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Thermal and Electrical Currents in Nanoscale Electronic Interferometers
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We theoretically study thermal transport in an electronic interferometer comprising a parallel
circuit of two quantum dots, each of which has a tunable single electronic state which are connected
to two leads at different temperature. As a result of quantum interference, the heat current through
one of the dots is in the opposite direction to the temperature gradient. An excess heat current
flows through the other dot. Although locally, heat flows from cold to hot, globally the second law
of thermodynamics is not violated because the entropy production associated with heat transfer
through the whole device is still positive. The temperature gradient also induces a circulating
electrical current, which makes the interferometer magnetically polarized.

PACS numbers: 85.35.Ds, 73.63.Kv, 73.40.Gk

Introduction. Manipulation of quantum coherence and
interference in a controllable manner is of special interest
in nanoscale electron devices [1]. The coherence of res-
onant electron tunneling through a quantum dot (QD)
has been demonstrated by using Aharonov-Bohm inter-
ference [2]. Moreover, such interference effects have en-
abled the realization of a phase sensitive probe of the
anomalous transmission phase [3], dephasing effects [4],
and many-body correlation effects [5] in quantum coher-
ent transport through a QD. Very recently, a quantum
interferometer based on two QDs has been fabricated and
control of coherent electron transport by varying gate
voltages of each dot [6] has been demonstrated. In such
a double dot interferometer, theoretical studies have fo-
cused on the subjects of resonant tunneling [7], cotunnel-
ing [8], many-body correlation effect [9], magnetic polar-
ization current [10], and two-electron entanglement in the
context of quantum communication [11]. Also, there has
been considerable interest in thermal transport through
nanoscale devices [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
and possible “violation” of the second law of thermody-
namics for small colloidal systems over short time scales
[22], small quantum systems [23], and nanoscale electric
circuits [24].

In this paper, we consider the thermal transport in-
duced by a temperature gradient across a double dot in-
terferometer (see Fig. 1). The thermal transport could
be manipulated in a controlled manner such as vary-
ing gate potentials. In the interferometer, electric cur-
rent conservation does not require that the total current
through the interferometer should be greater than the
local current through each electron path. The quantum
interference of tunneling electrons results in a circulat-
ing electric current which can make the magnetic states
of the device be up-, non-, or down-polarized. It was
recently shown that the magnetic polarization current
exists at a finite bias between the leads [10]. In this
study, the temperature difference between the leads can
give rise to a circulating electric current without an ap-
plied bias. Furthermore, it is found that due to quantum
interference the heat current flows in the opposite direc-
tion to the temperature drop through one dot while the
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FIG. 1: (color online) A quantum interferometer based on two
quantum dots. Both dots are tunnel-coupled to the left and
right leads. The tunneling amplitudes between the dots and
the leads are denoted by Γ1 and Γ2. Each lead is described by
an equilibrium Fermi-Dirac distribution with temperature TL

and TR and electrochemical potential µL and µR. The energy
level position in each dot is measured as ε1 and ε2 relative to
the Fermi energy in the leads.

excess heat current flows through the other dot. The be-
haviors of the local heat currents show the existence of
a circulating heat current. We discuss the second law of
thermodynamics associated with the two unique thermal
transport processes in the interferometer.
Model. We start with a general model Hamiltonian

H =
∑

α

Hα{c†kσ; ckσ}+
∑

α,j

HT
α,j +

∑

j

HD
j {d†jσ; djσ},

(1)
where α(= L,R) and j(= 1, 2) are the indices of leads
and dots. The Hamiltonians Hα, H

D
j , and

HT
α,j =

∑

kσ∈α;j

[

V α
k,jc

†
kσdjσ + h.c.

]

,

respectively represent the leads, the interferometer, and
tunneling between the leads and the dots. ckσ and djσ
are the annihilation operators with spin σ for electrons
in the leads and the dots.

http://arxiv.org/abs/cond-mat/0403414v2
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The energy (number of electrons) flowing into the in-
terferometer is defined as the rate of change in the en-
ergy (number of electrons) in the lead α [25]: IEα =
−d〈Hα〉/dt = (i/~)〈[Hα, H ]〉 and Iα = −d〈Nα〉/dt =

(i/~)〈[Nα, H ]〉, where Hα =
∑

kσ∈α εkc
†
kσckσ and Nα =

∑

kσ∈α c†kσckσ. The heat current flowing into the inter-
ferometer from the lead α is defined by

IQα = IEα − µαIα, (2)

where µα is the electrochemical potential in the lead
α. Using the Keldysh Green function G<

kσ,jσ(t − t′) ≡
i〈d†jσ(t′)ckσ(t)〉 which involves electron operators for the
leads and for each dot, one writes the heat currents as

IQα = −
∑

kσ∈α

∫

dε

2π~
(εk − µα)

[

Vk,1G
<
kσ,1σ(ε) + h.c.

]

−
∑

kσ∈α

∫

dε

2π~
(εk − µα)

[

Vk,2G
<
kσ,2σ(ε) + h.c.

]

.(3)

The first (second) line of Eq. (3) describes heat transfer
from the left lead to QD 1 (QD 2) or vice versa. Then
each heat transfer can be defined as a local heat cur-
rent through each dot, IQα,j . Thus the total heat current
is the sum of the local heat currents through each dot,

IQα = IQα,1 + IQα,2. The heat current is written in terms of

the electron Green functions, G<. The heat transfer from
the lead to one of the dots is then accompanied by elec-
tron dynamics including a complex trajectory through
the entire interferometer, as well as a direct tunneling to
the dot.
The Green functions, G<, can be expressed in terms of

the dot Green functions defined byGr
jj′,σ(t−t′) = −iθ(t−

t′)〈{dj′σ(t), d†jσ(t′)}〉 and G<
jj′,σ(t− t′) = i〈dj′σ(t)d†jσ(t′)〉

[26]. As a consequence, a general expression of the heat
current through a nanoscale electron interferometer is
given by

IQα = i
∑

jj′σ

∫

dε

2π~
(ε− µα)Γjj′ ,α(ε)

[

G<
jj′ ,σ(ε)

+fα(ε)
(

Gr
jj′,σ(ε)−Ga

jj′ ,σ(ε)
)]

, (4)

where the tunnel couplings between the leads and the
dots are denoted by Γjj′,α = 2πNV α

j V α∗
j′ with the den-

sity of states of the leadN . The Fermi-Dirac distribution
functions of the leads are fα(ε) = f(ε − µα), where the
chemical potentials are µL = −µR = eV/2 with applied
bias V between the two leads. For i 6= j, the terms of
the current describe the interference between the elec-
tron waves through two dots. In the absence of one dot,
i.e., Vk,1 = 0 or Vk,2 = 0, only the current through the
other dot exists and any interference resulting from the
existence of the one dot disappears. Therefore, the ex-
pression of the heat current is reduced to the heat current
formula in a single dot electronic device.
Our interferometer has the two electron pathways

which are allowed for electron transport from one lead to

the other via two dots not being coupled to each other di-
rectly. Electron tunneling through the dots are manipu-
lated by varying the gate voltages. The dots makes it pos-
sible to control a coherent electron passing through the
two electron pathways in the interferometer where it is
required to satisfy current conservation at the leads. The
current conservation gives rise to a circulating current on
a closed path through the dots and the leads [10]. To clar-
ify the origin of the circulating electric/heat currents in
the interferometer the intradot electron-electron interac-
tion is not taken into account in this study. Then the level
spacing in each dot is larger than the applied bias and
temperature because electron transport through a single
level in the dots. Although intradot Coulomb interac-
tions are considered in the Coulomb blockade regime, the
resonant transport could be well explained in the Hatree-
Fock mean-field level where the energy level of the dots
can be described by a simple shift of the interaction pa-
rameter. In fact, we focus on studying the interference
effects that are present for near resonant transport and
employ the resonant level model to describe the dots;

HD
j =

∑

jσ εjd
†
jσdjσ , where ε1 and ε2 are the level en-

ergy in each dot, measured, relative to the Fermi energy
of the leads.
With the Keldysh technique for nonlinear current

through the system, the local heat currents through each
dot at the lead α are given by [26, 27],

IQα,j =
∑

σ

∫

dε

2π~
(ε− µα)(fα(ε)− fα′(ε))Tj(ε), (5)

and similarly the local electric currents are obtained as

Iα,j = e
∑

σ

∫

dε

2π~
(fα(ε)− fα′(ε))Tj(ε), (6)

where the local transmission spectral functions are de-

fined by Tj(ε) =
{

Γ
L
G

r
σ(ε)Γ

R
G

a
σ(ε)

}

jj
which is the j-

th diagonal component of the matrix transmission spec-
tral function. G

r
σ(ε) is the matrix dot Green func-

tion defined in time space as Gr
jj′,σ(t − t′) = −iθ(t −

t′)〈{dj′σ(t), d†jσ(t′)}〉. The matrix coupling to the leads is

described by Γ
L = Γ

R =

(

Γ1

√
Γ1Γ2√

Γ1Γ2 Γ2

)

. The sym-

metric tunnel-coupling between the dots and the leads
will be assumed to be independent of energy. The ma-
trix Green function of the dots is

G
r
σ(ε) =

(

ε− ε1 + iΓ1 i
√
Γ1Γ2

i
√
Γ1Γ2 ε− ε2 + iΓ2

)−1

. (7)

From the relation, G
a
σ(ε) = [Gr

σ(ε)]
†, the advanced

Green function can be obtained. Accordingly, the lo-
cal transmission spectral functions in terms of the total
transmission function are given by

T1(ε) =
Γ1(ε− ε2)

Γ2(ε−ε1) + Γ1(ε−ε2)
T (ε), (8)

T2(ε) =
Γ2(ε− ε1)

Γ2(ε−ε1) + Γ1(ε−ε2)
T (ε). (9)



3

The total current is the sum of current through each dot,

IQ = IQ1 + IQ2 , which is just the current conservation.
This leads to the total transmission spectral function as
T (ε) = T1(ε) + T2(ε),

T (ε)=
[Γ2(ε−ε1)+Γ1(ε−ε2)]

2

(ε−ε1)2(ε−ε2)2+[Γ2(ε−ε1) + Γ1(ε−ε2)]
2 . (10)

In the linear response regime, the transport elec-
tric/heat currents are expanded up to the linear terms
of ∆T = TL − TR and ∆V = VL − VR. The electric cur-
rents and the heat currents are related to the chemical
potential difference, ∆V , and the temperature difference,
∆T , by the thermo-electric coefficients Lmm′ :

(

I
IQ

)

=

(

L11 L12

L21 L22

)(

∆V
∆T

)

. (11)

Similarly, with the local thermo-electric coefficients L
(j)
mm′

the local electric/heat currents in the linear response
regime can be written as

(

Ij
IQj

)

=

(

L
(j)
11 L

(j)
12

L
(j)
21 L

(j)
22

)

(

∆V
∆T

)

. (12)

The thermo-electric coefficients associated with the local
current through each dot are expressed as L

(j)
11 = e2L(j)

0 ,

L
(j)
21 = TL

(j)
12 = −eL(j)

1 , and L
(j)
22 = L(j)

2 /T , where the in-

tegrals are defined as L(j)
n (T ) = 2

h

∫

dε
(

−∂f
∂ε

)

εnTj(ε).
According to the current conservations, the thermo-

electric coefficients have the relations: Lmm′ = L
(1)
mm′ +

L
(2)
mm′ .
Thermopower. The thermopower of the interferome-

ter can be found by measuring the induced voltage drop
across the interferometer when the temperature differ-
ence between two leads is applied. For zero electric trans-
port current, I = 0, the thermopower is defined by the
relation

S = − lim
∆T→0

∆V

∆T

∣

∣

∣

∣

I=0

=
L12

L11
. (13)

In terms of the defined integrals, one can rewrite the ther-
mopower, S = −(kB/e)(L0/kBTL1) with the constant
kB/e ≃ 86.17µV/K. In Fig. 2, the characteristics of the
thermopower are shown to be dependent on the energy
level positions of the dots. The sign of the thermopower
can indicate the main channel in transporting charge and
heat. When more transmission spectral weight lies in the
electron channel then in the hole channel, the charge and
heat are carried by mainly electron channels. In this case
the sign of the thermopower is negative. In the opposite
case, since charge and heat transport through the hole
channels is predominant, the thermopower is positive. If
the same amount of electron and heat are carried by each
electron and hole channel, the sign of the electric/heat
current is the same/opposite for electron and hole chan-
nel. This results in the thermopower being zero. As
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(ε1/Γ,ε2/Γ)=(-0.9,-0.3)

FIG. 2: Thermopower of the interferometer as a func-
tion of temperature for different level positions of the dots,
(ε1/Γ, ε2/Γ). The tunneling amplitudes are taken as Γ =
Γ1 = Γ2. For both energy levels of dots being above (below)
the Fermi energy, the sign of the thermopower is negative
(positive). The charge and heat are carried mainly through
the electron (hole) channels. When the energy level of one
dot is lying below the Fermi energy and that of the other is
lying above the Fermi energy, the sign of the thermopower
is changed as the temperature varies. Therefore, the main
propagating channels for charge and heat determine the sign
of the thermopower. The magnitude of the thermopower is of
the order of kB/e = 86.17µV/K.

shown in Fig. 2, when the energy level of one dot is lying
below the Fermi energy and that of the other dot is lying
above the Fermi energy, the sign of the thermopower is
changed as temperature increases.
Local electric currents and magnetic polarization cur-

rents. The requirement, that the electric transport cur-
rent is zero, for the thermopower implies that the local
electric currents are required to ensure I1 = −I2. If these
local currents exist for I = 0, the local electric currents
should circulate on the closed path through the leads and
the dots. Then the interferometer can be magnetized by
the circulating electric currents. One can define the cir-
culating current as a magnetic polarization current [10],
IM ≡ I1 = −I2 for I = 0. From Eq. (11), the magnetic
polarization current is then expressed as

IM = K∆T, (14)

where K = −SL
(1)
11 + L

(1)
12 = SL

(2)
11 − L

(2)
12 . This shows

that the magnetic polarization current exists even when
the electric transport current is zero because this mag-
netic polarization current is induced by the temperature
gradient between the leads due to the quantum inter-
ference. Figure 3(a) shows that the total sum of the
local currents is always zero because the local electric
currents are flowing along the opposite direction to each
other, which implies the existence of the magnetic po-
larization current. It should be noted that the direction
of the magnetic polarization current is reversed as the
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FIG. 3: (a) Local electric currents induced by a temperature
gradient as a function of temperature. The dot energy lev-
els are taken as (ε1/Γ, ε2/Γ) = (−0.9, 0.3) for the tunneling
amplitudes, Γ = Γ1 = Γ2. In contrast to the thermopower
(compare Fig. 2), the level positions taken in this plot do
not affect the physics of the local currents but only change
its amplitude and sign. Even when the total electric trans-
port current is zero (I = 0), the non-vanishing local electric
currents indicates the existence of the circulating electric cur-
rent which makes the interferometer magnetically polarized.
The magnetic polarization current is then defined as the local
current: IM ≡ I1 = −I2 for I = 0. (b) The ratio of the mag-
netic polarization currents to the temperature gradient, ∆T ,
as a function of temperature. The magnitude of the magnetic
polarization currents is of the order of nA for a temperature
gradient of order 1K.

temperature increases. If one can define the local ther-

mopower as Sj = L
(j)
12 /L

(j)
11 , the magnetic polarization

current vanishes at a specific temperature, T0, satisfying
S(T0) = −Sj(T0). It is also shown in Fig. 4 (b) that,
by manipulating the gate voltages of each dot, the mag-
netic polarization current can be controlled. This implies
that changing the energy level positions of each dot, one
can magnetize the interferometer by the magnetic polar-
ization current induced by the temperature gradient as
up-, non-, and down-polarized. In contrast to the mea-
surement of the thermopower by means of electron trans-
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IM/∆T[nA/K]

FIG. 4: (color online) The ratio of the magnetic polariza-
tion current IM ≡ I1 = −I2 to the temperature gradient ∆T
for I = 0 as a function of the energy level positions of each
dot (ε1/Γ, ε2/Γ) for kBT = 5.0 × 10−2Γ. The tunneling am-
plitudes are taken as Γ = Γ1 = Γ2. Note that by varying
the energy level of each dot the interferometer has a differ-
ent magnetic state according to the direction of the magnetic
polarization current.

port, to observe the magnetic polarization current, one
can measure a magnetic field produced by the magnetic
polarization current by using a superconducting quan-
tum interference device (SQUID). Recent measurements
of a persistent current by using a SQUID [28] show that
magnitudes of the magnetic polarization current of the
order of nA should be experimentally observable for a
temperature gradient of order 0.1 ∼ 1K.
Heat currents. The condition of an open circuit (I =

0) to find the thermopower can apply for a circulating
heat current in the interferometer. Under the condition,
I = 0, the local heat currents are rewritten as

IQj = κj∆T, (15)

where κj = −SL
(j)
21 + L

(j)
22 . Due to the quantum inter-

ference, the local heat currents can be greater than the
total heat current through the interferometer at a given

energy level positions of the dots. If IQ1 > IQ, there ex-
ists an excess heat current through QD 1. One can define

the excess current as IQexe = IQ1 − IQ. From the relation

IQ = IQ1 + IQ2 , the local heat current through the QD 2

should be IQ2 = −IQexe. The negative sign of the local heat
current through the QD 2 implies that the heat current
conservation requires a heat current flowing through the
QD 2 against the temperature gradient. According to the
second law of the thermodynamics, the entropy produc-
tion defined by IS ≡ IQ/T > 0 should be greater than
zero during thermoelectric process [14]. If one can define

a local entropy production as ISj ≡ IQj /T , the local heat
current flowing against the temperature gradient means
that IS2 < 0. However, for heat transfer through the en-
tire interferometer, the heat current conservation should
make the second law of the thermodynamics preserved
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FIG. 5: (color online) The ratio of the circulating heat current
to the temperature gradient ∆T as a function of the energy
level positions of each dot (ε1/Γ, ε2/Γ) for I = 0. The pa-
rameters are taken as kBT = 5.0 × 10−2Γ and Γ = Γ1 = Γ2.
The existence of the circulating heat current indicates that
while the local heat current through one dot can be greater
than the total transport heat current through the interferom-
eter due to the quantum interference, the local heat current
through the other dot flows against the temperature gradient.
The current conservation requires that the local excess heat
current circulate on the closed path in the interferometer.

in heat transport through the entire interferometer. As
a result, the excess heat transport through the QD 1 is
compensated with the local heat current flowing against
the temperature gradient through the QD 2. Like the
magnetic polarization current, those thermoelectric pro-

cesses imply that there appears a circulating heat current
on the closed path between the dots and the leads in order
to satisfy the second law of the thermodynamics. There-

fore, for IQ1 > IQ, the excess current can be defined as

a circulating heat current, IQM ≡ IQexe = −IQ2 . Similarly,

for IQ < IQ2 , the circulating heat current is determined.
In Fig. 5, we display the circulating heat current as a
function of the energy level positions of each dot from
the numerical calculation. It is shown that the interfer-
ence between the electron and hole channels produces the
circulating heat current.

Summary. We have investigated thermal transport in
nanoscale interferometers. The expression of the heat
current for the interferometer has been derived based on
the nonequilibrium Green’s function technique. Control-
lable electronic states in two dots make it possible to
manipulate the quantum interference which causes a heat
current in the opposite direction to the temperature drop
through one dot and an excess heat current through the
other dot. The circulating electric current induced by a
temperature gradient across the entire interferometer is
sufficiently large that it should be experimentally observ-
able.

Note added. After completion of this work, we become
aware of some related work by Moskalets concerning a
temperature-induced circulating electric current in a one-
dimensional ballistic ring [29].
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