because Eq. �A9� was derived from an

expression for ���� instead of �̃��� �which should depend
more sensitively on ��.

APPENDIX B: EXACT FORMULAS FOR LINE TENSION
AND STIFFNESS IN MIRROR DIRECTIONS

1. General results for all orientations

In this appendix, we derive Eqs. �22�–�25� for the mirror-
line directions �=0° and �=30° from Zia’s implicit exact
solution.5

To begin, because �̃=�+�� �where the prime represents
differentiation with respect to ��, it follows from Eq. �19�
that

FIG. 7. Two equivalent steps having energy E1
�. The dashed step

contains �M�+1� X links, �N�−1� Y links, and one � link, while the
solid step contains �M�−1� X links, �N�+1� Y links, and one �
link.
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�̃a�

kBT
= 2�0��1� + 2�−��2� + �0�1� + �−�2�. �B1�

We can simplify Eq. �B1� by finding relationships between
the various derivatives of the �’s. Differentiating Eq. �21�
with respect to �, regrouping, and using Eq. �20�, we get

�1��0 + �2��− = 0. �B2�

Differentiating again yields

�1��0 + �2��− + �1��0� + �2��−� = 0. �B3�

Using Eq. �B3�, we rewrite the last part of Eq. �B1� �contain-
ing �1� and �2�� in terms of just �1� and �2�. Then, using Eq.
�B2� we eliminate �2� in favor of �1�. We are then left with an

equation relating �̃ to only �1�,

�̃a�

kBT
= 	�0� − �−�

�0

�−

�1� =

2�1�

�3 cos � − sin �
. �B4�

For general angle, we must evaluate �1� numerically. �To get
some understanding of the behavior of �1 and �2, see Fig. 8,
which shows their numerical evaluation for temperature
Tc /8. However, for the two high-symmetry directions we can
obtain analytic results that allow us �with the aid of Eq. �19�
for �� to write explicit expressions for �̃, as presented in the
next two sections.

2. Results for �=0°

At �=0°, Eq. �19� reduces to

�a�

kBT
= �2�0� , �B5�

assuming that �1�0� is finite. Furthermore, near �=0°, Eq.
�20� can be inverted and the sinh’s combined to get

sinh��1 − 1
2�2�cosh� 1

2�2�
sinh��2 − 1

2�1�cosh� 1
2�1�

=
2
�3

� . �B6�

For Eq. �B6� to hold at �=0°,

�2�0� = 2�1�0� . �B7�

Equation �21� therefore becomes

2 cosh �1�0� + cosh�2�1�0�� = f . �B8�

Solving this for cosh �1�0� and taking the positive root, we
find

cosh �1�0� = cosh� 1
2�2�0�� = 1

2 �− 1 + �3 + 2f� , �B9�

consistent with the assumption of finite �1�0�. Solving for
�2�0� and combining with Eq. �B5� yields Eq. �22�.

Correspondingly for �̃, at �=0°, Eq. �B4� becomes

�̃�0�a�

kBT
=

2
�3

�1��0� , �B10�

while Eq. �B2� becomes

�2��0� = 0, �B11�

provided �1��0� is finite. We obtain �1��0� by differentiating
Eq. �B6� with respect to � and then setting �=0° so that Eqs.
�B7� and �B11� apply. This gives

�1��0� =
1
�3

tanh �1�0��1 + 2 cosh �1�0�� . �B12�

By combining this with Eq. �B9� for cosh �1�0�, we see that
�1��0� is indeed finite, as we earlier assumed. Thus, Eq. �B10�
becomes Eq. �23�, as desired.

3. Results for �=30°

At �=30° =
 /6, Eq. �19� becomes

��
/6�a�

kBT
=

1
�3

��1�
/6� + �2��
/6�� . �B13�

Furthermore, near �=
 /6 ,�0 /�−�1+2�3��, where ��
��−
 /6. Inverting Eq. �20� we therefore have

sinh �1 + sinh��1 − �2�
sinh �2 − sinh��1 − �2�

� 1 + 2�3�� . �B14�

By inspection, at �=
 /6���=0�, one solution to this equa-
tion is just

�2�
/6� = �1�
/6� . �B15�

Plugging this result into Eq. �21� and solving for �2�
 /6�
gives

cosh �2�
/6� =
f − 1

2
. �B16�

Combining this with Eq. �B13� �where we now know
�1�
 /6�=�2�
 /6�� results in Eq. �24�.

FIG. 8. �Color online� Numerical evaluation of �1 �dashed red
curve� and �2 �solid blue curve� as functions of angles at tempera-
ture Tc /8 equivalent to room temperature for the experimental sys-
tems Cu and Ag �111�. Note the linear behavior near one limit and
the divergent slope at the other, the factor-of-2 difference at either
limit, and the symmetry about 
 /6. At higher temperatures the
curves are qualitatively similar but progressively smaller in
magnitude.
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As for �̃, at �=
 /6, Eq. �B4� becomes

�̃a�

kBT
= 2�1��
/6� , �B17�

while Eq. �B2� becomes

�1��
/6� = − �2��
/6� . �B18�

Like before, we can find �1��
 /6� by differentiating Eq.
�B14� with respect to �. Taking the result and setting �
=
 /6, so that Eqs. �B15� and �B18� apply, gives

�1��
/6� =
�3 sinh �1

cosh �1 + 2
. �B19�

Finally, we combine this result with Eq. �B16� for
cosh �2�
 /6�=cosh �1�
 /6� and Eq. �B17�, to get Eq. �25�,
as desired.

APPENDIX C: REDERIVATION OF EQ. (18) FROM
EXACT SOLUTION

In this appendix, we re-derive Eq. �18� directly from the
exact solution for ���� given in Eqs. �20� and �21�. To do so,
we just assume cosh �2��− /�0 �remember that �− /�0 de-
creases from � at �=0° to 1 at �=30°, so that, between these
angles, this condition also implies that cosh �2�1�. In this
case, Eq. �20� can be solved to give

cosh �1 �
�0

�−
cosh �2. �C1�

Thus, if cosh �2��− /�0�1, then cosh �1�1. We show
here that these assumptions for cosh �1,2, together with the
low-temperature replacement of f�z� by 1/ �2z� in Eq. �21�,
are enough to derive Eq. �18�.

When cosh �1,2�1, then cosh �1,2�sinh �1,2�e�1,2 /2.
With these approximations, Eqs. �20� and �21� become re-
markably simple,

e�1 + e�2 = 2f�z� , �C2�

e�2 =
�−

�0
e�1. �C3�

Solving this pair of equations for e�1 and e�2 gives

e�1 =
2f�z��0

�0 + �−
, e�2 =

2f�z��−

�0 + �−
. �C4�

If we then replace f�z� by its low-temperature limit, 1 / �2z�,
Eq. �19� becomes

�a�

kBT
= �0 ln	 �0

z��0 + �−�
 + �− ln	 �−

z��0 + �−�
 . �C5�

By noting �0+�−=�+, and using the definition for z, Eq.
�C5� can be easily simplified to Eq. �9�, from which Eq. �18�
for �̃ was derived.

By deriving the approximation given in Eq. �9� �and thus
Eq. �18�� in this way, we can determine when the approxi-
mation becomes invalid. Specifically, we require cosh �1,2
�1. As we showed, the more restrictive of these inequalities
is the one involving cosh �1, since cosh �1 is necessarily
smaller than cosh �2 in the first sextant by a factor of �0 /�−
�which is less than 1�. Thus, the main assumption is
cosh �1�1, which, from Eq. �C4�, is just

2f�z��0

�0 + �−
� 1. �C6�

The solution to this inequality, which we call �2, is given by
the following inequality:

cot �2 

4f − 1

�3
. �C7�

Because cot � decreases from � at �=0 to 1/�3 at �=
 /6,
we know that angles in the first sextant that are greater than
�2 will also satisfy the inequality in Eq. �C7�. Thus, Eqs. �9�
and �18� are valid in the first sextant at all angles above �2.
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