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For quantum transport through mesoscopic systems, a quantum master-equation approach is developed in
terms of compact expressions for the transport current and the reduced density matrix of the system. The
present work is an extension of Gurvitz’s approach for quantum transport and quantum measurement, namely,
to finite temperature and arbitrary bias voltage. Our derivation starts from a second-order cumulant expansion
of the tunneling Hamiltonian; then follows the conditional average over the electrode reservoir states. As a
consequence, in the usual weak-tunneling regime, the established formalism is applicable for a wide range of
transport problems. The validity of the formalism and its convenience in application are well illustrated by a
number of examples.
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I. INTRODUCTION

Quantum transport through mesoscopic nanostructures
has revealed many impressive features associated with a
number of unique effects such as quantum interferences, dis-
crete levels, and many-body correlations.1 Depending on the
specific systems or problems under study, theoretical formal-
isms have been developed such as the Landauer-Büttiker
theory and the nonequilibrium Green’s functionsNGFd
approach.1,2 However, generally speaking, neither of them
implies universal simplicity in practice, for instance, in treat-
ing mesosopic transport in the presence of many-electron
Coulomb interactions and inelastic scattering with phonons.
In particular, it is even more difficult to describe the transient
processessi.e., time-dependent transport phenomenad.

In some particular cases, a relatively simpler method that
is able to address these issues is the rate-equation
approach.3–7 Originally, the “classical” rate equation is in a
certain sense of phenomenological form.3 Later efforts in-
clude its derivation andquantumgeneralization in the con-
text of the resonant tunneling system, based on the NGF
quantum kinetic theory,4 as well as its modification to de-
scribe quantum coherence which typically exists in mesos-
copic systems.5,6 In particular, amicroscopic derivationstart-
ing with the many-particle wave function has been presented
by Gurvitz and Prager.7 However, obvious drawbacks of this
approach are its limited validity conditionssi.e., large bias
voltage and zero temperatured, which greatly restrict the ap-
plicability. Also, they were unable to derive a general for-
mula in a “system-Hamiltonian-free” form, which means the
inconvenience that one has to proceed with a derivation from
the very beginning for every specific system in practice. In
this work, we extend Gurvitz’s approach to finite temperature
and arbitrary bias voltage, as done in our recent work on
quantum measurement.8–13 In particular, we will establish
compact expressions for the transport current together with
the reduced density matrix, which can serve as a convenient
starting point to study a variety of mesoscopic transport
problems.

The remainder of the paper is organized as follows. In
Sec. II, starting with the second-order cumulant expansion of
the tunneling Hamiltonian, formal expressions for the trans-
port current and the associated master equation are derived.
Section III is devoted to a number of examples to illustrate
the application of the established formalism. Finally, in Sec.
IV concluding remarks on the approximations adopted and
the connection with the NGF approach are presented. In the
Appendix, a refinement of the cumulant second-order ap-
proximation is self-consistently made by including the level
broadening effect.

II. FORMALISM

Consider the transport setup schematically shown in Fig.
1 which is described by the following Hamiltonian:

H = HSsam
†,amd + o

a=L,R
o
mk

eamkdamk
† damk

+ o
a=L,R

o
mk

stamkam
†damk + H.c.d. s1d

HS is the smesoscopicd system Hamiltonian, which can be
rather generalse.g., including many-body interactiond. am

†

samd is the creationsannihilationd operator of electrons in a
state labeled bym, which labels both the multiorbital and
distinct spin states of the system. The second term is the
Hamiltonian of the two electrodes, which are also termed the
emittersleft electroded and collectorsright electroded in some
parts of this work as usual. The third term describes tunnel-
ing between the electrodes and the system. In this paper the
electrode reservoir electrons are also given the indexm to
characterize their possible correspondence with thesystem
states. For instance, this will be the typical situation in spin-
dependent transport.

Introducing the reservoir operatorsFm=oa=L,Roktamkdamk
; fLm+ fRm, we reexpress the tunneling Hamiltonian as
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H8 = o
m

sam
†Fm + H.c.d. s2d

Then, regarding this tunneling Hamiltonian as a perturbation,
the second-order cumulant expansion leads us to a formal
equation for the reduced density matrix14

ṙstd = − iLrstd −E
0

t

dtkL8stdGst,tdL8stdG†st,tdlrstd.

s3d

Here the Liouvillian superoperators are defined asLs¯d
;fHS,s¯dg, L8s¯d;fH8 ,s¯dg, and Gst ,tds¯d;Gst ,td
3s¯dG†st ,td with Gst ,td the usual propagatorsGreen’s
functiond associated with the system HamiltonianHS. The
reduced density matrix rstd=TrBfrTstdg, and ks¯dl
=TrBfs¯drBg with rB the density matrix of the electron res-
ervoirs. Notice that Eq.s3d is nothing but an alternative form
of the quantum master equation under the second-order Born
approximation. The underlining assumption is that the tun-
neling Hamiltonian is not strong enough, which makes the
second-order cumulant expansion reasonable. It is known
that this approximation applies well to most dissipative sys-
tems in quantum optics. Noticeably, for most transport sys-
tems, weak tunneling is also the typical regime where vari-
ous forms of golden-rule-type theories are adopted. In the
strong-tunneling regime, a special technique is required,
which goes beyond the present second-order Born approxi-
mation, and other golden-rule-type theories.15

The trace in Eq.s3d is over all the electrode degrees of
freedom, leading thus to the equation of motion of theun-
conditional reduced density matrix of the system. To de-
scribe the transport problem, we should keep track of the

record of electron numbers arriving at the collectorsemitted
from the emitter and passing through the mesoscopic system
in between the two electrodesd. We therefore classify the
Hilbert space of the electrodes as follows. First, we define
the subspace in the absence of electrons arriving at the col-
lector asBs0d, which is spanned by the product of all many-
particle states of the two isolated reservoirs, formally de-
noted asBs0d;spanhuCLl ^ uCRlj. Then, we introduce the
Hilbert subspaceBsnd sn=1,2, . . .d, corresponding ton elec-
trons arriving at the collector. The entire Hilbert space of the
two electrodes isB= %nB

snd.
With the above classification of the reservoir states, the

average over states in the entire Hilbert spaceB in Eq. s3d is
replaced with states in the subspaceBsnd, leading to acondi-
tional master equation

ṙsndstd = − iLrsndstd −E
0

t

dt TrBsndfL8stdGst,td

3 L8stdG†st,tdrTstdg. s4d

Here rsndstd=TrBsndfrTstdg, which is the reduced density ma-
trix of the systemconditionedby the number of electrons
arriving at the collector up to timet. Now we transform the
Liouvillian operator product in Eq.s4d into the conventional
Hilbert form:

L8stdGst,tdL8stdG†st,tdrTstd = fH8stdGst,tdH8stdG†st,tdrTstd

− Gst,tdH8stdG†st,td

3rTstdH8stdg

+ H.c.; fI − II g + H.c. s5d

To proceed, two physical considerations are further imple-
mented as follows.sid Instead of the conventional Born ap-
proximation for the entire density matrixrTstd.rstd ^ rB,
we propose the ansatzrTstd.onrsndstd ^ rB

snd, whererB
snd is

the density operator of the electron reservoirs associated with
n electrons arriving at the collector. With this ansatz for the
density operator, tracing over the subspaceBsnd yields

TrBsndfIg = o
m,n

hTrBfFm
†stdFnstdrB

sndg 3 famGst,tdan
†G†st,tdrsndg

+ TrBfFmstdFn
†stdrB

sndg 3 fam
†Gst,tdanG

†st,tdrsndgj,

s6ad

TrBsndfII g = o
m,n

hTrBffLn
† stdrB

sndfLmstdg

3 fGst,tdanG
†st,tdrsndam

†g + TrBffLnstdrB
sndfLm

† stdg

3 fGst,tdan
†G†st,tdrsndamg

+ TrBffRn
† stdrB

sn−1dfRmstdg

3 fGst,tdanG
†st,tdrsn−1dam

†g

+ TrBffRnstdrB
sn+1dfRm

† stdg

3 fGst,tdan
†G†st,tdrsn+1damgj. s6bd

Here we have utilized the orthogonality between states in

FIG. 1. Schematic setup for electrical transport through a mul-
tilevel mesoscopic system.

LI et al. PHYSICAL REVIEW B 71, 205304s2005d

205304-2



different subspaces, which in fact leads to the term selection
from the entire density operatorrT. sii d Due to the closed
nature of the transport circuit, the extra electrons arriving at
the collectorsright reservoird will flow back into the emitter
sleft reservoird via the external circuit. Also, the rapid relax-
ation processes in the reservoirs will quickly bring the reser-
voirs to the local thermal equilibrium state determined by the
chemical potentials. As a consequence, after the procedure
si.e., the state selectiond done in Eq.s6d, the electron reser-
voir density matricesrB

snd and rB
sn±1d should be replaced by

rB
s0d, i.e., the local thermal equilibrium reservoir state, which

leads the reservoir correlation functions in Eq.s6d to be,
respectively, kfam

† stdfanstdl=Camn
s+d st−td and kfamstdfan

† stdl
=Camn

s−d st−td. Here k¯l stands for TrBfs¯drB
s0dg, with the

usual meaning of thermal average. Obviously,kFm
†stdFnstdl

=Cmn
s+dst−td=oa=L,RCamn

s+d st−td and kFmstdFn
†stdl=Cmn

s−dst−td
=oa=L,RCamn

s−d st−td.
Under the Markovian approximation, the time integral in

Eq. s4d is replaced by1
2e−`

` dt. This approximation consider-
ably simplifies the result. For instance, substituting the first
term of Eq. s6d into the time integral of Eq.s4d, we have
e−`

` dt Cmn
s+dst−tdamfe−iLst−tdan

†grsndstd=amfCmn
s+ds−Ldan

†grsndstd.
Other terms can be similarly integrated out, leading to

ṙsnd = − iLrsnd −
1

2o
m

hfam
†Am

s−drsnd + rsndAm
s+dam

† − ALm
s−drsndam

†

− am
†rsndALm

s+d − ARm
s−drsn−1dam

† − am
†rsn+1dARm

s+dg + H.c.j. s7d

HereAam
s±d =onCamn

s±d s±Ldan andAm
s±d=oa=L,RAam

s±d. The spectral
functionsCamn

s±d s±Ld are defined in terms of the Fourier trans-
form of the reservoir correlation functions, i.e.,Camn

s±d s±Ld
=e−`

` dt Camn
s±d stde±iLt. We would like to remark here that this

time integral leads to “exact” energy conservation for elec-
tron transfer between the electrodes and the central system.
This “conservation law” would cause errors in the near-
resonance bias. For instance, at zero temperature and for
electrode Fermi levelssd lower than but very close to a certain
system level, the present energy conservation law does not
permit any electron occupation on the concerned system
level. Nevertheless, the NGF-based quantum kinetic theory
allows occupation under the same condition.4 The underlying
reason is the neglect of level broadening in present treat-
ment, whose inclusion is referred to the Appendix.

Then dependence of Eq.s7d is analogous to the usual rate
equation, despite its formal matrix or operator feature. Each
term of Eq.s7d can be similarly interpreted as for the con-
ventional “c-number” rate equation. Compared with the
Bloch equation derived by Gurvitz and Prager,7 in Eq. s7d
rsnd is also coupled torsn+1d which is absent from Ref. 7. This
feature originates from the general nature that Eq.s7d is es-
tablished under nonzero temperature and arbitrarysnot nec-
essarily larged bias voltage.

With the knowledge ofrsndstd, one is readily able to com-
pute the various transport properties, such as the transport
current and noise spectrum.13 Remarkably, we can derive a
compact expression for the current which is only related to
the unconditional density matrixrstd=onrsndstd. The deriva-

tion is started with the physical observation that the current
can be determined by the probability distribution function

Psn,td;Trfrsndstdg, in terms of Istd=edN̄std /dt, whereN̄std
=onnPsn,td. Properly treating the summation overn and
making use of the cyclic property under the trace, minor
algebra based on Eq.s7d straightforwardly leads to

Istd = eo
n

nTrfṙsndstdg

=
e

2o
m

Trfsam
†ARm

s−d − ARm
s+dam

†drstd + H.c.g. s8d

Here the unconditional density matrixr=onrsnd satisfies an
even simpler equation, which can be easily derived by sum-
ming up Eq.s7d over n,

ṙ = − iLr −
1

2o
m

hfam
†,Am

s−dr − rAm
s+dg + H.c.j. s9d

Equationss8d and s9d together with Eq.s7d constitute the
principal result of this work, which can serve as a convenient
starting point to compute the transport current under a wide
range of conditions, such as in the presence of many-body
Coulomb interactions, at finite temperatures, and for arbi-
trary voltages. Moreover, the current expression and the as-
sociated master equation are free from state representation
and the specific system Hamiltonian, which therefore holds
the merit of unification in its applications. For instance, for
quantum transport through an interacting system, which is
usually a challenging problem, one can first diagonalize the
isolated system Hamiltonian and then do the Liouvillian op-
eration easily in the eigenstate representation. In the follow-
ing, as application of this approach we only illustrate a num-
ber of simple examples, and retain the systematic
applications to more interesting problems to be the subject of
forthcoming works.

III. ILLUSTRATIVE APPLICATIONS

A. Single-level system

As a preliminary application of Eq.s7d, let us consider the
resonant transport through a single-level system. Under the
wideband approximation for the electrodes, the reservoir
electron correlation functions read Ca

s±dst−td
= utau2oke

±iekst−tdna
s±dsekd, wherena

s+dsekd=nasekd is the Fermi
distribution function, andna

s−dsekd=1−nasekd. Then the spec-
tral function can be easily carried out as

Aa
s±d = Ca

s±ds±Lda = Gana
s±dsE0da. s10d

Here, Ga=2pgautau2, with ga the density of states of thea
electrode. In the special case of zero temperature and large
bias voltagemL@E0@mR, which is in fact the applicable
condition of Gurvitz and Prager’s approach,7 we simply have
AL

s+d=GLa, AL
s−d=0, AR

s−d=GRa, andAR
s+d=0. Substituting these

into Eq. s7d yields
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ṙsnd = − iLrsnd −
1

2
hfGRa†arsnd + GLrsndaa† − GLa†rsnda

− GRarsn−1da†g + H.c.j. s11d

To obtain the matrix element form of this equation, let us
choose the emptysleveld stateu0l and the occupied stateu1l
as the representation basis. Straightforwardly, by computing
the matrix elements of the terms of Eq.s11d one by one, we
obtain

ṙ00
snd = − GLr00

snd + GRr11
sn−1d,

ṙ11
snd = − GRr11

snd + GLr00
snd. s12d

This is the result derived by Gurvitz and Prager under the
limits mentioned above.7

B. Multilevel system

Now we consider the transport through a multilevel sys-
tem as shown in Fig. 1, under arbitrary voltage and at finite
temperature. The system Hamiltonian simply readsHS
=om=1

N Emam
†am. Also, let us assume that the level separation is

much larger than the characteristic level widths, i.e.,uEm

−Em−1u@GL ,GR, which leads to the correlation function
Camn

s±d std.dmnCamm
s±d std. This assumption neglects the interfer-

ence effect of electron tunneling through different levels,
which is significant only in the caseuEm−Em−1u,GL ,GR.
Similarly to a single-level system, we haveARm

s±d

=GRsEmdnR
s±dsEmdam. For this simplified model, the reduced

system density matrix is the direct product of the individual
single-level density matrix, i.e.,r= ^m=1

N rm, and the steady-
state solution of the single-level density matrix can be easily
obtained asrm=pmu1lmk1u+s1−pmdu0lmk0u, whereu1lm su0lmd
stands for the occupiedsunoccupiedd state of themth level,
and the occupation probabilitypm reads

pm =
nLsEmdGLsEmd + nRsEmdGRsEmd

GLsEmd + GRsEmd
. s13d

Substituting the obtainedARm
s±d andr into the current expres-

sion Eq.s8d, we arrive at an expression for the steady-state
current as

I = eo
m

GLsEmdGRsEmd
GLsEmd + GRsEmd

fnLsEmd − nRsEmdg. s14d

This result clearly manifests the typical steplikeI-V charac-
teristics, where each step corresponds to involving a new
level in the conduction by increasing the bias voltage, with
the standard resonant currenteGLGR/ sGL+GRd.

C. Noninteracting coupled quantum dots

In the above multilevel system the quantum coherence or
nature of quantum superposition of system states is not mani-
fested, and the result can be obtained viaclassicalrate equa-
tions. To reveal more clearly thequantumnature of the de-
veloped formalism, in this subsection we consider transport
through a system of coupled quantum dots.7 In this case, the

nondiagonal elements of the density matrix, which have no
classical counterparts, will appear in the equations of motion
and play an essential role.

The Hamiltonian of the coupled quantum dots readsHS
=E1a1

†a1+E2a2
†a2+Vsa1

†a2+a2
†a1d, where each dot contains a

single resonant levelE1 sE2d, and the two dots are coupled
by V. In principle, for any system the master equations7d or
s9d can be expressed and solved in the system eigenstate
representation. Here, for the coupled quantum dots, we
would like to present a more elegant method in terms of the
language of the Bogoliubov transformation, to explicitly
carry out the superoperatorsAam

s±d. To diagonalizeHS, the
standard Bogoliubov transformation defines a pair of new
electron operators as follows:b1=ua1+va2 and b2=ua2
−va1. The desired diagonalized Hamiltonian readsHS

=Ẽ1b1
†b1+Ẽ2b2

†b2. The diagonalization condition sE2

−E1duv+Vsu2−v2d=0, together with the normalization con-
dition u2+v2=1, uniquely determine the transformation co-
efficientsu and v, and the eigen-energies read accordingly

Ẽ1=E1u
2+E2v2+2Vuv and Ẽ2=E1v2+E2u

2−2Vuv. Simple

algebra leads toLna1=s−Ẽ1dnub1−s−Ẽ2dnvb2 and Lna2

=s−Ẽ1dnvb1+s−Ẽ2dnub2. Notice that in the wideband ap-
proximation for the electrode reservoirs,Ca

s±ds±Ld=Gana
s±d

3s−Ld. We thus have

AL
s±d = GLfunL

s±dsẼ1db1 − vnL
s±dsẼ2db2g,

AR
s±d = GRfvnR

s±dsẼ1db1 + unR
s±dsẼ2db2g. s15d

With this result, the explicit form of the master equation can
be easily obtained for arbitrary offset of the dot levelssE1
and E2d. To compare with the Bloch equations derived by
Gurvitz and Prager,7 consider the special configuration of the
two dot levels in resonance, i.e.,E1=E2;E0. For this setup,

u=−v=1/Î2 andẼ1,2=E07V. Moreover, in the large-bias-

voltage limit mL@ Ẽ2,Ẽ1@mR, we simply haveAL
s+d=GLa1,

AL
s−d=0, AR

s+d=0, andAR
s−d=GRa2. Substituting them into Eq.

s7d, an explicit form of conditional master equation is ob-
tained as

ṙsnd = − iLrsnd −
1

2
hfrsndGLa1a1

† + a2
†GRa2rsnd − a1

†rsndGLa1

− GRa2rsn−1da2
†g + H.c.j. s16d

In the electron number representationhu1l, u2l, u3l, u4lj, which
correspond to, respectively, the states of no electron in the
two dots, one electron in the leftsrightd dot, and one electron
in each dot, Eq.s16d can be precisely recast to the result
derived in Ref. 7, where the quantum coherence nature be-
yond the classical rate equation was particularly emphasized.

D. Single-level system in the presence of charging effect

The above examples do not involve many-electron Cou-
lomb interaction. In this subsection, we consider the simplest
example of transport through a single-level system in the
presence of the Coulomb charging effect. The system Hamil-
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tonian readsHS=omfE0+sU /2dnm̄gnm. Here the indexm la-
bels the spin-ups“↑” d and spin-downs“↓” d states, andm̄
stands for the opposite spin orientation. The electron number
operatornm=am

†am and the Hubbard termUn↑n↓ describe the
charging effect. Obviously, the reservoir correlation function
is diagonal with respect to the spin indices, i.e.,Camn

s±d std
=dmnCamm

s±d std. We thus have

Aam
s±d = Camm

s±d s±Ldam = Camm
s±d f7sE0 + Unm̄dgam. s17d

Moreover, for either spin-up or spin-down electrons, the
spectral functionsCamm

s±d s±Ed are identical to Eq.s10d. For the
present system, the four basis states can be chosen asu1l
= u00l↑↓, u2l= u10l↑↓, u3l= u01l↑↓, and u4l= u11l↑↓. Also in the
limiting case of zero temperature and large bias voltage
smL@E0+U.E0@mRd, inserting Eq.s17d into Eq. s7d and
carrying out the matrix elements associated with the above
four basis states, we obtain

ṙ11
snd = − 2GLr11

snd + GRr22
sn−1d + GRr33

sn−1d, s18ad

ṙ22
snd = − sGR + GL8dr22

snd + GLr11
snd + GR8r44

sn−1d, s18bd

ṙ33
snd = − sGR + GL8dr33

snd + GLr11
snd + GR8r44

sn−1d, s18cd

ṙ44
snd = − 2GR8r44

snd + GL8r22
snd + GL8r33

snd, s18dd

whereGa8 =s2pgautau2dE=E0+U. Satisfactorily, Eq.s18d is noth-
ing but the result obtained in Ref. 7 under the same limiting
conditions.

E. Interacting quantum dots with Zeeman splitting

In this subsection, we reconsider the model studied in
Sec. III D, but slightly modify it by allowing for a finite spin
splitting, i.e., HS=om=↑,↓fEmam

†am+sU /2dnmnm̄g, where the
nonzero Zeeman splitting is characterized byE↓−E↑;D.
The transport properties of this system have been studied
recently by Thielmannet al.,16 by applying the real-time dia-
grammatic technique.15 Here we show that our master-
equation approach can solve this nontrivial model in a more
transparent way.

As done previously, we first carry out the commutator
Lam;fHS,amg=−Wmam, where Wm=E↑d↑m+E↓d↓m

+Usn↑d↓m+n↓d↑md. Noting thatfHS,Wmg=0, we haveLnam

=s−Wmdnam. Accordingly,Aam
s±d =Camm

s±d s7Wmdam. In the wide-
band approximation and assuming an energy-independent
coupling strengthGL sGRd with the left srightd electrode, ex-
plicit expressions forAam

s±d are obtained asAL/Rm
s±d =GL/RnL/R

s±d

3sWmdam. In the occupation number representation, i.e.,u1l
= u00l↑↓, u2l= u10l↑↓, u3l= u01l↑↓, and u4l= u11l↑↓, the master
equation Eq.s9d can be easily solved, and via Eq.s8d the
current can be computed quite straightforwardly. In the fol-
lowing, we explicitly carry out the result in different voltage
regimes. For the sake of being able to obtain an analytic
result, we focus on the limiting case of zero temperature.
Moreover, without loss of generality, we assume that the bias
voltage makes the Fermi level of the right electrode always
lower than the quantum dot energy levels during transport.

Therefore, allnR
s+d at the four energies, say,E↑, E↓, E↑+U,

andE↓+U, are zero.
Regime (i). mL.E↑+U ,E↓+U ,E↑ ,E↓.mR. In this high-

bias regime, the corresponding Fermi functions arenL
s+dsE↑d

=nL
s+dsE↓d=nL

s+dsE↑+Ud=nL
s+dsE↓+Ud=1, and the master

equation Eq.s9d reads

ṙ11 = − 2GLr11 + GRr22 + GRr33,

ṙ22 = − sGR + GLdr22 + GLr11 + GRr44,

ṙ33 = − sGR + GLdr33 + GLr11 + GRr44,

ṙ44 = − 2GRr44 + GLr22 + GLr33. s19d

To evaluate the stationary current, only a stationary solution
is required, which are easily obtained as, respectively,r22
=r33=GLGR/ sGL+GRd2, r11=sGR/GLdr22, and r44

=sGL /GRdr22. Then, from Eq.s8d the current is simply ob-
tained as

Ist → `d = eGRsr22 + r33 + 2r44d =
2eGLGR

GL + GR
. s20d

Regime (ii). E↑+U.mL.E↓+U ,E↑ ,E↓.mR. The Fermi
functions in this case readnL

s+dsE↑+Ud=0, nL
s+dsE↑d=nL

s+d

3sE↓d=nL
s+dsE↓+Ud=1, and the resulting master equation is

ṙ11 = − 2GLr11 + GRr22 + GRr33,

ṙ22 = − sGR + GLdr22 + GLr11 + GRr44,

ṙ33 = − GRr33 + GLr11 + GRr44 + GLr44,

ṙ44 = − sGL + 2GRdr44 + GLr22. s21d

Solution of the stationary state reads, respectively,r22
=GLGRsGL+2GRd /2sGL+GRd3, r33=r11+2GL

2sGL+GRd /2sGL

+GRd3, and r44=GL
2GR/2sGL+GRd3. Note that r11=1−r22

−r33−r44, which is irrelevant to the current. Straightfor-
wardly, we obtain the current

Ist → `d = eGRsr22 + r33 + 2r44d =
eGLGRsGL + 2GRd

sGL + GRd2 .

s22d

Regime (iii). E↑+U ,E↓+U.mL.E↑ ,E↓.mR. The Fermi
functionsnL

s+dsE↓d=nL
s+dsE↑d=1 andnL

s+dsE↑+Ud=nL
s+dsE↓+Ud

=0. The corresponding master equation reads

ṙ11 = − 2GLr11 + GRr22 + GRr33,

ṙ22 = − GRr22 + GLr11 + sGL + GRdr44,

ṙ33 = − GRr33 + GLr11 + sGL + GRdr44,

ṙ44 = − 2sGL + GRdr44. s23d

The stationary-state solution of the reduced density matrix
leads to the transport current as
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Ist → `d = eGRsr22 + r33 + r44d =
2eGLGR

2GL + GR
. s24d

Regime (iv). E↑+U ,E↓+U ,E↑.mL.E↓.mR. In this
setup, onlynL

s+dsE↓d=1, and all other Fermi functions are
zero. Similarly, we first carry out the master equation

ṙ11 = − GLr11 + GLr22 + GRr22 + GRr33,

ṙ22 = − sGL + GRdr22 + sGL + GRdr44,

ṙ33 = − GRr33 + GLr11 + sGL + GRdr44,

ṙ44 = − 2sGL + GRdr44. s25d

Then, the stationary transport current is calculated via the
stationary-state solution of the density matrix as

Ist → `d = eGRsr22 + r33d =
eGLGR

GL + GR
. s26d

Remarkably, we have precisely recovered all the Coulomb
plateaus presented in Ref. 16, which go beyond simple intu-
ition and are obtained there by a not easily accessible real-
time diagrammatic technique. This example may shine light
on the convenience of our approach in applications.

IV. CONCLUDING REMARKS

In summary, we have developed an efficient master equa-
tion approach for quantum transport through mesoscopic sys-
tems, and demonstrated its application by a number of ex-
amples. Compared with the previous work by Gurvitz and
Prager,7 the present study not only generalizes the applicable
conditions to finite temperature and arbitrary voltage, but
also identifies the adopted approximation which appears not
very clear in Ref. 7. That is, by treating the electrodes as
sFermid thermal baths, the major approximation adopted in
our derivation is the standard second-order Born approxima-
tion for the couplingstunnelingd Hamiltonian. It is known
that this well-justified approximation makes the resultant
quantum master equation applicable in a large number of
dissipative systemsse.g., in quantum opticsd, provided the
system-bath coupling is not so strong. Favorably, the illus-
trated examples in this paper also show its applicability in
quantum transport. Moreover, the developed master-equation
approach holds the obvious advantages of application conve-
nience and straightforwardness, as well as the ability to ad-
dress many-body correlation, inelastic scattering, and tran-
sient behavior, which are usually difficult issues in
mesoscopic transport.

In comparison with the NGF approach, we found that the
structure of Eq.s8d is in fact identical to theformal expres-
sion of current in terms of nonequilibrium correlation
functions.2 The NGF approach remains a relatively hard task
in searching for particular techniquesse.g., the Feynman dia-
gram or equation of motiond to carry out those correlation
functions. In this sense, the obtained Eq.s8d is nothing but
the explicit Markovian result under the second-order Born
approximation for the tunneling Hamiltonian. In principle,

further systematic corrections are possible along the line of
going beyond the Born approximation, to include higher-
order contributions of tunneling. Finally, we mention that Eq.
s8d can be derived from the formal NGF expression of the
current; however, the present derivation along the line of
Ref. 7 is interesting, and the particular result Eq.s7d from
this unique method is of great value, which contains rich
information and can be conveniently employed, for instance,
to calculate the noise spectrum.9,13,17
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APPENDIX: LEVEL-BROADENING EFFECT

To make the derived formulas Eqs.s7d–s9d more accu-
rately applicable to arbitrary voltage, additional care is
needed as any of the individual system levels is approaching
to the Fermi surface of the electrode. For the sake of descrip-
tion clarity, let us take the single-level resonance system as
an example to highlight the key point. As mentioned previ-
ously, the treatment in Sec. II under the second-order Born
approximation has neglected thelevel-broadeningeffect,
which would cause certain errors in some particular cases.
For instance, current flowing through the resonance system
would be strictly forbidden under thenear-resonancecondi-
tion, i.e., as the resonance levelE0 is a little bit higher than
mL smL.mRd. However, it is well known that a full quantum
treatment will give nonzero current in this situation.2,4 For a
bias voltage such that the resonance levelstogether with its
broadeningd is within the range of the two Fermi levelssi.e.,
mL.E0.mRd, a common result for the resonance current
would be predicted by our master-equation approach and the
NGF-based quantum transport theory. In spite of this, it
would be desirable to remove the drawback ofinaccuracyof
our approach in the near-resonance situation.

To account for the level-broadening effect, we return to
the evaluation ofAam

s±d =onCamn
s±d s±Ldan. Without loss of gen-

erality, we restrict our description to the diagonal caseCamn
s±d

3std=dmnCamm
s±d std. A more general description is straightfor-

ward provided one has clarified the correlation betweenfm

and fn. Using the free-electron-gas model for the electrodes,
Aam

s±d can be expressed as

Aam
s±d = 2o

k

utam,ku2na
s±dsekdE

0

`

dt e±iekte±iLtam. sA1d

In our previous treatment, we have replaced the time integral
2e0

`dt by e−`
` dt, under the spirit of the Markovian approxi-

mation. As a result, the time integration gives rise to ad
function, 2pdsek+Ld, which characterizes energy conserva-
tion for electron transfer between the central system and the
electrodes. Mathematically, this procedure is equivalent to
dropping the imaginarysprincipald part of the integral, and
keeping only the real part. Now notice thate±iLtam describes
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the quantum evolution of theEm statesleveld associated with
the isolated system Hamiltonian. As a standard procedure,
the system level-broadening effect due to coupling with the
electrodes can be implemented by inserting a damping factor
e−Gmt=e−sGLm+GRmdt into the integrand of the time integral.18

After this, by keeping only the real part of the integral and
adopting the typical wideband approximation for the elec-
trodes, we have

Aam
s±d = GamE dek

2p
ãamsek + Ldna

s±dsekdam. sA2d

Here the standard Lorentzian spectral density function reads
ãamsv+Ld=2Gm / fsv+Ld2+Gm

2g. Formally introducing
Nam

s±ds−Ld;edeksek/2pdãamsek+Ldna
s±dsekd, we reexpress

sA2d in a very compact form as

Aam
s±d = GamNam

s±ds− Ldam. sA3d

Elegantly,Nam
s±ds−Ld can be regarded as the counterpart of the

Fermi functionna
s±ds−Ld after accounting for the level broad-

ening. Combining Eq.sA3d with Eqs. s7d–s9d, we complete
the generalization of the formalism.

As an illustrative application of the generalized formal-
ism, we reconsider the transport through thesfreed multilevel
system. Straightforwardly, the current expression of Eq.s14d
becomes

I = eo
m

GLsEmdGRsEmd
GLsEmd + GRsEmd

3E dek

2p
ãamsek − Emd

3fnLsekd − nRsekdg. sA4d

This is the well-known formula for the resonant tunneling
current, which is valid for arbitrary voltage including the
near-resonance situation.
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