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Quantum master-equation approach to quantum transport through mesoscopic systems
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For quantum transport through mesoscopic systems, a quantum master-equation approach is developed in
terms of compact expressions for the transport current and the reduced density matrix of the system. The
present work is an extension of Gurvitz's approach for quantum transport and quantum measurement, namely,
to finite temperature and arbitrary bias voltage. Our derivation starts from a second-order cumulant expansion
of the tunneling Hamiltonian; then follows the conditional average over the electrode reservoir states. As a
consequence, in the usual weak-tunneling regime, the established formalism is applicable for a wide range of
transport problems. The validity of the formalism and its convenience in application are well illustrated by a
number of examples.
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I. INTRODUCTION The remainder of the paper is organized as follows. In

Quantum transport through mesoscopic nanostructures€c- 1, stgrtmg wnh th(nT second-order cumylant expansion of
has revealed many impressive features associated with the tunneling Hamiltonian, _formal expressions for the trans-
number of unique effects such as quantum interferences, digort current and the associated master equation are derived.
crete levels, and many-body correlatidri®epending on the Section Ill is devoted to a number of examples to illustrate
specific systems or problems under study, theoretical formathe application of the established formalism. Finally, in Sec.
isms have been developed such as the Landauer-Biittikéy concluding remarks on the approximations adopted and
theory and the nonequilibrium Green's functidfNGF)  the connection with the NGF approach are presented. In the
approach:? However, generally speaking, neither of them Appendix, a refinement of the cumulant second-order ap-
implies universal simplicity in practice, for instance, in treat- proximation is self-consistently made by including the level
ing mesosopic transport in the presence of many-electroproadening effect.

Coulomb interactions and inelastic scattering with phonons.

In particular, it is even more difficult to describe the transient

processesi.e., time-dependent transport phenomena Il. FORMALISM

In some particular cases, a relatively simpler method that
is able to address these issues is the rate—equatiop
approach®~’ Originally, the “classical” rate equation is in a
certain sense of phenomenological fotrhater efforts in-

Consider the transport setup schematically shown in Fig.
which is described by the following Hamiltonian:

- T i
clude its derivation andjuantumgeneralization in the con- H= HS(awau) + ER% €apkauiak
text of the resonant tunneling system, based on the NGF omn
quantum kinetic theory,as well as its modification to de- + > (taﬂkalda#ka H.c). (1)
scribe quantum coherence which typically exists in mesos- @=LR ik

copic systems$:€ In particular, amicroscopic derivatiorstart- . L )

ing with the many-particle wave function has been presentefis is the (mesoscopic system Hamiltonian, Wh'Ch,Ca“T be
by Gurvitz and PragerHowever, obvious drawbacks of this rather generale.g., including many-body interactipna,
approach are its limited validity conditiorge., large bias (&,) is the creationannihilation operator of electrons in a
voltage and zero temperatiiyevhich greatly restrict the ap- state labeled by, which labels both the multiorbital and
plicability. Also, they were unable to derive a general for-distinct spin states of the system. The second term is the
mula in a “system-Hamiltonian-free” form, which means the Hamiltonian of the two electrodes, which are also termed the
inconvenience that one has to proceed with a derivation fronemitter(left electrode and collector(right electrodg¢in some

the very beginning for every specific system in practice. Inparts of this work as usual. The third term describes tunnel-
this work, we extend Gurvitz’'s approach to finite temperatureing between the electrodes and the system. In this paper the
and arbitrary bias voltage, as done in our recent work orelectrode reservoir electrons are also given the indebo
quantum measuremehit:® In particular, we will establish characterize their possible correspondence with syeem
compact expressions for the transport current together witstates For instance, this will be the typical situation in spin-
the reduced density matrix, which can serve as a convenieitependent transport.

starting point to study a variety of mesoscopic transport Introducing the reservoir operators, == - g2kl auk0auk
problems. =f_,+fr. we reexpress the tunneling Hamiltonian as
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ﬂ ,,,,,,,,,,,,,,,,,,,, record of electron numbers arriving at the colled@®mitted
L from the emitter and passing through the mesoscopic system
in between the two electrodesWe therefore classify the

eV Hilbert space of the electrodes as follows. First, we define

1 the subspace in the absence of electrons arriving at the col-
lector asB©, which is spanned by the product of all many-
left 2 ﬂ particle states of the two isolated reservoirs, formally de-
3 I noted asB® =spar|¥ )®|¥g)}. Then, we introduce the
lead Hilbert subspac®™ (n=1,2,..), corresponding tm elec-
4

trons arriving at the collector. The entire Hilbert space of the
two electrodes i8=a,B™.
With the above classification of the reservoir states, the

right average over states in the entire Hilbert spBde Eq. (3) is
replaced with states in the subsp&‘®, leading to acondi-
lead tional master equation

t
b(n)(t)z_igp(”)(t)—f dr Trgm[ L' (H)G(t,7)
0

X L' (NGt Dpr(t)]. (4)

Here p"(t)=Trgm[pr(t)], which is the reduced density ma-
trix of the systemconditionedby the number of electrons
FIG. 1. Schematic setup for electrical transport through a mul-arriving at the collector up to time Now we transform the
tilevel mesoscopic system. Liouvillian operator product in Eq4) into the conventional
Hilbert form:

H =2 (alF,+H.c). 2 L'OGE DL (DG, Dpr(t) = [H ()G, DH (DG (t, Dpr(t)
. —G(t,H'(DG'(t, )

X pr(H' (D]

+H.c.=[l-Ill]+H.c. (5)

Then, regarding this tunneling Hamiltonian as a perturbation,
the second-order cumulant expansion leads us to a formal
equation for the reduced density matfix

To proceed, two physical considerations are further imple-
mented as follows(i) Instead of the conventional Born ap-
proximation for the entire density matrig(t) = p(t) ® pg,
(3 we propose the ansajz(t) =30 (1)@ pl, where p{" is
the density operator of the electron reservoirs associated with
n electrons arriving at the collector. With this ansatz for the
density operator, tracing over the subspBt® yields

t
b(t)=—iﬁp(t)—J dr(L" ()G, DL (DG (t, D)p(b).
0

Here the Liouvillian superoperators are defined &s--)
=[Hs, (-], £'(--)=[H",(:-)], and G(t,7)(--)=GC(t,7)
X (---)G'(t,7) with G(t,7) the usual propagatofGreen’s
function associated with the system Hamiltoniafy. The Ty [11= > {Trg[F! (H)F,(7)pd] x [aMG(t,T)aIGT(t,T) o]
reduced density matrix p(t)=Trg[p(t)], and {((---)) v .

=Trg[(--*)pg] With pg the density matrix of the electron res- T\ () t + ")
ervoirs. Notice that Eq.3) is nothing but an alternative form Tl FL(OF,(7)ps"] X (8,6 Da,G (6, 7)™ ]},
of the quantum master equation under the second-order Born (6a)
approximation. The underlining assumption is that the tun-

neling Hamiltonian is not strong enough, which makes theTer)[”]:E{TFB[f[,,(T)pfgn)fL,L(t)]

second-order cumulant expansion reasonable. It is known v

that this approximation applies well to most dissipative sys- T Mt Mt
tems in quantum optics. Noticeably, for most transport sys- X [G(t,n)a,G'(t,7)p"™a,] + Trelf (7)pg"fL,(1)]

tems, weak tunneling is also the typical regime where vari-
ous forms of golden-rule-type theories are adopted. In the
strong-tunneling regime, a special technique is required,
which goes beyond the present second-order Born approxi-
mation, and other golden-rule-type theories.

The trace in Eq(3) is over all the electrode degrees of
freedom, leading thus to the equation of motion of the
conditional reduced density matrix of the system. To de-

scribe the transport problem, we should keep track of thédere we have utilized the orthogonality between states in
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different subspaces, which in fact leads to the term selectiotion is started with the physical observation that the current
from the entire density operatgr. (i) Due to the closed can be determined by the probability distribution function
nature of the transport circuit, the extra electrons arriving ap(n t)="Tr[p™(t)], in terms ofI(t)=edN(t)/dt, whereN(t)
the collector(right reservoiy will flow back into the emitter = np(n,t). Properly treating the summation overand
(left reservoij via the external circuit. Also, the rapid relax- making use of the cyclic property under the trace, minor

ation processes in the reservoirs will quickly bring the résery|gebra based on E7) straightforwardly leads to
voirs to the local thermal equilibrium state determined by the

chemical potentials. As a consequence, after the procedure

- - (n)
(i.e., the state selectiprone in Eq.(6), the electron reser- 1(t) _e% nTrp™(t)]
voir density matricespg‘) and pg‘ﬂ) should be replaced by
) . Tibri - i e
pg » I-€., the local thermal equilibrium reservoir state, which == 1@ AL = ADa")p(t) + Hocl. 8
leads the reservoir correlation functions in H) to be, 22;:’ (@A, ~ Arud,) (1) | ®

respectively, (fT (f,(7)=C) (t-7) and (f,,(Of! (7))
:Ciy_}iv(t-T). Here (---) stands for Té[("')pg))], with the  Here the unconditiqnal density matrjx:Enp(”) sa_tisfies an
usual meaning of thermal average. Obviou$l§IL(t)Fv(r)> even simpler equation, which can be easily derived by sum-
=Ct-7)=3 0 (CL) (t-7) and (F,(O)F|(7)=Cl)t-7  Ming up Eq.(7) overn,
ZEQ:,_'RC(Q_;V(t— 7). 1
Under the Markovian approximation, the time integral in p=—iLp-=> {[aTyAEL_)P - pA;f)] +H.cl. 9)
Eq. (4) is replaced b;éffwdr. This approximation consider- 2
ably simplifies the result. For instance, substituting the first
term of Eq.(6) into the time integral of Eq(4), we have Equations(8) and (9) together with Eq.(7) constitute the
[”.d TC(+)(t— T)aﬂ[e—iﬁ(t—r)az]p(n)(t): aﬂ[C“)(— L)aI]p(“)(t). prlnqlpal re;ult of this work, which can serve as a convenient
Other terms can be similarly integrateof“éut, leading to starting point to compute the transport current under a wide
range of conditions, such as in the presence of many-body
: . 1 _ ~ Coulomb interactions, at finite temperatures, and for arbi-
p"=—iLp" - 52 {[al AL p™ + pWADa! - ATV, trary voltages. Moreover, the current expression and the as-
m sociated master equation are free from state representation
p<n—1)aL_ alp(nﬂ)A(R:)L] +H.c}. (7) and the specific system Hamiltonian, which therefore holds
the merit of unification in its applications. For instance, for
HereAf;=EVCfliy(i£)av andAﬁfEEazL,RAS;. The spectral quantum transport through an interacting system, which is
functionsCfﬁv(iﬁ) are defined in terms of the Fourier trans- usually a challenging problem, one can first diagonalize the
form of the reservoir correlation functions, i.&c® (+£)  isolated system Hamiltonian and then do the Liouvillian op-
= [* dt c® (H)e'Lt, We would like to remark herg chat this eration easily in the eigenstate representation. In the follow-
L GRY ing, as application of this approach we only illustrate a num-
rlpler of simple examples, and retain the systematic
applications to more interesting problems to be the subject of
g)rrthcoming works.

_at (MaAH) _ o)
uP AL;L AR,U«

time integral leads to “exact” energy conservation for elec
tron transfer between the electrodes and the central syste
This “conservation law” would cause errors in the near-
resonance bias. For instance, at zero temperature and f
electrode Fermi levésd) lower than but very close to a certain

system level, the present energy conservation law does not IIl. ILLUSTRATIVE APPLICATIONS

permit any electron occupation on the concerned system

level. Nevertheless, the NGF-based quantum kinetic theory A. Single-level system

allows occupation under the same conditfdFhe underlying As a preliminary application of Ed7), let us consider the
reason is the neglect of level broadening in present treafagonant transport through a single-level system. Under the
ment, whose inclusion is referred to the Appendix. wideband approximation for the electrodes, the reservoir

Th?” dependen_ce of Eq7) is a_nalogous to the usual rate electron correlation functions read C(i)(t—r)
equation, despite its formal matrix or operator feature. Eacrlt 25 tiet-rp®) h ) ~N_ . tha Fermi
term of Eq.(7) can be similarly interpreted as for the con- __| a'_ k& Ne (&), w ((_a)re N, (6)=n,(g is the Fermi
ventional ‘c-number” rate equation. Compared with the distribution function, and,"(&)=1-n.(€/). Then the spec-
Bloch equation derived by Gurvitz and Pragen Eq. (7)  tral function can be easily carried out as
p™ is also coupled tp™? which is absent from Ref. 7. This

feature originates from the general nature that &jis es- Ay =CP(xL)a=T 5 (Epa. (10
tablished under nonzero temperature and arbittaog nec-
essarily larggbias voltage. Here,I' ,=2mg,lt,/% with g, the density of states of the

With the knowledge op™(t), one is readily able to com- electrode. In the special case of zero temperature and large
pute the various transport properties, such as the transpdpias voltageu >Ey> ug, which is in fact the applicable
current and noise spectruth Remarkably, we can derive a condition of Gurvitz and Prager’s approattve simply have
compact expression for the current which is only related toA(L+)=FLa, A(L')=0, A(R')=FRa, andA(;)=0. Substituting these
the unconditional density matrip(t)==,p™(t). The deriva- into Eq.(7) yields
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e i 1 o ) (a - nondi_agonal elements of the dens_ity matrix, V\_/hich have no
pV==iLp" - 5{[FRa ap"+T'pMaa’ -T'ia’pa classical counterparts, will appear in the equations of motion
and play an essential role.
- T'rap™Pa’]+H.c}. (11 The Hamiltonian of the coupled quantum dots reatis

—E At T T f ;
To obtain the matrix element form of this equation, let us—E1a1a1+E2a2a2+Q(ala2+a2al), where each dot contains a

choose the emptglevel) state|0) and the occupied staf) single resonant levet,; (E,), and the two dots are coupled

as the representation basis. Straightforwardly, by computin§Y - In principle, for any system the master equatinor
the matrix elements of the terms of Ed1) one by one, we 9) can be.expressed and solved in the system eigenstate
representation. Here, for the coupled quantum dots, we

obtain would like to present a more elegant method in terms of the
P = —T p + [l language of the Bogoliubov transformation, to explicitly
carry out the superoperatomf;. To diagonalizeHg, the
PV = —TrplV + T pI. (12)  standard Bogoliubov transformation defines a pair of new

electron operators as followd,=ua;+va, and b,=ua,
This is the result derived by Gurvitz and Prager under the ;5. The desired diagonalized Hamiltonian reaéfs
limits mentioned abové. :E1b1b1+ Ezbgbz. The diagonalization condition (E,
-E)uv +Q(u?-v?) =0, together with the normalization con-
B. Multilevel system dition u?+v2=1, uniquely determine the transformation co-
Now we consider the transport through a multilevel sys-efficientsu andv, and the eigen-energies read accordingly
tem as shown in Fig. 1, under arbitrary voltage and at finiteE, = E,u?+Ev?+2Quv and E,=E;v%+E,u?-2Quv. Simple

temperature. The system Hamiltonian simply redds algebra leads toE“a1=(—El)”ubl—(—Ez)”vbz and L"a,

=>N_E_ a'a,. Also, let us assume that the level separation is_, ~ ~ : . .
pn=1=nu ! =(—-E, )" —-E )N -
much larger than the characteristic level widths, il&, (=Ey)"wb, +(~E,)"ub,. Notice that in the wideband ap

—E, ,|>T,I'r, which leads to the correlation function Proximation for the electrode reservoir 2 (L)=T, 0
c (t) = 5WC(;1M(t). This assumption neglects the interfer- *(~£)- We thus have

ence effect of electron tunneling through different levels,
which is significant only in the castEﬂ—EH_1|<F|_,FR.
Similarly to a single-level system, we haveﬂx(;; . e s
=T'x(E,)n%'(E,)a,. For this simplified model, the reduced A =THvng (Epb, + un (Epb,]. (15)
system density matrix is the direct product of the individualyy;, this result, the explicit form of the master equation can
single-level density matrix, i.ep=®,.,p,, and the steady- e eagily obtained for arbitrary offset of the dot levélis
state solution of the single-level density matrix can be easily, 4 E,). To compare with the Bloch equations derived by
obtained a$M=pM|1)ﬂ.(1|+(1—pM).|O)M<O|, where[1), (10))  Guritz and Pragetconsider the special configuration of the
stands for the occupie@inoccupiedl state of theuth level, o dot levels in resonance, i.€,=E,=E,. For this setup,
and the occupation probability, reads u=—v=1/\2 and~El,2: Ey+ Q). Moreover, in the large-bias-
_n(E)I'(E,) + nx(E)TR(E,) 13) voltage limit u, >E,,E; > ug, we simply haveA™” =T a,
Pu= T (E,) + T(E,) ' A =0, AY'=0, andAL'=Ta,. Substituting them into Eq.
o ) @) ] (7), an explicit form of conditional master equation is ob-
Substituting the obtalneel,;# andp into the current expres- tzined as

sion EqQ.(8), we arrive at an expression for the steady-state

A(Li) =I'[u n(Li)(El) b;-v nf_i)(’éz) b, ],

. _ 1
current as P ==iLp" - {1 ara] + all g™ ~ alp T 2,
I' (E)IR(E,)
| = —H———Fn (E,) —-nx(E,)]. 14 _
e% I (E,) +FR(EM)[nL( W~ R(E,)] (14 -Trap"Yal] +H.c}. (16)

This result clearly manifests the typical steplik& charac- In the electron number _representat{d)l), 12),3), 140, which
Jporrespond to, respectively, the states of no electron in the

teristics, where each step corresponds to involving a ne q | in the Ieiiaht d d I
level in the conduction by increasing the bias voltage, withWO dots, one electron in the lefight) dot, and one electron

the standard resonant curresit, I'n/(I', +'g) in each dot, Eq(16) can be precisely recast to the result
LREATLTRE derived in Ref. 7, where the quantum coherence nature be-

yond the classical rate equation was particularly emphasized.
C. Noninteracting coupled quantum dots

In the above multilevel system the quantum coherence or
nature of quantum superposition of system states is not mani-
fested, and the result can be obtainedacl&ssicalrate equa- The above examples do not involve many-electron Cou-
tions. To reveal more clearly thguantumnature of the de- lomb interaction. In this subsection, we consider the simplest
veloped formalism, in this subsection we consider transporéexample of transport through a single-level system in the
through a system of coupled quantum dots.this case, the presence of the Coulomb charging effect. The system Hamil-

D. Single-level system in the presence of charging effect
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tonian readsHs== [Eo+(U/2)n;In,. Here the indexu la-  Therefore, aIIn(R” at the four energies, saf;, E|, E;+U,
bels the spin-up(*1”) and spin-down(*|”) states, andu  andE +U, are zero.
stands for the opposite spin orientation. The electron number Regime (i) u >E;+U,E +U,E;,E > ug. In this high-

operatomM:aLaM and the Hubbard terrdn;n, describe the bias regime, the corresponding Fermi functions ra{Fé(ET)
charging effect. Obviously, the reservoir correlation funCti0n=n(L+>(El)=n(L+)(ET+U)=n(L+)(El+U)=1, and the master

+

is diagonal with respect to the spin indices, i.@.(d >V(t) equation Eq(9) reads
— (#) H
—5MCCW(I). We thus have )
@) _ ) @) p11= = 2’ p11+ Trpoo+ Trpss,
Au=Copp(tL)a, =Cp [+ (Eg+Unpla,.  (17)

; ; - 0,,=—(Tr+ + +
Moreover, for either spin-up or spin-down electrons, the p22= = (Pr* T)pazt Tiprs + Troas,

spectral functionﬁf)ﬂ(iE) are identical to Eq(10). For the

present system, the four basis states can be choséh as p33=~ (Fr*+Tpss+ I'ip1i* Trpaa,
=|00);,, [2)=]10);}, [3)=[01);|, and|4)=|11),,. Also in the _
limiting case of zero temperature and large bias voltage Paa= = 2A'rpaa+ T p2a+ T’ pas. (19

(n>Eo+U>Eq>ppg), inserting Eq.(17) into Eq.(7) and 14 evaluate the stationary current, only a stationary solution
carrying out the matrix elements associated with the abovg required, which are easily obtained as, respectively,

four basis states, we obtain =p3z=I' Ir/ ([ +TR), p11=(I'r/T')p22, . a”,d Paa
P(lnl) - _ ZFLP(lnl) +FRP(2”2_1) +FRP(3'},_1)- (183 —(_FL/FR)pZZ. Then, from Eq.(8) the current is simply ob-
tained as
ooy == (Tr+T)pdy +T o} +Throln ™, (18D 2el'\ I
pz2 =~ Tt Tp2z * Topi + Trpes (18D [(t — ) = el'R(p22+ p3a+ 2p44) = r +LFR' (20)
L R
0= To+T) oW +T, oW+ 01 180
Pz =~ (Tr* TUpss + Tipn +Tepaa ™, (180 Regime (i) E,+U> y, > E1+)U1EMEL>,U«R-< '!'he Fer(rr)wi
. functions in this case read”(E,+U)=0, n(E,)=n"
(M — _ oz 7 ML ) Lt L VT L
Pag =~ rpag + Tip2s +Tipzs, (18d ><(El)=n(L+)(EL+U)=1, and the resulting master equation is
wherel“;:(27rgC,|ta|2)E:EO+U. Satisfactorily, Eq(18) is noth- o _op r r
ing but the result obtained in Ref. 7 under the same limiting p11=" 2l put Lrp22t L ross,
conditions.

p22=—(Cr+T')poa+ T p11+ Trpas,

E. Interacting quantum dots with Zeeman splitting

. . . o p33=—T'rp3a+ I'Lp11+ Trpas+ T'Lpaa,
In this subsection, we reconsider the model studied in

Sec. Il D, but slightly modify it by allowing for a finite spin s
splitting, i.e., HS:EM:M[EMaLa“(U/2)nﬂn;], where the _ pas (_FL+2FR)p44+FLp22' _(21)
nonzero Zeeman splitting is characterized By-E,=A.  Solution of the stationary state reads, respectively,
The transport properties of this system have been studiedl [r(I' +2R)/2( +TR)%,  paz=pra+ 220 +TR)/2(T,
recently by Thielmanet al.® by applying the real-time dia- +I'r)°, and p,,=TZ'r/2(I +TR)% Note that p;;=1-p,,
grammatic techniqu® Here we show that our master- —ps3—pas Which is irrelevant to the current. Straightfor-
equation approach can solve this nontrivial model in a morevardly, we obtain the current
transparent way.

As done previously, we first carry out the commutator I(t — ) = el'R(pan+ paz+ 2pas) :w
La,=[Hg,a,]=-W,a,, where  W,=E;5,,+E;4,, (' +TR)
+U(n;8,,+n,8;,). Noting that[Hs,W,]=0, we haveL"a, (22

— (W ; @@ (= ide-
(-W,)"a,. Accordingly, A, )=C.. (¥W,)a,. In the wide Regime (i) E; +U E, +U> ju >, ,E, > g The Fermi

band approximation and assuming an energy-mdepende?t i OEN=n(E) =1 andn™(E.+U)=n®(E, + U

coupling strengt, (T's) with the left (right) electrode, ex- runctionsn "(E)=n"(E;)=1 andn "(E,+U)=n"(E, +U)

plicit expressions forA(;; are obtained asA(ng:FL,RnSé =0. The corresponding master equation reads

X(W,)a,. In the occupation number representation, i®., p11=— 2 p11+ Trpop+ Trpas,
=|00);;, [2)=]10);,, [3)=]01);|, and [4)=|11),,, the master
equation Eq.(9) can be easily solved, and via E@) the p22=—Trpoo+ [ p1+ (T +TR)pas,

current can be computed quite straightforwardly. In the fol-
lowing, we explicitly carry out the result in different voltage
regimes. For the sake of being able to obtain an analytic
result, we focus on the limiting case of zero temperature. paa=— 2T, +T) (23)
Moreover, without loss of generality, we assume that the bias Pas= L™ L RIPas:

voltage makes the Fermi level of the right electrode alwaysThe stationary-state solution of the reduced density matrix
lower than the quantum dot energy levels during transportieads to the transport current as

p33=—Lrpaz+ T'ip1n+ (T + Tr)paa,
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2el I'g further systematic corrections are possible along the line of
m- (24) going beyond the Born approximation, to include higher-
order contributions of tunneling. Finally, we mention that Eq.

Regime (iv) E;+U,E+U,E;>u >E >ug. In this (8) can be derived from the formal NGF expression of the
setup, onlyn(l_*)(El):l, and all other Fermi functions are current; however, the present derivation along the line of

I(t — o) = el'R(p22+ p3a+ pas) =

zero. Similarly, we first carry out the master equation Ref. 7 is interesting, and the particular result Eg). from
] this unique method is of great value, which contains rich
p11=~T'Lp1a+ T'ip2o+ Trpoo+ I'rpsa, information and can be conveniently employed, for instance,

to calculate the noise spectrifii1?
p22=— ('L +TR)poo+ (I + TR)paa,
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el\T APPENDIX: LEVEL-BROADENING EFFECT
L* R

. 26
I +I'g (26) To make the derived formulas Eqg&)—(9) more accu-

. rately applicable to arbitrary voltage, additional care is
lalfeearﬂgrk?ebslg’n\féedf}ﬁvser;relcési%if; oxéegeed grl:éh;rgﬂgl?nr?u%eeded as any of the individual system levels is approaching
P P . . go bey P o the Fermi surface of the electrode. For the sake of descrip-
ition and are obtained there by a not easily accessible reaj-

. . . : . -~ .~ Tion clarity, let us take the single-level resonance system as
time diagrammatic technique. This example may shine ligh - . ) .

. . S an example to highlight the key point. As mentioned previ-
on the convenience of our approach in applications.

ously, the treatment in Sec. Il under the second-order Born
approximation has neglected thHevel-broadeningeffect,
IV. CONCLUDING REMARKS which would cause certain errors in some particular cases.

tion approach for quantum transport through mesoscopic sydvould be strictly forbidden under theear-resonanceondi-
tems, and demonstrated its application by a number of exion, i.e., as the resonance le\®] is a little bit higher than
amples. Compared with the previous work by Gurvitz andtt (u > ur). However, it is well known that a full quantum
Prageﬁ the present Study not On|y genera”zes the app|icab|éreatment will give nonzero current in this Situati%)‘hFOI’ a
conditions to finite temperature and arbitrary voltage, butdias voltage such that the resonance lgt@jether with its
also identifies the adopted approximation which appears ndiroadeningis within the range of the two Fermi leve(se.,
very clear in Ref. 7. That is, by treating the electrodes agt.>Eo>ugr), @ common result for the resonance current
(Ferm) thermal baths, the major approximation adopted inwould be predicted by our master-equation approach and the
our derivation is the standard second-order Born approximaNGF-based quantum transport theory. In spite of this, it
tion for the coupling(tunneling Hamiltonian. It is known Would be desirable to remove the drawbackmafccuracyof
that this well-justified approximation makes the resultantour approach in the near-resonance situation.

quantum master equation app|icab|e in a |arge number of To account for the |eve|'br0adening eﬁeCt, we return to
dissipative systemge.g., in quantum opti¢s provided the the evaluation oﬂfkﬁycﬁfﬁy(tﬁ)av- Without loss of gen-
system-bath coupling is not so strong. Favorably, the illuserality, we restrict our description to the diagonal céﬁj}w
trated examples in this paper also show its applicability inx(t):ﬁwc(;)ﬂ(t). A more general description is straightfor-
quantum transport. Moreover, the developed master-equatiagard provided one has clarified the correlation betwégn
approach holds the obvious advantages of application convemdf,. Using the free-electron-gas model for the electrodes,
nience and straightforwardness, as well as the ability to adAS> can be expressed as

dress many-body correlation, inelastic scattering, and tran-
sient behavior, which are usually difficult issues in
mesoscopic transport.

In comparison with the NGF approach, we found that the
structure of Eq(8) is in fact identical to thormal expres- In our previous treatment, we have replaced the time integral
sion of current in terms of nonequilibrium correlation 2fgdt by /7 dt, under the spirit of the Markovian approxi-
functions? The NGF approach remains a relatively hard taskmation. As a result, the time integration gives rise t@ a
in searching for particular techniquésg., the Feynman dia- function, 27&(e+ L), which characterizes energy conserva-
gram or equation of motignto carry out those correlation tion for electron transfer between the central system and the
functions. In this sense, the obtained E8). is nothing but  electrodes. Mathematically, this procedure is equivalent to
the explicit Markovian result under the second-order Borndropping the imaginaryprincipa) part of the integral, and
approximation for the tunneling Hamiltonian. In principle, keeping only the real part. Now notice tkéf“aﬂ describes

[(t — ) = el'r(po2+ p3a) =

AS) =22 [t (&) J dieiadetifly,. (A1)
k 0
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the quantum evolution of the,, state(level) associated with
the isolated system Hamiltonian. As a standard procedure, .
the system level-broadening effect due to coupling with th&legantly,N(a‘li(—E) can be regarded as the counterpart of the
electrodes can be implemented by inserting a damping factdrermi functionn(;)(—[,) after accounting for the level broad-
e Tul=e"MLu* TRt into the integrand of the time integrdl.  ening. Combining Eq(A3) with Egs. (7)—9), we complete
After this, by keeping only the real part of the integral andthe generalization of the formalism.
adopting the typical wideband approximation for the elec- As an illustrative application of the generalized formal-
trodes, we have ism, we reconsider the transport through tfiee) multilevel
system. Straightforwardly, the current expression of @d)
becomes

() = () (=
A= TNy (= L)ay,.

ap' Yap

(A3)

(A2) I' (E )TR(E

_ u W
= e% TUE)+TRE,) ) 2m

X[n (&) —nr(ed]. (A4)

introducing  Thjs is the well-known formula for the resonant tunneling
reexpress current, which is valid for arbitrary voltage including the
near-resonance situation.

dei.

de
AL =T, f Bt LN (e)a,.
" 7 w 13 aa,u(fk_ E,u)

2

Here the standard Lorentzian spectral density function reads
éw(w+/;):ZFM/[(w+£)2+Fi]. Formally
NG (=£) = fde( e/ 2ma,, (et LN (e),  we

(A2) in a very compact form as
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isfy a master-type equatiom,,=+iLa,-Ra,, and the second
(damping term coincides precisely with the one of E§). This
treatment can be termed a self-consistent Born approximation.
However, the simple implementation of a damping factor as
done in the present Appendix will be more convenient in prac-
tice.



