Downloaded from orbit.dtu.dk on: Jun 04, 2024

=
=
—

i

Current noise in a vibrating quantum dot array

Flindt, Christian; Novotny, Tomas; Jauho, Antti-Pekka

Published in:
Physical Review B Condensed Matter

Link to article, DOI:
10.1103/PhysRevB.70.205334

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

DTU Library

Flindt, C., Novotny, T., & Jauho, A-P. (2004). Current noise in a vibrating quantum dot array. Physical Review B

Condensed Matter, 70(20), 205334. https://doi.org/10.1103/PhysRevB.70.205334

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately

and investigate your claim.


https://doi.org/10.1103/PhysRevB.70.205334
https://orbit.dtu.dk/en/publications/1f341ef2-fb1f-406b-9a47-23270e1b9d29
https://doi.org/10.1103/PhysRevB.70.205334

PHYSICAL REVIEW B 70, 205334(2004)

Current noise in a vibrating quantum dot array

Christian Flindtt* Tomas Novotny;2 T and Antti-Pekka JauRd
IMIC-Department of Micro and Nanotechnology, Technical University of Denmark, DTU-Building 345east,
DK-2800 Kongens Lyngby, Denmark
°Department of Electronic Structures, Faculty of Mathematics and Physics, Charles University,
Ke Karlovu 5, 121 16 Prague, Czech Republic
(Received 21 May 2004; published 23 November 2004

We develop methods for calculating the zero-frequency noise for quantum shuttles, i.e., nanoelectromechani-
cal devices where the mechanical motion is quantized. As a model system we consider a three-dot array, where
the internal electronic coherence both complicates and enriches the physics. Two different formulations are
presented(i) quantum regression theorem afid the counting variable approach. It is demonstrated, both
analytically and numerically, that the two formulations yield identical results, when the conditions of their
respective applicability are fulfilled. We describe the results of extensive numerical calculations for current and
current nois€Fano factoy, based on a solution of a Markovian generalized master equation. The results for the
current and noise are further analyzed in terms of Wigner functions, which help to distinguish different
transport regimesgin particular, shuttling versus cotunnelingn the case of weak interdot coupling, the
electron transport proceeds via sequential tunneling between neighboring dots. A simple rate equation with the
rates calculated analytically from tH&E) theory is developed and shown to agree with the full numerics.

DOI: 10.1103/PhysRevB.70.205334 PACS nuni®er73.23.Hk, 85.85t], 72.70+m, 73.63-b

I. INTRODUCTION have not been considered so far. The coherence is not a

As the advances of the technology push the size of thdominating feature in a system consisting of a single-level
electronic components toward the atomic scale, interesting'°l€cule or quantum dot. However, in a setup consisting of
phenomena influencing the electronic transport emerge. R&N array of dots the role of the electronic coherence within
search fields, e.g., molecular electronics, spintronics, or nd!€ &ray is of central importance. Its influence on the current
noelectromechanical system®EMS) have appeared. A " stagﬁzquantum dot arrays has been studied inten-
common theme is the combination of quantum transport angVely*>~*>and, more recently, also on the nofSelso, the

a subtle interplay between various degrees of freedom Whicﬂweanbtlzurrent ;jepegdtence onhvanonle sgstﬁm par&rg%srs n
plays an essential role for the functionality of the device movable quantum dot arrays has aiready been s :

This paper focuses on the NEMS a logical extension of Thus, the study of noise in a movable quantum dot array is

the now established technology of microelectromechanicatlhe central theme in this work.

! . Specifically, we study an array of three quantum dots in
systemgMEMS), where the electron@r magnetig degrees the strong Coulomb blockade regime with a movable central
of freedom are coupled to a mechanical degree of freedo

. ST MYot. This model was proposed as a quantum shuttle by Ar-
While still in its infancy, NEMS has already attracted much ,our and MacKinnok extending the original one-dot

attention both experimentafly’ and theoretically®®> shuttle proposal by Gorelikt al° The electronic coherence

A measurement of the stationary IV-characteristic of awithin the array combined with the mechanical degree of
NEMS device does not always yield enough information tofreedom changes qualitatively the transport through the array
uniquely identify the underlying microscopic charge trans-as compared to both a static array or a one-dot SET-NEMS.
port mechanism. A point in case is thggGingle electron In particular, there are two competing electron transfer
transistor(SET) experiment by Parlet al> where two alter- mechanisms through the array: either sequential tunneling or
native interpretations, namely, incoherent phonon assistecbtunneling(virtual transition via the central dot. The state
tunneling?2%2324or shuttling'®*>are plausible. The current of the oscillator further influences these two basic mecha-
noise provides other important characteristics, supplememisms which leads to a possibility of many different transport
tary to the mean curredt28The Fano factor, being the ratio regimes depending sensitively on the interplay of the param-
between the zero-frequency component of the noise speeters of the model. Roughly speaking, as we shall see cotun-
trum and the mean current, characterizes the degree of caneling is associated with super-Poissonian values of the Fano
relation between charge transport events and is a powerfdihctor (sometimes as high as50) while the sequential tun-
diagnostic tool which helps to distinguish various transporineling is accompanied by sub-Poissonian Fano faéfors.
mechanisms possibly resulting in the same mean currenSimilar conclusions have been reported in recent literature
Therefore, studies of the current noise in NEMS have formedor different but related systems, and a detailed discussion is
an active field of researct:?8-31.3435These studies consid- given in sections to follow.
ered noise in movable singe-electron transistors in a number We have recently published two papers on quantum
of different configurations. shuttles??34 and while the present paper addresses a some-

To the best of our knowledge, the effects of internal co-what different physical system, it makes heavy use of the
herence of the electronic subsystem on the noise in NEM$echniques developed in the two recent papers. Since we be-
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lieve that the techniques may have a wide range of applica- Ier Iro
tions, we use this opportunity to describe our general ap-
proach to quantum shuttles and expose the theoretical
machinery in more detail. The paper is organized as follows.
In Sec. Il, we introduce our model of the three-dot quantum
shuttle which is quite similar to the one considered in Ref.
16. The total Hamiltonian consisting of the “systeiiisoth
mechanical and electronic degrees of freedom of the quan-
tum dot array, the leads, and a generic heat bath is used to
illustrate the derivation of a description based on Markovian
generalized master equation which was the starting point of FIG. 1. Schematic picture of the three dot system. The outer
Ref. 16. Along the way from the Hamiltonian to the gener-dots are fixed—the left on@.) at the position %, and the right one
alized master equation we identify several tacit assumption&) at x,, while the central ongC) can move(position X) in a
used in previous studiggncluding our$ and point out sev- harmonic confining potential. It also interacts with a heat bath caus-
eral issues of potential importance not addressed so fang damping and thermal noise. The outer dots whose respective
within the field of NEMS. While we are not able to resolve energy levels are dealigned by the device lfigg are coupled to

all of these issues we believe that spelling them out is aithe full or empty electronic reservoirdeady, respectively. The
important first step toward their solution. In particular, we current flows within the system due to tunneling between the left
address the problem of the assumed additivity of two kindsind central dot and the central and right dot and is described by the
of baths acting on the syste(iihe Fermi seas of the leads and corresponding current operatcf@, TRC.

the heat bath weakly coupled to the systeAmother point

of concern is the possible spurious breaking of the chargauce the numerical results withsemidanalytic rate-

conservation by the weak-coupling prescription between the, arion-based theory with the rates determined by the stan-
geat Iblaththand ;he §ysteor|n W'th lntehrnal coherence. vae Cloﬁ?ard P(E) theory as functions of the model parameters. The
ec. Il with a short introduction to the superoperator formal, o hica| details of the analytic calculations are sketched in

ism . ) .
‘ A B. We stat I . V.
In Sec. lll, we develop the theory of the zero-frequency ppendix @ state our conclusions in Sec

component of the current noise spectrum for a NEMS device
where the electron transfer between the system and the leads Il. THREE-DOT QUANTUM DOT ARRAY
is described by a classical Markov process, i.e., in the wide
band approximation and high bias limit. We present two
methods of the evaluation of the noise spectra. If the whole Armour and MacKinnotf introduced a model of a three-
system dynamics can be described by a Markovian generatlot array whose central dot is movable. The array is assumed
ized master equation we can use the quantum regressida be in the strong Coulomb blockade regime in which only
theorem. The other method relies on the counting variabléwo charge state@one or one extra electron which we refer
approach and calculates the zero-frequency current noise &s as unoccupied or singly occupjedf the whole array,
the charge diffusion coefficient across a given junction beseparated by an energy differengg are allowed in the con-
tween the system and a lead. As we show further in Sec. lIsidered bias range. This can be achieved by a suitable gating
the two approaches yield equivalent results provided that thef the array which makes the two charge states energetically
dynamics of the system igguantum Markovian and that close while a very high charging energy prohibits addition or
charge conserving approximations are used. We finish Secemoval of other electrons to/from the array. The array is
[l by a qualitative discussion of the numerical evaluation of coupled to two leads with a high bias applied between them.
the noise spectra. This is a nontrivial task due to large diThe bias is smaller than the charging energy for addition or
mensions of the involved matrices. Further details of the nuremoval of other electrons but otherwise it is the largest en-
merical algorithm(Arnoldi iteration and generalized mini- ergy scale in the model.
mum residual methgdare given in Appendix A. The moving central dot interacts with its surroundings and
We present the results of our numerical and analyticathe dissipative dynamics is described by the interaction with
calculations in Sec. IV. Generic features observed in the nua generic heat bath. We modify the original model slightly in
merical curves are interpreted phenomenologically. Next, wehat we do not consider the additional hard wall potential at
study different limiting cases. The first limit is that of small the position of the outer dotsxg employed by Armour and
damping which is relevant for shuttling accompanied byMacKinnont® so that the central dot moves in a strictly har-
relatively small Fano factor¢down to =0.25 and strong monic potential in our casgee Fig. 1. While the hard wall
inelastic cotunneling accompanied by huge Fano factorgotential is physically well motivated it complicates the nu-
These two mechanisms may coexist leading to a dramatimerical treatment and we believe that it does not have any
dependence of the Fano factor on parameters as the relatiggnificant impact on the nature of our results. Therefore, in
weight of the two mechanisms is changed. The second limiobur model the amplitude of oscillations in some regimes can
considered is the limit of weak coupling between adjacenexceedx,. The hard wall potential can be straightforwardly
dots which leads to sequential tunneling assisted by aimcorporated in our formalism. It should be noted, however,
equilibrated oscillator, at least in a certain range of othethat the various models for dissipation used in the literature,
parameters. In the sequential tunneling limit we fully repro-and also adopted in our work, are best justified for the pure

Lead

A. Model
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harmonic potential. Also, as in Ref. 16, we consider spinlessvide-band limit. It is necessary for the so-calfgdt Markov

electrons. approximatiorf*>46 used later on, to hold. Further, we as-
The Hamiltonian reads sumeu — o, ug— —%. These assumptions are necessary for
R . . . . . . the derivation of the Markovian dynamics of the array.
H =Hgsct Hel + Helooset Higadst Helrleads™ Hbatht Hosc-bath Finally, we introduce a generic heat bath consisting of an
~ infinite set of harmonic oscillators linearly coupled to the
+Her, (1a) position of the central daiCaldeira-Leggett mod&l) which
where simulates the dissipative interaction of the center-of-mass
- o motion of the central dot with its environment
_ p_ + MawpX 1b . R R a2 m-wzf(z
*¢ 2m 2 (o Hpath+ Hosc-batit Her = 2 (2_‘:%_ + _J_21_L> - 2 ij(jf(
i i

describes the mechanical center-of-mass motion of the cen- )

tral dot as a one-dimensional harmonic oscillator with mass
m and frequencywy. The next two terms specify the elec-
tronic structure of the array in the strong Coulomb blockade ] ) ] )
regime i.e., no double occupancy in the whole array—theThe bath is  characterized by its spectral ~density
vectors|l) with 1=0,L,C, R span its entire electronic Hilbert J(@)=(7/2)Z(cj/mw))dlw-w;). We take it in the
spacg and the electromechanical coupling within the array Ohmic fornt” J(w)=myef(w/ w) where we have introduced
the damping coefficienty and f(w/w;) is a model
" " _% _&p specific cutoff function f(x—0)—1. As long as the
Hei* Hetose 2 L1 2 IR}RI+ 200X cutoff frequency is much bigger than the frequency of the
oscillator (w.> wg) f would only contribute to the renormal-

ization of wj—wi+Aw® with Aw?=-1/mS(c/mw’)=

m N
- EAwZXZ. (1e

+t (R (LXC| +|CXL]

+tr(X)(|CYR| + [RXC]) =2/ [§ do[I(w)/mw]=-2y/7 [§ dof(o/w;). Here, we
ep . have explicitly included the standard counter-tetig; can-
- §OX|C><C| (1c)  celing this renormalization so that the bath solely induces

A A dissipation and the cutoff function can be replaced by unity.

with t (X)=-Vee 20| t(X) =-Ve** >0, We associate the
energiese,/2, —ep/ 2, andgg with the left and right dot and B. Generalized master equation
the empty array, respectively, while the energy level of the For the description of the model we use the language of
central dot is chosen as the reference energy, and hence put St W e 2

. . . . duantum dissipative systerfiSAs the “system’(or “device”)
to zero. The device bias, is the difference between the : : .
energy of the left and the right dewhich can be induced by we take the electronic states of the dots in the a(iaglud-
suitable gating of the different dotand %, is the distance ing the unoccupied statplus the one-dimensional oscillator

) . describing the center-of-mass motion of the central dot. The
betwe_en the tW.O. outer dots. The terrT_ls proportiona) igx) electronic leads coupled to the outer dots and the heat bath
describe a posmon-dep_endent hoppmg beiween thg left an teracting with the center-of-mass degree of freedom of the
central or central and right dots enabling the tupnelmg CUlCentral dot constitute the reservoirs. The Hamiltonian of the
rent to flow through the array. These terms contribute both to i ~ A ~ A
the static part of the Hamiltoniagzeroth order irk) as well ~ SYStem is therHo=HosctHei+ Helosc FoOr further reference
as to the electromechanical coupling. The parametquals W€ also introduce the Hamiltonian of all mechanical degrees
the inverse tunneling length and determines the strength dff freedom, i.e., of the oscillator and the bath, reading
the exponentiak dependence of the hopping elements whichHgsc=Hosct Hosc-batit Hpatt Her. The task is now to inte-
may lead to the shuttling instabilit{:'622 The last term grate out the degrees of freedom of the reservoirs to end up
gives the electromechanical coupling due to the electrostatigith an equation of motion for the system density operator.
force acting on the oscillator when the central dot is chargedWe outline how the derivation proceeds in two steps first

The outer dots of the array are assumed to couple vightegrating out the leads in the high bias limit and then the

standard tunneling terms to two noninteracting leads heat bath in the weak coupling limit to get a generalized

A A master equatio0GME) for the system density operator.

Hieadst Hetteads= > kgCiglis As in previous paper¥;?>48we work in the high bias
kp=LR limit in which the bias between the leads is much higher than

. " any other involved energy scale but the charging enécly
+ k_gLRVkB(CIAOXM + |'8><0|Ckﬁ)' (1d) Ref. 42 and Fig. 1 The high bias assumption together with
o the wide-band limit means that after integrating out the leads
The leads are held at different electrochemical potentialshe resulting dynamics of the system and heat bath is still
wu g whose difference gives the bias across the arrayMarkovian. Following the derivation by Gurvitz and Pratfer
We assume that the tunneling densities of state®ne can obtain the equations of motion for the density ma-
T g(e) =2/ h 2| Vygl? (e~ &yp) are energy independetand  trices a™(t) of the system plus heat bath resolved with re-
equal, just for conveniengei.e., I's(e)=I", known as the spect to the number of electronsvhich have tunneled to the
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right lead by timet. We use the block notation analogous to  Rather than following this lengthy procedure, we used the
the one used in Ref. 1@ =1 throughout the paper except for standard quantum optical damping kernel for a single har-

figures monic oscillator in the rotating wave approximati®f®also
L) O A () s eAeD) used in previous studié&*Strictly speaking, this can be
000 = ~i[Hoso000] = T'opg + T'ogg”, N=0,1,... justified only in the case of weak electromechanical coupling
) and small injection. Nevertheless, we believe that the genu-
& =~ i(1[Hey + it Helmoso ™13 + (1| Kgriyo™|3) ine nonequilibrium phenomena described later on are cap-

B tured qualitatively correctly even with this kernel since the
for,J=L,C,R. ) kernel mostly serves just as a “convergence factor” to stabi-

Here &,,=(1|]J) are still operators in the oscillator and bath lizé the stationary solution. As will be seen below, the se-
space. The “driving” kerneky;, due to the coupling to the quential tunneling limit is extremely well captured within the

" rnv . . . . . .
leads acts nontrivially only on the electronic degrees of free2d0oPted approach. This is perhaps not too surprising since in
dom and as unity on all the others. Hence also it can béhat limit the coherence between different dots is negligible.

written in the block notation On the other hand, the clear advantage of our choice of the
R . damping kernel is that it preserves charge conservation
00 0 —oR/2 throughout the whole circuit while this may not happen in
Kaivo=T 0 0 -ocrl? |, (3) general in the weak coupling prescriptigsee Sec. Il D.

Refinements of the present approaches to deal with the above
issues are in our opinion a challenging task for the future
where the tunneling density of statEsdescribes the injec- modeling of NEMS. We would like to point out that the
tion rate from/to the leads. We still have to consider theabove-mentioned concerns about additivity of the two baths
off-diagonal block elements of the density mati, , oo apply also to the case of the one-dot setup traditionally used
with 1=£,C,R. They describe coherences between systenfor the description of the shuttling phenoméh®-3*but the
states containing a different number of electrons. In the forproblem stemming from the coherence present within the
malism by Gurvitz and Prag®rthese off-diagonal elements array is absent there.

are identically zero by the construction of the thegsge Bearing all these cautions in mind, we are ready to state
also Ref. 16. In other works, e.g., in Ref. 46, they can in the generalized master equafibfor the n-resolved density
principle appear, at least indirectly. In any case, whatevefatrix of the system

method is applied to our system, they are always decoupled

_a-RL/Z _(}Rclz _(}RR

from the rest of the elements. Moreover, they do not enter /383 == i[Hosoi)g:))] + ﬁdamrf)gg —F;BSB + FIA)(Rnr;l)
any expressions for quantities of physical interest that we
consider, and can therefore be discarded. N Oy " " ~(n) ~(n)
- pyig . = —i{l|[Hg*+ Hyset+ Hel H+L
The GME fora(t)=3,,6™ is found by summing Eq(2) P (HHei + Hoset Heroso o™ 19) + Laamei
over n with the boundary conditid® 6Y=0. Due to this +{I|Larp™|I) for 1,J=L,C,R. (4)

boundary condition the GME fak(t) is formally the same as . .
: . o : . The commutator terms in E@4) describe the coherent evo-
Ed.(2) just with the superscript index) omitted. This GME lution of the isolated device. The driving kern&j,;, is given

is used in Sec. IV C and Appendix B in the sequential tun-. A,
neling limit to derive a rate equation, from which both cur-JUSt by substitutiony—p in Ed. (3)
rent and noise can be calculated, and compared to the full Poo 0 - L2
numerical evaluation. - A

In general, there is no simple approximative analytic Lawp=T 0 0 = P2 |- (5)
treatment of the problem nor is a direct numerical solution -pri/2 —prd2 —DPrr
possible due to the presence of the infinite number of bath. v, the d ing kern#l (acti i the elec-
degrees of freedom as a part of the system. To proceed v;é”‘? y, the damping kern€i (acting as unity on the elec
have to integrate out the bath degrees of freedom to be le fonic degrees of freedomeads
with the electronic and oscillator degrees of freedom only R Vet e
which can be handled numerically. This could in principle be Lgamp =~ EmaaTP - 2a'pa+ paa’)
done in the weak coupling limit between the device and the
heat bath by a perturbation expansion in ¢ie. This would
amount to finding the “free” evolution of the device first, i.e.,
the evolution without the coupling to the heat bath but with .
coupling to the leads included. However, this free evolutionwhere y is the damping rate and=ng(wo)=[exp(wo/KsT)
is not unitary which significantly hinders any attempt to pro-—1]™ is the mean occupation number of the oscillator at
ceed. Even in the case of small couplingo the leads, when temperaturel. This term describes the effect of the environ-
the driving Liouvillean is neglectetf, one should diagonal- ment on the oscillator, consisting in mechanical damping and
ize the device Hamiltoniafincluding the electromechanical random quantum and thermal excitatifbangevin force.
coupling and use the exact eigenenergies and eigenvectoiEhe issue of the appropriate choice of the damping kernel is,
as the input into the weak coupling prescripti8iit as was  however, quite subtle in many respects even in the case of a
recently done in a dissipative double-dot system in Ref. 52simple harmonic oscillator used here. There is a well-known

- %(m 1)(a'ap-2apat +pa'a),  (6)
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dilemma between the rotating wave approximation formcalled superoperatotsr supermatricesIn the following, all
(conserving the positive definiteness of the resulting densitguperoperators will be denoted by calligraphic symbols and
matrix) which we use in this worlkversusthe translationally the vectors of the superspace in the bra-ket notation will be
invariant form(yielding correct equations of motion for the distinguished from the normal vectors in the Hilbert space by
mean coordinate and momentumsed previously>3* It is  gouble brackets, e.gV«|v)) with V being a “normal”
known that this dilemma cannot be solved within the Markovquantum mechanical operator.

approximationwithout relaxing the condition of approach to | {In)}=_, is an orthonormal basis in the Hilbert space
the canonical thermal equilibrium state for asymptotic timesy¢ e system then all the projecto{$n><n|E|mn>>};°]yn=1

for a}thorough discussion of th|§ issue see Rej. 4 have aorm an orthonormal basis of the corresponding Liouville
carried out a number of numerical checks, and have foun . Ata
th respect to the scalar prod({et b))=Trs (A'B).

out that in the present case there are only minor difference¥Pace with :
in the obtained results. A practical advantage of the presenthe€ matrix representation of superoperators follows
choice is that it leads to faster numerical convergence. ~ analogously to the normal Hilbert space case, i.e.,

We can recast the GME) into a compact form _(9=Ek|,r_,m|kl>><<kI|Q|mn>><<mr1=2k,,mn|l_<l>>ok|,mn<<md. There
is a unique mapping between matrices representing the op-
;,(n) = (L - To)p™ + Zorp ™Y, erators in the Hilbert space and the vectors in the Liouville
space. The operatoD=X,|k/Oy(l| represented by the
. ® matrix Oy corresponds to the vectoto))=3Oylkl))
p=Lp with p=>, p™ andp™ =0, (7)  represented by the column vector
n=0 O=(011,012,013, . ,021,022,023, . .)T (the exact Ordering

depends on the chosen ordering of the double indides
Therefore, we will in the following use the two representa-
rt]ions interchangeably.

whereZyrp=T"|0)}(R|p|R)0| (the symbolZ, denotes the su-
peroperator of the particle current across the junctiéh 0
between the right dot and the right lead, for a discussion o
superoperators see belpw

The dynamics of the device described by the above gen- I1l. NOISE CALCULATION
eralized master equatiofY) constitutes eguantum Markov
process™ The Liouvillean£ determines the evolution super-
operator explt) which fully characterizes the resulting In this subsection we define the current noise spectra
guantum Markov process. It can be used to calculate arbifor different junctions present in our model and analyze
trary multitime correlation functions of angystem opera- several of their properties. First, we find the current operators
tors, i.e., operators acting as unity on the Hilbert space of thecross different junctions. From the equations of motion
reservoirs, by using the multitime structure of the quantunfor the operators of the occupation of the respective dots
Markov procesgoften referred to as thguantum regression 1;=|J)(J|, J=0, L, C, R reading
theorem—for details see Ref. 45, Sec. 5.2 or Ref. 53, Sec.
3.2. Therefore, not only the mean value of the stationary eEﬁJ:_ie[ﬁJ,ﬁ]:fJ+_fJ_ (8)
current within the array as in Refs. 16 and 20, can be evalu- d

ated in this way, but also its higher order correlation func-We identify the corresponding charge current operafles-
tions, in particular the current noise spectrum, become acceynic charge i< 0; electrons flow from left to right
sible. The calculation can only be done for the junctions '

within the array. For the outer junctions between the outer A - - ~

dots and leads the quantum regression theorem cannot be  lo-=1+= |L0:—eaN|_(t)

applied since the corresponding current operators involve the

lead electrons, thereby not beiagstem operatordowever, =ieX, Vi (& [oXL| - |L)Ol&), (9a)
the n-resolved form of the GME7) enables us to calculate k

the current noise spectrum also for those junctions. Both
methods yield equivalent results as we will show later in Sec.
I D.

A. Definition and properties of the current noise spectrum

o =loL=iet (O(LXC| - [CXL),  (9b)

C. Notational details lo-=lpe = iRc: ietz(X)(|C)R| - [RXC]), (90

The linear operatof which acts on the density operators, R d -
as specified by Eqg4)<7), can be handledat least for-  Ig_= Iy, = l;r=e—Ng(t) =ie>, Vir(|R{O[&r— ELHOXR]),
mally) as any other linear operator. We can associate a matrix dt k
(infinite in our casgwith it and perform standard linear al- (9d)
gebra operations. In order to avoid confusion with “normal” R R
quantum mechanical operators acting in the “normal” Hilbertwith N, ==&}, &, ,Ns=2,&l-Cr being the operators of the
space of the system, the vector space of “normal” operatorsumber of particles in the left and right lead, respectively.
is called the Liouville space or the superspace, and the Liou- We next define different current-current correlation func-
villean and other linear operators acting in the superspace at®ns (a,b=L0, CL, RC, OR)

i
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N - - - oA - ~ vt
Cap(7 :tllm §<{Ia(t+ 7), () = (Lot + 7)1 (1) with Qg(t) = eNg(t) — eNg(0) =f dt'lgg(t’). (13
—00 0
oL s o This identity suggests the interpretati f th -
= lim (AT (t+ 7), AT (D)D), 10 y suggests the interpretation o e zero
o 2<{ alt+ 7, ALY (10 frequency current noise as the “charge diffusion
coefficient®” and will be used in Sec. 11l C for an alternative
with AT(0) = 1.(6) = (.t , evaluation of the zero-frequency current noise. The equiva-
a0 =10 = {1a(0) lence of the two approaches is shown explicitly in Sec. Il D.
which in the stationary limit are functions afonly. We also We finally comment on the physical relevance of the noise
note the propertyC,,(—7)=Cpa(7). The current noise spec- spectra calculated in this paper. Since the zero-frequency
trum is*® noise is position independent the noise calculated for the
o junctions within the system should also be measured in the
Sp(w) = f dTCab(T)ei“"- (12) leads. However, in practice there is always the importaffit 1/

contribution to the noise which actually dominates experi-
ments for very low frequencies and which is not accounted
for in our model. Therefore, as mentioned in Ref. 58, the
tion tr‘?‘feasurements of the shot noise must be performed at non-

| |t bit f th ise d q2ero frequencies of the order of 1 kHz where thé hoise
n general, Tor an arbitrary frequency the noise depen .E‘omponent becomes insignificant. However, the shot noise

on the position where the current is measured. However, i easured in this way is still appropriately described by the

Lhe limit “.’Tj’o chgrg? cfotr;]servanon |mpI|ets thit. thelno'sizero—frequency current noise calculations since its typical
ecomes independent of the measurement position along l?l%quency scale is of the order of 1 THz.

circuit, i.e., S,5(0)=5,,(0)=S,,(0)=S,,(0), a# b and it also
equals the shot noise component of the spectrum measured in

the leads. This statement is proven by considering current B. Quantum regression theorem (QRT)
correlation functions for two adjacent junctiods, J-.56 The
charge conservation conditi@B) gives

The diagonal elementS,,(w) of the noise matrix are non-
negative as can be shown by using the Lehmann represen

With QRT it is possible to calculate the current noise
1 1 within the systenti.e., forlc,, Irc). For 7=0 QRT gives(cf.
Coge(7) = S({AI54(7),Al5}) = SUAT(7), A1) Ref. 45, Sec. 52
2 2

_ } T 1 ~stagy _ |2
+%£-<{eAﬁJ(T),AiJ+}> Can(7) 2Trsys(|aexqﬁ7'){|bvp l}) I (14
1d A for a,b=CL,RC, wherel :Iime<IAa(t)>:TrsyﬂaﬁS‘a‘) is the
=Cyy:(n + =—{eAn;(n),Al 1, }) (12)  stationary currentconstant throughout the circpitin case
2d7 7<0 we use the symmetry proper€y,(—7)=Cpa(7). Now,
which implies S;,;,(0)=S,_;,(0). The relation C,,(-7) let us evaluate the spectrum
=Cpa(7) vields Sy j,(-w)=S;;;(w) and by using the

charge conservation again we can finally establish Sipw) = J d7C(1)€ "

S5,3-(0)=S;_;_(0). Altogether we find that the zero- o

frequency noise is the same for any combination of the junc- o ' o '

tions, i.e.,S,;(0)=5(0)=0 for anya, b (not necessarily ad- —J drCab(r)e"‘”+J drCp(ne™“". (15
0 0

jacent; this generalization is straightforward

The current operatorlg,, Irc Egs.(9b) and(9c) between  We consider in detail the first term denot8f(w), the sec-

the dots are obviously system operators in the sense that thgyd one[S, ()] follows analogously. Introducing a conver-
operate as unity on the degrees of freedom of the leads angbnce factorw— w+i0 we get

the heat bath. Therefore, we can use the formalism of quan-
tum Markov processes to evaluate correlation functions in-
volving these operators using the quantum regression
theorem—this will be done in Sec. lll B. This is not the case

for the operators of current between the outer dots and leads Since we are interested in the limi—0 in the end
A . . we have to handle somehow the singularities associated
lLo, lor Qiven by Egs.(9a) and (9d). However, the noise

. . . with the resolventG(-iw)=(-iw—£)™* and the second
spectra across these two junctions can still be calculated USsm in E (16) in that limit. The problem with the inverse
ing then-resolved form of the GMK7) with the help of the q: ' P

following identity for the zero-frequency current noiger ic;f EI’CI)S ct)rr]t?or?;;Sttimt:ﬁeOfs:gt?oﬁgquu?jennusl:tVer%tgrzxwggzchause
the junction R, the casd 0 is analogous prop y y

LpS®=0. There exists a corresponding left eigenvector be-
d - A N longing to the zero eigenvalue af denoted b>(<6| which is

= Q&) - Q)] %=f d7Cor 0r(7) = SR 0r(0) =

dt R R ! L RR ROR not just the Hermitian conjugate (@)) (i.e., ({0 # |0))") be-

1 . . 1
S;b(w) = ETrsys(Ia(_ iw-— E)_l{lbvi)sm}) + EIZ- (16)
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causeL is non-Hermitian. However, since S'yg,(ﬁA):O for
any system operatoA we deduce that<<6|<—>1, ie.,
(0|Llayy=Tre,d1LA)=0. o B

Thus, we havéd0)) < ps@ (0| + 1 with ((0|0))=1 allow-
ing us to define the projecto®=P?=|0)){((0|, 9=1-P. Us-
ing these projectors and the relation®L=LP=0,
L=9LQ the resolvent can be expressed as

G-iw)=(miw-L)t=(iwP-i0Q-QLQ)™?
1

=-—P-
iw in+£

1 -1
Q=-—P-QL7Q
o

1
=—-—P-R for small w,
iw

(17)

where we have defined the pseudoinverse of the Liouvillean
R=QL™1Q. Substituting the termi®/ w in the first term of

Eq. (16) gives

1 1 =N A
= 51 Trsyd 1 (Ol 5™

1 .. ~ .
== o o Trsydlap ™) Treyd{16,7°)
= - —1 |2
iw

(18)

which cancels the last term of E(L6). Applying the same

procedure td5,,(0) we find
Sub(0) = S(0) + S,4(0)
=- %[TrsyﬂaR{fb,ﬁS‘a} +15R{12p™ ] (19

If we introduce the superoperators @particle) current

PHYSICAL REVIEW B70, 205334(2004

right lead by time t given by @R(t)):eEnnPn(t),

(Qé(t))zeZEnnan(t). Using the definition of the curre®d)
and the identity13) we find the stationary mean current and
the zero-frequency current nofse

lor = ed%E nP(| = eXnPM| , (2D
n t—oo n t—oo
d
Soror(0) = ezd—t[z 2P (1) - (2 nPna))z]
n n t—oo
= eZ[Z 2P, (t) - 2(2 nPn(t))
x(E n'ﬂ(t)ﬂ (22)
n t—oo
We evaluatdbn(t) from Eq.(7) and find
Pa(t) = Troy dZor(™ (1) - p™(1)] (23)
and consequently
> Pyt =0, (24)

> NPt = Trsys(IORE ﬁ(m(t)) = Trod Zorp()], (25)

S 2Py(t) = Trsy{IOR(ZE np(D) + ﬁ(t))] . (20

where according to the definitioBp"™(t)=p(t). Now, we

ZcL, Irc defined by their action on the system density matrixemploy an operator-valued generalization of the standard

as follows eIai)=~%{fa,f)}, a=CL,RC with the property
| =€Trg,L,p*"*=€((0|Z,/0)) we can rewrite the above equa-

tion in a compact form

S.(0) = = €X(0|T,RT, + T,RT,|0)) ab=CL,RC.
(20)

generating function technique to calcul&gnp™(t). We in-
troduce the objecE(t;2)=2,p™(t)z" which has the proper-

ties F(t;1)=p(t), dF(t;2)/d2,.1==,np™(t) and satisfies the
equation of motion

SE (G2 =1L+ (2- DIF (52 27)

This equation constitutes the main formal result of this sub-
section and forms the basis for further formal manipulationsusing the generating function the current noise formae)

and eventually the numerical treatment.

C. Counting variable approach—evaluation of the charge
diffusion coefficient

Using then-resolved form of the GME7) we could in

can be rewritten as

+|A:(t;1)}}
z=1

S)R,OR(O) = ez( Trsys{ I0R|:2§Z'E(t ; Z)

principle find the full counting statistio=CS of the charge
transfer through the junction between the right dot and the
right lead, i.e., the probabilitieR,(t) that n electrons tun-
neled into the right lead across the junction by titngiven
by Pn(t)=Trg,p™(t). Here, we are only interested in the
evaluation of the zero-frequency noise for which we just ~ .
need the mean and the mean square charge tunneled into thaplace transfornt(s; z) = [{dte™S'F(t; 2) giving

o

The equation of motion fol%(t;z) (27) can be solved via the

~ 9 ~
— 2Trgyd TorF(t; 1)]Trsy3[ pe F(t;2)

t—oo

(28)
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= . pression as expected and necessary. Similarly, forLihe
[s-L-(z-1)IwlF(s;2) = % P02, (29 junction one finds

with p™(0) being the initial conditions. Recalling the defini- SLo10(0) = el = 26°Tro {7, GR T, o™
tion of the resolvenig(s)=(s—L£)! of the Liouvillean we = X(0|Z, ¢~ 2T, 4R T, 6/0)) (37)
arrive at
~ with Z, op=T'|L){0|p|OXL|.
F(s;1) = G(s)p(0) (30)
D. Equivalence of different approaches

We show the equality between the expressi@t, (36),

and (37). Both formulas contain the same basic building

block consisting of terms of the typg,RZ,. However, there
(31) is an obvious difference: The presence of the so-called self-
correlation or Schottky ternjproportional to the mean cur-
N renf) in formulas(36) and(37). Yet, they give the same value
s behavior ofF(s;z) we study the asymptotics of the above for the zero-frequency noise in the end as we now proceed to
expressions as—O0+. This is entirely determined by the show.
resolventG(s) in the smalls limit. We can use the results The independence of the zero-frequency noise from the
from the previous subsection and substitute—s to get  position along the circuit has been shown quite generally in

the leading asymptotics @(s) for s—0+. Thus, we obtain Sec. lll A using the charge conservation. Thus, the only task
now is to find the corresponding expression for the charge

1)~ aa) = = astat conservation within the superoperator language. Following
F(s:1) sp(o) P (32) the purely stochastic analogywe find that the charge con-
servation condition(8) is expressed in terms of superopera-
1 1 tors by the following equation:
S s

PZLorPp(0) — —| PZirRp(0
. 2R p(0) [ orRp(0) [N}, L]= Ty~ Ty (38)

+ RIgPp(0) - P, nﬁ(”)(o)] . (33)  with the superoperators of occupation of the “sideJ=0, L,
n C, R being given byNJf):%{|J><J ,p}, the current superop-
eratorsZ, were defined previously and the convention Jar
is the same as in Eq$9). The above relation follows from
f:(t; Dl .. =~ pott (34) the definitions of the respective quantities and E45«8).
Since the heat bath does not couple directly to the elec-
| - tronic degrees of freedom its degrees of freedom do not enter
~ ﬁsra<—t + C'””) - RIorp™ (35  explicitly the current and occupation operators, cf. Eg3.

e and(9), and are therefore absent from the corresponding su-
where C"'="Trg {3 np™(0)-ZozRp(0)] is an initial condi- ~ Peroperators. We believe that this property should be re-
tions dependent constant and the stationary current is giveifcted in the identity N, Laamg =0 for any choice of the
by 1=eTry{Zorp™®. The corrections to the large time darr_1p|ng kernel. Obylously, this condition is fulfilled for our
asymptotic behavior are exponentially small—the approacl"»?ho'Ce of th.e dampmg k_erneﬁ). However, fpr the generic
to the stationary state in a Markovian system is exponentialvéak coupling prescriptiGh®! for the damping kernel the

In particular, it is important that there is no tldorrection ~aPove identity may not be satisfied which would break the
charge conservatioif.This raises the possibility that there is

to F(t’.l)"% (which would correspond _to a alike dlve_r— another problem with the Markovian weak damping pre-
gence in the resolvent a&—0+) since it AWOUId combine scription analogous to the translational invariance issue
with the linearly int divergent term i/ 9z F(t;2)| =1, 10 threatening the charge conservation for damped NEMS in-
yield a finite term in Eq.(28). We substitute the above volving coherent charge transfésuch as our quantum dot
asymptotic formulas into Eq28), use the definition of the array). This issue deserves further investigation.

stationary current and the identities (EpP**=1, The charge conservation relati¢88) is used to prove the

Trsys R - =0 to get the final result for the zero-frequency cur-ogition independence of the mean currene((0|Z,/0)) and
rent noise at the R junction, the zero-frequency nois®,,(0) for anya, b. The mean cur-

aiz?(s;a = G(9ZorG(5)p(0) + G(9) X np™(0).

z=1

Because the largebehavior oﬂE(t;z) is related to the small-

J ~
—F(s;z
ng( )

In the time domain this gives

J ~
—F(t;z
0z 62

z=1t—o>

Siror(0) = el = 26?Trgyd TorR Zorp™™) rent conservation follows from
= e2<(6|IOR - 2Z0rRZoR[0)). (36) I = e<<6|IJ+|0>>
In the algebra leading to E¢36) the linearly divergent terms = &((0|Z,.|0)) + ([ N5, £1|0)) = &0 Z,|0))  (39)

in t and the initial condition terms cancel identically so that ~
we are left with a regular, initial-condition-independent ex- due to£|0))=0,((0|£=0. Analogously, we prove the equiva-
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lence, for example, betweeRg oz(0) Eq. (36) andSzcrc(0)  auxiliary quantitiesS ,=eRZp%2 determined by the equa-
Eq. (20). Substituting Eq(38) for J=R into the expression tjon
(20) for Sgcrc(0) we get in the first step

o0)= - 24 0 = ABZrc MRIO) ELam e P Trop2az0. (4
Srcrd0) = = 26X(0|ZrRZrd0)) = €X(0|[Zra NRI|O . o ,
R 3 RETIRC ROTR Equation(44) has a solution since the right-hand side lies in
- €X(0|ZorRZrc+ IrcRIorl0)) the range ofC (the trace of the right-hand side is zgand
- the freedom of adding any multiple of the null vector to a
= - eX(0|ZorRZrc+ ZrcRZogr|0)) particular solution is fixed uniquely by the trace condition
_ _ Trsys2,=0. Of course, this is equivalent to the unigueness
= Sreor(0) = Srrcl0) (40 and regularity of the stand-alone pseudoinveRseMore-

bearing in mind LR=RL=0=1-|0))(0] and finding over, R preserves hermiticity so that the quantiti®s are
e[IRc,NR]ﬁ:%[[iRc,|R><R|],l3] which yields zero when Heérmitian as they should be to give a real zero-frequency
traced over. We proceed similarly in the second step an@oise. This follows from the propertyCA)'=LA for any

obtain HermitianA and the trace-fixing condition ;Ugiazo of Eq.
_ ~ (44).
Soror(0) = = 26(0|ZorR Zor|0)) + €((0l[ Zor, NVR1|O))- Equations(43) and (44) form the starting point for the

(41  numerical implementation of the noise calculation. After the
truncation of the oscillator Hilbert space to tinN lowest
The second term can be evaluated[&g:, Nrl=[No,Zorl  energy states the size of the supermatdx become®
=Tor recovering finally the expressia@6) for Syr or(0). 10N2 X 10N? which makes direct calculations prohibitive due
By extending the argument to other combinations of theto memory and computation time requirements for any real-
junctions we can summarize the formulas for the zeroistic N of the order of 30-40. These problems with the nu-
frequency nois&(0) =S, ;,(0) for anyl, J=0,L, C,Rinthe  merical implementation of the superoperator techniques can
compact form agcompare with the analogous expression forbe circumvented by employing iterative methods in which

the purely stochastic case in Ref. 59, £26)] only the procedure/routine yieldingA for a given A is
~ needed? Obviously, this does not require the storage of the
S(0) = - €4(0|7,,R T + T3 RT14/0)) whole supermatrix%. On the other hgnd, as with ar?y itera-
= tive method, the convergence of the iteration becomes an
+ 8,€(0[[M, Z;.|0)) for any 1,3, (42) issue. In Appendix A we give a brief review of the usage of
This equation merges the two approaches into a single pi¢he Arnoldi iteration in our calculations. Its intent is to guide
ture unifying both the pure quantum mechanical and purdhe reader through the algorithm so that it can be reproduced
classical stochastic formalisms. It has a quantumwith the help of the mathematical referené&§?
mechanical-like form of a “mean value” of the pseudoinverse
of the Liouvillean symmetrically flanked by two current su- IV. RESULTS
peroperators corrected with the classical-like self-correlation _
term. The self-correlation term is only effective for the diag- /e now turn to the numerical results for the mean current
onal elements of the current-current correlation matrix and!: Zero-frequency noiseS(0)=S,,(0) (for any a,b—see
moreover, is nonzero just for the outer junctions where i@Pove, and the Fano factoF=S(0)/el as functions of the
contributes by the mean current. device bias, for different sets of the other parameters. First
we present a generic plot in the parameter regime considered
by Armour and MacKinnot and comment on the general
E. Notes on numerical evaluation features which we can observe in it. We then give a tentative

From the results obtained thus far we see that the evaldnterpretation of those features supported by phenomenologi-
ation of the noise involves two steps. At the first step we fingc@l arguments and results found in different limiting cases
the stationary stat¢*@=lim, ... exp(Lt)p, independent of Studied further on. In particular, we consider two specific

the initial conditionp, and equivalently given by the equa- limiting cases where at least a partial comparison with ap-
tion proximate analytic theories can be made, nan{@lyhe limit

of small dampingwhich is relevant for the issue of shuttling
Lp™'=0, Trysp™'=1. (43)  and strong inelastic cotunneling arid) the limit of weak

Having found 5stat fully ch teri I i interdot couplingwhich implies in a certain device bias
aving found p==- we can Iully characterize ail one-time range the sequential tunneling regime.

quantities pertaining to the system such as occupations of the
different dots, mean current, Wigner functions of the oscilla-
tor in different charge states, etc.

To evaluate the noisésecond stepwe have to find the In Fig. 2 we plot the mean current, zero-frequency noise,
pseudoinverse of the LiouvilleaR=9L™*Q. In practice, we  and the Fano factor as functions of the device bias and tem-
actually do not have to evaluate the whole pseudoinverse bytterature for one of the parameter sets considered in Ref. 16.
we fix a given combination of junctions and evaluate theWe include nonzero temperature and extend the device bias

A. Generic case
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The zero device bias behavior is clearly governed by the
static array physics which is due to partial decoupling of the
electronic and oscillator degrees of freedomegt0 when
the electrostatic interaction on the central site
—(ep/ 2%)X|C)(C| is turned off. The remaining interaction
stemming from the&x dependence of the hopping amplitudes
t.(X), tr(X) is too weak to modify the static result in the
vicinity of &,=0 even for high temperatures. Some discrep-
ancy between the static and high temperature dynamic cases
arounde,=0 is found for higher values of=~1 (strictly
quantum case from the oscillator point of view which was
previously studied in the one-dot shuttling séfifj), yet the
effect is not very pronounced anywayot shown.

! The peaks at nonzero multiples of the oscillator frequency
3 2 -1 0 1 2 3 4 5 were already previously attributed to electromechanical
&b/ hwo resonance&>?°Yet, this explanation is rather broad and cov-
) _ ers a range of processes which can be responsible for the

FIG. 2. (Color onling The mean currerl, zero-frequency noise  glectronic transport such as cotunneling, phonon-assisted
S(0), and the Fano factdf as functions of the device biag for the  nneling, or shuttling occurring around different resonance
static three dot arragdotted ling and the vibrating array at different peaksi®48 The discrimination between the different pro-
temperatures given by the mean oscillator occupation number cagses is quite complicated since it cannot be inferred di-
The ~other parameters ar&/o=0.5iwo, a=0.22VMwo/f, X0 rectly from a singld versuse, curve. Either one has to study
=(5/\2)vh/mewo, y=0.0250, I'=0.05wo which corresponds to the 1o gependence of the curves on different paramiéters
case studied in Ref. 16, Fig. 6. some other kind of information about the system must be
range considered previousfyto negative values which is obtained. A powerful choice is to calculate and analyze the
relevant for nonzero temperature. Wigner distribution functions of the oscillator in the phase

The dotted lines show the results for the static array. Byspace(possibly charge-resolvgd®?248 These characterize
applying the theory of Sec. Il to the static array we foundthe state of the system very well and we will use them in this
analytic expressions for both the mean current and the Fargtudy too. However, even though they are an excellent theo-
factor which we, however, do not present explicitly hereretical tool to study NEMS their connection to data extract-
since the formulas are quite involved. The mean current hasble from a real NEMS experiment is at best remote. There-
a resonant pedk arounde,=0 while there is a dip in the fore, diagnostics based on the measurement of the current
noise around,=0 which was also found analytically for a statistics is clearly preferable and, therefore, our aim is to
two dot array by Elattari and GurvifZ. They attributed the correlate particular features observed in the noise with spe-
dip to the strong Coulomb interaction on the array. Our Fanaific transport mechanisms within the array as identified by
factor shows a crossover from the sub-Poissofifaxi1) dip  the theoretical analysis involving also phase space plots.
arounde,=0 to super-PoissoniafF > 1) “shoulders” start- To achieve this goal we will study different limiting cases
ing around e,=~ £Voe™®0 which approach the Poissonian in which particular features of the noigmore precisely of
limit F=1 for large device bias. The Poissonian limit of the the Fano factgrare pronounced so that they can be attrib-
Fano factor for largey, is understood when one notices that uted to specific transport mechanisms. Yet, the results do not
the current in that limit is very small. Therefore, electronsallow us to associate a given value of the Fano factor to a
tunnel through the array sparsely and, consequently, there gpecific mechanism. It is more reading of the whioleersus
no correlation between successive tunneling events which, curve at least locally around a peak which gives us the
form a classical Poisson process with tR@issoniapvalue  notion of what mechanis(g) are involved in the transport at
of the Fano factoF=1. While the dip around zero and the that given peak.

Poissonian limit for large device bias were observed in the As a rule of thumb we can say that the super-Poissonian
two-dot case as wéft the Fano factor exceeding one was notpeaks of the Fano factor correspond to cotunneling through
present there. We attribute the super-Poissonian behavior the central dot. This statement is supported by the limiting
the (elastig cotunneling through the central dot. studies discussed below, and also by the following evidence

Now, let us discuss the results for movable arrays. Thérom Fig. 2. The peaks only occur for small temperature and
characteristic features are the peaks in current and noise disappear with its increase pointing out to a coherent effect.
the device bias around a nonzero integer multiple of the osThey also appear predominantly at odd multiples of the os-
cillator frequency due to electromechanical resonances. Thallator frequency which is consistent with the cotunneling
current peaks at zero temperatyteerefore, only for posi- picture between the outer dots excluding the central one due
tive multiples of the frequengywere already observed in to the energy mismatch. On the other hand, the dips in the
previous works®2° Some of the noise peaks have further Fano factor curves are due to some form of the sequential
fine structure which is even amplified in the Fano factor extunneling via the central dot. The most important aspect is
hibiting a rather complex behavior around the peaks, espehat the process proceeds via a real intermediate state on the
cially at low temperature, and showing also strong temperaeentral dot in contrast to the virtual nature of the cotunneling
ture dependence. process. The real sequential process is subject to the charge

I/ewy

5(0)/ewy
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conservation which is a strict law strongly suppressing the o y=0.1
Fano factot* and causing the dip. The sequential tunneling 0.06 , , . --- =005 |
picture still involves different mechanisms distinguished by — 1=0.025

the detailed state of the oscillator. The oscillator might be in _ .04
a general nonequilibrium state during the tunneling events 3
(this scenario encompasses both the shufffingd a general {0,02
nonequilibrium oscillator-assisted tunnelfignechanismps

or it could equilibrate between consecutive tunneling events. 0
The latter case is studied in detail in Sec. IV C.

The two charge transfer mechanis(astunneling and se- 2
quential tunneling may coexist, i.e., part of the current is
carried by the cotunneling mechanism and the other pari
by the sequential tunneling, and their relative weights depenc
strongly on the parameters. For example, the transpor
around e,~2hw, is typically governed by shuttling

which results in the dip while cotunneling is dominant 0 0 05 1 15 2 25
arounde,= 3w, giving a peak. However, the dip around 5b/hw0

ep,=~TNwg in Fig. 2 changes into a clear peak wheris en-

larged up toa=0.4 (not shown. This behavior is still not FIG. 3. (Color onling The mean current and Fano factor for

well understood. Even more complicated is the behavio%:o_mmol a=0.28/mwy/ i, Xo=5#i/Mwg, ['=0.2w,, T=0 and
aroundep=~ 4% w, Where there is a dip in the peak. As we different values of the damping coefficiefin units of wp) corre-
show in the next subsection this corresponds to a fast crossponding to shuttling arounel, ~fiwg, 2w,

over between the cotunneling and shuttling transport mecha- .
nisms in the vicinity ofey~4%w,. In order to support the ratel’. At these resonance points the current has peaks mod-

above statements for the generic parameters we study paifately changing with the increase of the damping and the
ticular limiting cases which enable us to associate specifiE@n© factor has local minima with possible shoulderlike

features of the Fano factor curves to specific mechanisms, Structure fu”h?r from the resonance points_ i_n case of the
smallest damping. As established more explicitly below, the

shoulders are a signature of coherent processes through the
whole array(cotunneling and, therefore, are destroyed by
the increased damping.

At the same time the absolute values of the local minima

In this section results for small damping case, i.e.of the Fano factor at the resonances become deeper by the
y=I/e with | a representative value of the currggiven, increased damping. We conjecture that this somewhat sur-
e.g., by its value at the zero device bias pealire prising behavior can also be attributed to the destruction of
presented® First, we focus on the device bias range=0  the quantum coherence and to the crossover into the non-
-2.51wg where electromechanical instabilities which can beequilibrium sequential tunneling regime partially encompass-
related to shuttling were inferred indirectly from the behav-ing shuttling. The minimum of the Fano factor curve starts to
ior of the mean curredf predicted by quasiclassical increase again with a further increase of dampimpt
studies” and subsequently directly observed in the phaseshown as expected from the classical shuttling theory. The
space'® The intuition and simple theoretical estimafégse  minimal value of the Fano factor achieved for the given set
zero-frequency noise is given by the ratio of the variance an@f parameters wag,;,=0.25 which corresponds to a par-
the square mean of the waiting time between consecutivially developed shuttling regime and was also confirmed by
loading events of the classical shuttle, see B8 in Ref.  the phase space pictur@sot shown.
58] suggest that shuttling is a low noise phenomenon with Next, we focus on the rangg~ 2.5 wy— 4.5 wg involv-
the Fano factor close to zero in the nearly perfectly develing two current peaks around,=~3hiwg 4hw, As we
oped shuttling regime. This was recently confirmed by morealready mentioned in the generic case the peak around
sophisticated calculations for the classical drffemnd e,~3hw, corresponds to cotunneling while the behavior
quantuni* shuttle in the one-dot setup. In the present, morearound e, ~ 4%, is given by a complicated interplay be-
complicated setup the shuttling is obscured by competindween both mechanismgsotunneling and sequential tunnel-
mechanisms(coherence between dots, strong Coulombing). With lower damping the differences in the Fano factors
blockade affecting the whole arrpand we will study the of the two mechanisms become more pronounced as we
consequence of this fact on the behavior of the Fano factoshow in Figs. 4 and 5. In Fig. 4 the mean current and the

In Fig. 3 we show the results for the mean current and thé=ano factor as functions of the device bigsare depicted for
Fano factor for zero temperature and three diffeksntall  several(small) values of the damping. We see the strong
values of the damping. In Ref. 48 we presented the phasgamping dependence of the mean current and the Fano factor
space plots of the oscillator which we introduce here in morearound ¢,~3%w, and in the “shoulder region” around
detail later on[see Eq.(45) and Fig. §. They described a g,=~4hwy On the other hand the mean current as well as the
similar parameter range and showed gradually developingano factor do not depend strongly on the damping in the
shuttling aroundey,=~#fw,, 2hwgy with increasing injection close vicinity of e~ 4% wy.

B. Small damping: shuttling and strong inelastic
cotunneling
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0.06 - - giant (divergenj super-Poissonian noise was theoretically
— 1=0.0125 predicted for a quantum dot system in t{strong inelastig
o 0.04f| -~~~ 1=0.015 1 cotunneling regime analogous to ours by Sukhorugbal 24
§ 1=0.0175 The divergence of the current noise is explained as a slow
- 0.02p] v=0.02 switching between two or more current channels carrying

different currents. We expect that the different current chan-
Ol nels are formed from different resonant quantum states con-
60 : : . . necting the left and right dots in the cotunneling regime. Due
to the small damping rate the switching between those chan-
nels is slow giving rise to the highly super-Poissonian noise.
We also observed a quasidivergent Fano fac¢tgr to
F~600 around the shuttling instability transition point in
the quasiclassical limit of the original one-dot shuttle séfup.

2 The explanation of the divergence is again the same, i.e., the
35 4 4.5 slow switching between different current channels. Contrary
z-:b/hwo to the present case the two channels of the one-dot setup are

both given by real sequential tunneling processes via the dot
FIG. 4. (Color onling The mean current and Fano factor for differing just by the state of the oscillatgequilibrated vs
Vp=0.761wq, a=0.28/mwg/%, Xo=5vA/mwy, I'=0.2wy, T=0 and  shuttling. The switching rate between the channels can be
different values of the damping coefficiein units of wg) in the  calculated semianalytically thus quantitatively confirming
strong inelastic cotunneling/shuttling regime. The dots on thethe proposed mechanisihin the three-dot case the semi-
curves corresponding tp=0.0125 denote the points for which the analytic theory would be much more complicated and we do
Wigner functions in Fig. 5 are plotted. not attempt it. A similar mechanism for the quasidivergent
Fano factor in a single-electron-transistor NEMS was also
We attribute the first type of behavior to cotunneling. It is proposed recently by Blantet al3®
manifested by a strong damping dependence of the current Further insight to the details of the microscopic transport
and the Fano factor, the Fano factor reaches very high valuggechanism can be gained by studying the Wigner functions
of the order ofF =50 for small enough damping. The thresh- which describe the oscillator phase space quasiprobability
old for the quasi-divergent behavior of the Fano factor isdistributions. We define Wigner functions of the unoccupied
roughly ynesi=1/€; for the damping below this threshold (Wyy), occupied(Wcc) central dot and their suniWg),
the Fano factor starts to increase. We want to point out that eespectively,

40}
Ky
20}

~
RS N
e Y s L

3

ot

* dy . R R R
Wyu(X,P) = f ZyTe”’W = (Y12)|(p35"+ B+ PadIX + (y/2)),

gy
Wec(X,P) = J ZZGWX — (y/2)[pedX + (y/2)),

Wioi(X, P) = Wec(X, P) + Wyy(X, P). (45)

The behavior in the close vicinity af,~ 4% w, characterized C. Weak interdot coupling: sequential tunneling assisted by

by a weak damping dependence of the mean current and the equilibrated oscillator

Fano factor(of the order of } seen in Fig. 4 is characteristic =~ Here we examine the behavior of the system in the weak
of shuttling. It is confirmed directly by the phase space plotsunneling regime, i.e., when the hopping element®), tx(X)

in Fig. 5 where the crossover from the predominantly shutcoupling the adjacent dots in the array are small and the time
tling transport ate,,=3.961w, to the cotunneling regime at scale between tunneling events is correspondingly the largest
ep=4.12hw, is shown. The shuttling is evidenced by the in the problem. In this limit the phonon subsystem gets
asymmetric Wigner distributions of the occupied or emptyequilibrated between the consecutive tunneling events and
central dotWec, Wy, respectively(first column. The co-  the distribution of the oscillator and bath may be taken at
tunneling manifests itself by the striking absence of any ocequilibrium corresponding to the appropriate electronic state.
cupation of the central dafast column which proves the We can then solve the GMR) using perturbation theory
virtual nature of the transport in that case. keeping only the lowest order terms in the bare hopping
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FIG. 6. The four states @evice empty, L (left dot occupied|
C (central dot occupied R (right dot occupiegland the transition
rates as described by the Markov process given by the transition
matrix (46).

the results are given in Appendix B, Eq812), (B13), and
(B18). The stationary statp® satisfyingMp =0 is found

to be
FIG. 5. (Color onling Phase space representation of the oscil- T
lator around the transition from the shuttling to the strong inelastic CL™RC
cotunneling regime at,/fwy=3.96, 4.04, 4.12, respectivelgol- stat ny| TR #TcTer+ 1)
umns from the left to the right The respective rows show the =N Fe(Ter+ D) (47)
Wigner distribution functions for the empt{W,y) or occupied
(Wce) central dot, and the sum of the tWd/;=Wyy+Wce) in the Fellre

oscillator phase spac¢horizontal axis—coordinate in units of wijth the normalization constanN=[T'rcl'+T'| c(I'cg*T)

VI mayg, vertical axis—momentum infimayg, the grid is at 2.5 in +T e (Tt 2Mpe+ D)L

the dimensionless un?tsThe other parameters ardy=0.78ha, To calculate the mean current and, in particular, the cur-

@=0.28/mwo/fi, Xo=5vA/Mao, y=0.0125m, 1'=0.2mp, T=0. The o oice one can proceed following two possible equivalent

parameters correspond to the dots in Fig. 4. The Wigner functions : .

are normalized within each column. ways which parallel in close qnalogy the two methods used
in Secs. Il B and Il C. In the first method found in Refs. 58,

, ) 59, and 70 one defines an effective operator for the current
parameteVy which turns out to be equivalent to tH&E) running between, e.gl, andC by

theory®® The coherence of the electron transfer process from

the left to the right dot is broken during the transfer by the 0 0o 0 O

long enough interaction with the phonon subsystem acting as 0 0 -IN¢c O

equilibrated thermal bath and, therefore, the resulting picture lcL=¢ 0T o ol (48)
is just sequential tunnelin@T) via the central dot, at least in cL

the device bias range where the above assumptions hold. We 0 0 0 0

defer a more detailed discussion until the end of this subsegng together with the definition of the trace of a veatas

tion where the assumptions will be reexamined and theithe sum of its elements, i.e., T+ = v;, the mean steady state
validity clarified in view of the obtained results. current! reads

When we carry out the approximate solution of E2).in i _ st
the lowest order iV, as described in Appendix B we obtain I'=(lcp) = Tr(lcp®®) = NI'T¢ Ire. (49
the rate equatio(B6) describing a classical Markov process  ysing the current operator we consider the current-current
of the sequential electron transfer between the 4 states whictyrelation function
is depicted in Fig. 6. After introducing the vector of occupa-

tion probabilitiesp=[Py,P,Pc,Pr]” the equation can be Cerel(D = c(De(0) = (e, (50)
rewritten in the matrix formnp=Mp with the transition ma-  wjth the current-current correlator given by Hershfiitl
trix al%® as
-r 0 0 I (c(De(0) = (DT T(Dl c p™
m=| b Tlee e o | +0(= DT T (= Dl o p*™
0 Teoo -(Tc+Tro I'cr +ed(DTr|l o p™ (51)
0 0 FRC - (FCR+ F) ¢

with the time propagatof (7)=expM 7) and Tiv|=Z;|v/.
(46) : : ilvj
This fully classical formula bears some formal resemblance
The rates entering the matrix are calculated as functions db the quantum casd4) but there is an important difference
the model parameters from the microscoBi&) theory and in the presence of thé-function term in Eq(51). While the
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first two terms of Eq.(51) correspond to correlations be-
tween different tunneling events, the third term describes the
self-correlation of a single tunneling event within the classi-
cal description. The self-correlation term cannot be derived
within the rate equation formalism and was inserted by hand
into the noise formula of Ref. 59 based on the results of the
previous more microscopic stud§Following the same line

of arguments as in Sec. Il B we get the following expression
for the Fano factoF=5(0)/el:

FoC 2Tr(1cL.QM QI ¢ p™™®) + e Tr|l ¢ p**? (52
e(' CL> [0

with the projectorQ=1-p*®®[1,1,1,1, Q?=Q. There- mwo/h '
fore, the Fano factor is determined by the pseudoinverse o
the transition matrixQM 1Q in analogy with the quantum-
mechanical case.

Exactly the same formula for the Fano factor can be ob- FIG. 7. (Color onling The Fano factor in the two-state sequen-

tained by employing the full counting statistics approachyjs yynneling limit(zero temperature, larg®). The thick line is the

analogous to the calculations in Sec. Ill C applied to the;omputed Fano factor while the thin lines with circles are given by
classical rate equation. To calculate the noise one has to ifne formulanZ +(1-nc)2 wherenc are the occupation of the central

troduce the counting variable describing the number of dot. The collapse of the two curves marks the sequential tunneling
electrons that tunneled across a chosen junction, e.gL.@Ghe region. The values of the other parameters ¥e=0.1wg,Xo
junction between the left and the central dot. Since in the=5\4/mwg, y=0.1wy,I'=0.1w,, T=0.

present setup electrons can tunnel in the backward direction,

i.e., from the central dot to the left dgsee Fig. 6 n can et or the central dot are occupied since the right dot and

become negative as well. This technical detail slightly mOdi'unoccupied state are immediately emptied in favor of the left
fies the derivation which, however, closely follows the pre-45: pue to the zero occupation of the right dot, the Tatg

vious lines. We start with Eq22) where the probability that - gegpite its nonzero value drops out from the expressions for
n electrons tunneled across the Jungt|on_(p05|t|ven(§)or— the stationary probability distribution, mean current, and
responds to the left-to-center directionP,(t)=Py"(t)  Fano factor. If, moreover, the temperature is zero we expect
+P(L”)(t)+Pg‘)(t)+Pg1)(t) is determined by then-resolved the ratel’| ¢ to vanish(for T=0 only the positive device bias

form of the rate equation ranges, >0 is interesting from the ST point of vievand the
) - - stationary probability, mean current, and Fano factor assume
Py’ =-TPy" +T'Pg the well-known form for a two-state procé488
P =TP{ - T P{" + I P 0
1 ke
. Proete0= o : (549
PO =T P"™ = (N c+ TroPE + T crPY Ter* Trel T
0
PR =TrcPl = (Tcr+ TIPE (53 .
which is an intuitive generalization of the original rate equa- It e T=0= —CcLRe (54b)
tion (B6) obtained by including the transferred charge statis- Feo+ Tre
tics across thé&.C junction, see Fig. 6. Performing the calcu-
lation of the noise from Eq22) in the spirit of Sec. 1l C we F B T2 +T3c 54
come to the formul@52) again. We want to stress that using [—ee, T=0~ (TeL+Tro?’ (540

this second way of derivation gives us the entire formula

with the self-correlation term and even the definition of theAs a consequence of these relations the Fano factor
current operato(48) appearing naturally in the course of the can be expressed in the limif—,T=0 in terms of,
derivation. In this sense the intuitive generalization of the€.d., the stationary occupatiar=Pg* of the central dot as
rate equation incorporating the transferred charge resolutioi=na+(1-nc)2 This is an identity relating the Fano factor
yields the full microscopic description of the whole processand the central dot occupation in the ST regime regardless of
(contrary to the bare rate equatjoand no heuristic argu- the particular values of the rates provided that the above
ments are necessary to get the self-correlation term. assumptions are fulfilled.

For the process determined by the rate matdg) the In Fig. 7 we show the Fano factor as a function of the
Fano factor can be rather easily evaluated analyti¢alne  device bias for smalV/,, zero temperature, and three differ-
resulting expression is, however, complicated and will not beent values ofa calculated numerically by the method de-
given here. In the limit whelfr>T'¢ ,I' c,T'rc,I'cronly the  scribed in Sec. Il E. We expect the system to be in the two-
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10 . : T —2r-{ = Numerical
—— T, numerical LU P(E)-theory
1072 — T'per Numerical | 1 ol B Static
- FCL, P(E)-theory )
3 --. T, P(E)-theory —
é’ 107} RC I 10°L ‘
~ L ' 4, 5 ' L
1074 6 -4 -2 2 4 6

o 1 2 3 4 5 6 7
5b/hwo

FIG. 8. (Color onling Comparison between the numerical rates
and the ones calgulated by tH&E) theory for Vy=0.1wg, 8(,/5600
=0.2mwg/ i, Xg=5VA/Mwq, y=0.1wg,['=0.1wg, T=0. The nu-
merical rates are calculated assuming that the two-state sequential
tunneling picture holds which is only true fep= 1.5w,, see Fig.
7. In that region the two results match almost perfectly.

FIG. 9. (Color online Comparison between the numerics and
the P(E) theory based sequential tunneling picture fdf
20.05'10)0, a=0.2\s‘°mw0/h, XO:S\ﬁ/mwo, ’}/:O.lﬂ)o, on.lu)o, ﬁ

=1. Due to the nonzero temperature the two-state model considered
state ST regime described above. The thick lines are the Fan® Figs. 7 and 8, had to be extended and there is a sequential tun-
factor calculated directly while the thin lines with circles neling region also for a negative bias. We observe a nearly perfect
show the quantity1(2:+(1—nc)2 with nc being the occupation match between the two approaches [fgf = 1.5 w,. The behavior

of the central dot calculated from the numerical evaluation ofirounde,=0 is clearly governed by the physics of the static array
the full p5 We see a nice collapse of the two curves forsince the oscillator is largely decoupled from the electronic degrees
roughly e,= 1.5h0, (depending slightly on the value af).  of freedom.

The collapse marks the two-state ST region. The discrepancy

around O<ep=1.51wy is due to cotunneling processes pre- semianalytical results is shown for both the mean current
vailing over the ST ones in that region of. The electrome- (log scalg and the Fano factor. Since the temperature is non-
chanical coupling terms are proportional 4g and Vy and,  zero there is a new ST region for a negative bias. We see a
therefore, the heat bath consisting of the mechanical degreg@od match between the two approaches in the bias range

of freedom gets almost decoupled in the ST regigmall  |¢y|=1.5w,. The fine structure around, being an even
V) at smalle, and does not suffice to break the coherence ofnultiple of the oscillator frequency is given by the interplay
the cotunneling processes. between the values of different tunneling rates in those re-

We have thus verified that the identity implied by the gions similar to the switching of the relative magnitude of
two-state ST process is satisfied by the numerical resulty’, andI'rc in Fig. 8. The behavior arouns,=0 is clearly
While it helped us to identify the region of ST, however, thegiven by the physics of the static array also shown in the
mentioned identity does not depend on the values of théigure so that there are only small regions around
rates. In the next step we calculate the values of the rates = +#/wy which are not covered either by the ST or static
I'cL,I'rc from the numerical results for the mean current andpicture. To summarize, we have shown that the electronic
occupation of the central dot or Fano factor by inverting Egstransport through the array in the sm¥j limit can be suc-
(54), plot them in Fig. 8, and compare with the rates calcu-cessfully describedin the device bias rangg| = 1.5 w)
lated semianalytically according to ti¢E) theory presented by the ST theory with the transfer rates determined semiana-
in Appendix B. We see a nearly perfect match between théytically by the microscopid®(E) theory.
two approaches in the regime of the two-state ST. The nu-
merical rates were calculated using E¢&4) in the whole
range ofe, and, therefore, do not represent the correct rates
in the cotunneling dominated regineg=< 1.5 w,. The semi- We have developed theoretical techniques to evaluate the
analytical rates also confirm the cause of the ST mechanismrero-frequency current noise in nanoelectromechanical sys-
breakdown discussed above. Tihg rate yielding the bottle- tems. Two parallel lines have been developgg:quantum
neck of the ST current essentially vanishes below the STegression theoreniQRT) and (ii) full counting statistics
threshold and higher order processe¥jr(cotunnelingtake  (FCS. QRT has the advantage of being applicableatty
over. correlation functions involving exclusively system operators,

We show a representative plot of the general ST resultsvhile FCS gives perhaps a more direct access to the current
without the assumption§=0,I'>T'¢,I' c,I'rc,I'crin Fig.  noise, but, on the other hand, other correlation functions can-
9. The comparison between the numerically calculated andot directly be accessed with it. We have demonstrated the

V. CONCLUSIONS

205334-15



FLINDT, NOVOTNY, AND JAUHO PHYSICAL REVIEW B 70, 205334(2004

equivalence of the two approaches for the model considered Lqy - Ek @ Laa;

in this work, but we emphasize that the equivalence is criti- e = ' fork=1, ...]

cally dependent on whether charge conserving approxima- IlCay - Erzl(qi‘r.qu)quz' B
tions are used. The three-dot model considered in this paper

has a rich phenomenology allowing one to study the effect of (AL)

the internal coherence of the electronic states, ar_u_j by tuning complex uppetj +1) X j Hessenberg matrix
the system parameters we can study the transition from a
co-tunneling dominated regime to a sequential tunneling re- hig hip hig hig oo hy
gime. The generalized master equations studied in this paper hoo hoo hoa h h,
involve large matrices, and we have discussed in detail the 21 "2z 723 T24 e 2
numerical schemes that are needed in their solution. In cer- H. = 0 hgp hgs hgy ... hg; e CU+Dx;
tain limiting cases approximategsemjanalytic theories can J 0 0 hyg hyy ... hyj
be developed, and we have found an excellent agreement . . ..
with the full numerics. We have interpreted the computed - -
current and noise curves in terms of physical concepts, and 0 0 0 0 .. hyy
gained an understanding of when one can expect either sub- (A2)
or super-Poissonian behavior. We believe that a successful . _ .
interpretation of numerical results requires a simultaneou&® .recorded X‘”th the Elemenm,k—qi-ﬁqk, for 1=1,...k
analysis of several quantities such as mean current, Fa o) an.dhk’rlyk'||£q'<_zi=1hivkqi”2 fork=1,...J. It enters the
factor, and Wigner distributions. ollowing important relation:
There are several lines along which the present approach L£Q;=Qjs1-H;. (A3)
can be continued. An interesting and important issue con-
cerns the finite-frequency noise, and we are presently exanﬁefore proceeding we stress the main feature of the iterative
ining extensions of our theory in that direction. Spin degreeKrylov subspace methods which consists in the fact that the
of freedom has been neglected in our calculations, and mordmension of the Krylov space is considerably smaller than
work in that direction is called for. We have pointed out the dimension of the original space in whidhuncateg £
certain restrictions in the derivation of the generalized maste®Cts(j =20 in our calculations compared to the dimension of
equations, and one should look carefully at effectgipla ~ 10N°~20000 of the relevant part of the truncated super-
more realistic confining potentiglj) the interplay of the two ~ space. The required operations like finding the null space or
different baths, andiii) issues related to charge conserva-the pseudoinverse of are performed approximately in the
tion. We also expect to get inspiration from experimentalKrylov subspace onlyin the sense specified belpwhich
studies of quantum shuttles, which we hope are soofnakes them very fast. These fast operations are then iterated
realized® in order to achieve the solution of the original problem.
The first task is to calculate the stationary density matrix
p*@from Eqg.(43). This means we are looking for the unique
ACKNOWLEDGMENTS null vector of the superoperatdt. We choose an arbitrary
initial vector X, (whose choice can be motivated by a physi-
The authors thank A. Armour, T. Brandes, T. Eirola, K. cal guess of the stationary state to improve the convergence
Flensberg, G. Kiellich, A. Pomyalov, and A. Wacker for and construct the Krylov subspaki(L ,x,) for a fixed small
stimulating dlscussmr_ws_ and com_ments. The_z authors are vety Then we look for a vectox=Q;- E=(&, ... ,gj)T,
grateful to A. Donarini for sharing numerical codes with ||g|,=1 in the subspace which minimizes the ndffx|, in

them and illuminating discussions. This work was supportetrder to approximate the null vector. Using E@3) the
by the Oticon FoundatioCC.F.) and Grant No. 202/01/D099 pr0b|em can be reformulated as
of the Czech grant agenay.N.) which the authors grate- ) . )
fully acknowledge. min[£Q; - &l,= min|Qj.1 - H; - &2 = min||H; - &,
llél=1 lldlp=1 llél=1
(A4)
APPENDIX A: ARNOLDI ITERATION due to the proEert)HQj+1-u||2=||u||2 for an arbitrary vector

The key concept of the Arnoldi iteration is the construc-Y= (U, - Ujr) . o
tion of the Krylov subspace k(LX) The last step leaves us with a problem of minimizing the

=sparixo, £Xg, L2Xo, ... ,LI7X,) for a chosen initial super- MMM in aj-dimensional space spanned by the columrid of
vector xg and successively the computation of an orthonor-Wh'Ch can be s_olved Tby performing the smgula'r value de-
mal basisQ;=[qy, ...,q;] in it by the Gram-Schmidt or- composition H;=UZVT of the rectangular matriH;. U

G+ X(+1 X H 5
thogonalization. In the orthogonalization process defined b3§ Egia;(] ' and V E‘,((fil);ja.re unitary -matrices _Whe,reas
the recurrence relation = 01,09,...) el is diagonal with positiver,’s

being the eigenvalues ofH/-H; sorted in the descending
order® ie., 0;=0,=...0;=0. The norm |H;-§,
gy = Xo_ =|[2V*.¢, is minimized by choosing fo€ the last column
[Xoll2" of V belonging to the smallest singular valugof H;, i.e.,
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£=vj. The vectox=Q;-v; is then an approximate null vector must be attempted anew based on experience and intuition.
of £. If the norm||£x||,>tol one replaces the initial guexg  For example, we tried to solve our model for some param-
by x and repeats the procedure. The tolerance was chosen eters with the damping kernéb) replaced by its translation-
tol=10¢| L[, with e being the machine precision and the ally invariant form from Ref. 22. The same preconditioning
norm of the Liouvillean was estimatéd as |||, yielded a convergent iteration scheme in much restricted
=exgN/log(N)]. range of the device biases compared to the rotating wave
To ensure the convergence of the iteration it may be necapproximation form of the damping used otherwise. Also the
essary to use preconditioning, i.e., one solfes=0 where honzero temperature calculations converged significantly
7= ML with a suitable operata-! which should be as slower than the corresponding zero-temperature counterparts.

close to the pseudoinverse fas possible in order to sepa- In the sequential tunneling limit the nonzero temperature cal-
rate the zeropei envalue from thg rest of the s ectrurﬁpof culations actually failed to converge at all so that the data

9 P . presented in Fig. 9 had to be calculated with a direct method.
and thus speed up the convergeftt@f course, in practice

one does not have a routine for a pseudoinverse @nd Fortunately, the oscillator is in that limit close to its equilib-
o o P rium state so that we needdt:15 at maximum which made
some heuristic preconditioning must be used. We used as ﬂ%ﬁe direct calculations feasible

preconditioning the inverse of the "Sylvester pafg of L. As for the implementation of the numerical algorithms we

If we write £p=Ap+pAT+=;B/pB/ then the Sylvester partis ysedumaTLas on personal computers and/or Linux worksta-
given by Lyp=Ap+pA’. Performing the inversion£51 tions. The building blocks are handy wATLAB including
amounts to solving the Sylvester equation which is a relathe preconditioned GMRes routine with restarts which solves
tively fast procedure scaling witN®. The usage of the pre- completely the noise calculation part of the problem. For
conditioning was in our case crucial for the convergenceefficiency reasons the stationary part of the code was written
After the iteration reaches its end the stationary density ma*rom scratch” within MATLAB. The memory requirements
trix is obtained by imposing the unity trace condition to thewere negligible(about 10—20 MB of RAM forN up to 40
solution, i.e., x> p*& TrgHpS=1. and the calculation foN=40, T=0 for a given set of the
The next step is to calculate the zero-frequency currenbther parameters lasted a few minutes on a Linux worksta-
noise from Eqs(42) and(44). Equation(44) can be solved tion, moderately depending on the parameters via the number
iteratively in the Krylov subspace by thgeneralized mini-  of required iterations to reach the convergeladactor of
mum residuaimethod(GMRe9. If Xq is an initial approxi- 2-3). As already mentioned the nonzero temperature calcu-
mation for the solution offx=b the Krylov subspace is lations were much slower and could take up to an hour for a
generated by the Arnoldi iteration starting with the vectorgiven set of parameters. Most of the calculations were done
ro=b—-Lxy and the GMRes method finds a vectorfor N=25, though, since this level of truncation was usually
X e Xg+K;j(L,rg) that minimizes the norm of the residual sufficient as tested by comparing results with different values
r=b-Lx. The vectorx is assumed in the form=x,+Q;-¢  of N. We also checked occasionally that different choices of
and the solution that minimizes the norm of the residual igunctions for the calculation of the mean current and the
obtained from noise (42) gave the same numerical results within a very

) _ ) high accuracy.
minfb = £x]l, = min[b = L(xo + Q; - )|l = minro = LQ; - ],
APPENDIX B: MICROSCOPIC DERIVATION OF THE

=minro= Qjir-Hj - &, RATE EQUATION
=min|Qj.1 - (&B8—H; - 9|, In this Appendix we give the derivation of the rate equa-
=mine,3 ~Hj - &2, (A5)  tion describing the sequential tunneling regime realized in

the limit of the weak interdot couplinyy— 0. To this end

with B=|rll, and e,=(1,0,...,0". The last minimization we solve then-unresolved version of the GM&) using the
problem is solved easily by th@R decompositiorof the  lowest order perturbation theory \y. For smallV, the rates
small rectangular matrikl;=UR, whereU e C(Jfl)xl has or-  (proportional toV2) are small and we may assume that the
thonormal columns (UTU=1) and Re (™ is upper oscillator gets equilibrated between individual tunneling
triangular. If H; has full rank the solution to the events between the adjacent dots. Within these assumptions
minimization  problem is obtained by solving we can find a closed set of equations for only the occupations
R-é=pU".e,. If |[b—Lx||,>tol the x,, ro are replaced by, of the respective dotB,, P, Pg plus the probability that the
r and the sequence of steps is restarted. Again, the iteratiafevice is emptyP, (P, +Pc+Pg+Po=1).
may not converge without preconditioning. We used the These quantites defined  as P=(l|Trygs go]l)
same preconditioning as in the calculation of the null vector(1=0,L,R,C) obey the following equations stemming from
ie., we solved the problenty'Lx=L5'b by the above- Eq. (2):
described algorithm. In the end of the iteration we fixed the _
solution by removing any component in the direction of the Po=-TPy+I'Pg,
null vector by imposing the trace condition of E¢4).

It has to be noted that the choice of some suitable precon- oo : A Sy g (oA
ditioning is the difficult part of the problem and most prob- PL=TPo+Trose 01t (X) ~t(Moel
ably there is no general hint how to proceed. Particular cases =I'Po— 2 Im{Trosc d 01 cti (X1},
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Pc= iTrose,d oLt (%) — 1L (X)0Lc + Tertr(X) — tr(X) Trcl Pc=Tc P~ (Tc+ TrdPc+ TerPrs
=2 Im{Trosc,i&LCtL()A()]} +2 Im{Trosc,E{a'RCtR(S\()]}y .
Pr=TrcPc— (I'cr+ I)Pg, (B6)
Pr=—TPgr+iTrosc d 0rdR(X) — tr(X) OcR] where thel'|;’s, the transition rates from the statdo I, are
=~ TPg= 2 IM{Trose drctr¥}- (1) 9ven by
We notice explicitly that the charggrobability) conserva- [o =2 R{ J dreien/27 TrOSC‘B(e—iHéSCTa_OSC' H0)
tion condition Py+P_ +P-+Pg=0 is fulfilled. The occupa- 0
tions couple to the off-diagonal elemerits:, o satisfying . R
XtL(s‘()el[HOSC—(sbIZXO)x]‘rtL(;()) '
o [ €bA ~ Ebo Ny~
oc=- |<EULC + U'LCZ_XOX"' [Hoso ULC])
+iloyt (%) —t (X occ] +iogt (%) (B2) [c=2 R{f dreien2r TrOSC’B<e‘”:'$scTtL(>“<)
0
) . €h ~n -~ AV A .
Ocr="1\~ XOXO-CR-'- OcR, ¥ [Hoso 0crl X Gose B(ﬂ)ei[Hgsc—(eb/zxoﬁ]ftL(;())] ,
"\ 2X%g
+i[ocdtr(X) — tr(X) orpl — it (K)o R~ E&CR- - R
(B3) Fre=2 Re{ fo dre 127glen/2 Trosc,B<e_'HOSCTtR(§()
In the full generality, these equations would generate an in- . ep ) i o
finite hierarchy of equations for different moments of the XUOSC,B<2—)e'[Hosc'(*’D’ZX())X]TtR(x)) ,
whole density matrixo. However, in the lowest order i, %o

we can neglect the coupling tq g (which is of higher order

in Vo) and formally integrate the equations leading to [eg=2 Re[f dm—r/zfeisblzfTrOSC’B(e—iH(;SCT&OSClB(O)
0

a'L(:(t) == if dT[e_i(':"gscﬂblz)TtL()A()a'cc(t -7
0

A ><tR(%)e‘[“ésc‘“tﬂ*omftR(%))] : (B7)
% ei[HéSC—(ak/Zxo)f(]r]
w . These rates can also be obtained starting from the Fermi
+ iJ dr e Mosc 75 | (t— Dt (X) Golden Rule expression for the bath-assisted electronic tran-
0 sitions [P(E) theory®] bearing in mind that the electronic

.~y . state on the right dot is broadened by2 due to the cou-
X @/ose (/20417 (B4 pling to the(en?pt)b right lead which ca!:Jses the appearance
and similarly forgcq(t). Now, we can employ the standard of the e/" factors in the expressions félzc, 'cr
Born-Markov approximation assuming the oscillator plus To evaluate the rates we generalize the method used by
bath subsystem in local equilibrium corresponding to a giverBraig and Flensbefd for the a=0 case. The shifted Hamil-
charge state, and neglecting the memory effects in the evdenian H,_—(e,/2Xy)X can be eliminated by performing a

osc
lution of P|(t)’s (both assumptions are justified by the small suitable unitary transformation which is a generalization of

Vo): the well-known polaron shift from the independent boson
N 5 (OP modef? to more oscillator modes and which is given by the
o1 (t=17) = Gosc dO)PL(Y unitary operatdt
. . (e S=eA A=pl+ > pl, B8
Fect=1) = aosc,B(io)Pca) (85) © P+ 2, (B9

A — AR AR _ B %) wherel and|; are constants to be determined so that the
Wt Grgge, gh) =€ Pesc ./ZO\)’ Z(\) Tr".SC'B(e o), linear shift is canceled. It was found in Ref. 24 that
where Tgg. g Means tracing over the oscillator and the heat

bath. _ T & _ _le_
The rate equations for the evolution of the probabilities I= nmod T mw? (B9)
are thus oo 17
. and
POZ_FP0+FPR, 5
) € o _ &ty & €p
. H ..— —Xx=SH - . B10
PL=I'Py—Tc P+ T cPe, =2 o= BxoMaw; (810
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We may thus rewrite the expression for, e.g., ke rate p( 2 2
as G(7; ) = exp 5(2A(7;— @)AT(0;- a)

L =2 Re[ f drei(ew (Leey/ e - AY(7;- @) - A(0;- a)>o>
0

and we have thus established that

_'Hosc 4 Hosc
X<e tL(X)S el S:L(X)>O:| ' (Bll) G(T; a,) = F(T;— a,)_ (813)
with the expectation valué)o=Tros. d -Gosc £0)]. Using the The functionF(7; a) can be rewritten in terms of the follow-
Baker-Hausdorff theorem and introducing the functioning auxiliary quantity[Ax|, see Eqs(B8) and (B9)]
F(r; @) =(gA-XgA-a%)y  satisfying F* (7 a)=F(-7; @)

we get E(r;a:1) = (A(r; A (0;a))o = ([A(7) + 1a%()TTAD)
FCL — Vge—Za(Xo—l/Z)E |: W= ) ( 1+ Ep ) . a:| . - IaX(O)]>0 (Bl4)
2 4X(2)mw§ We evaluateE(7; «;l) following the lines of Ref. 24

(B12g  where E(7;0;l) was evaluated. The idea is to express the

o . function E in terms of the retarded Green’s function
Similarly, for the corresponding backward rdtg: we get

- Vge_2a<xo_|/z>@{w __ @(1 - ) ;a] | EX(riail) = - (A AT O], (B1H
Axgmag

using the fluctuation-dissipation theorem
(B12b

e E(w:a:1) == 2 IMER(w:;a:D][1 +n B16
with the functionG(7; a) =(e A(N-aX(DgA-eXy  The transfer S MEN ;D] s(w)]  (B16)

rates between the central and right dot read and then findER by solving its equation of motion in the
" Fourier spacéfor details of the derivation see Ref. )/ As-
FRC:Vge—Za(XOHIZ)f d_"’f:(w;a) suming the Ohmic coupling between the oscillator and the
o 27T heat bath, i.e.J(w)=myof(w/w,), we find
r 2
X - (B120  ER(yai=— 90| q 42 ) o299 42
{ 8'3( b )] r'\2 T 0? - w2 +iyw ) Maw? 1)
w-—|1- + | = 0 Y 0
2 4X%mw(2) 2 o2
+— |, B17
mzwg} (B17)

* dw~
r zv2e—2a(xo+|/2)f —G :
CR™ Y0 o 27T (@) which coincides with the result of Ref. 24 far=0. We fi-

nally arrive at the expression for thefunction

. (B12d)
2

F(ra)= exp{ F d—w[E(w;a;l)e_i“T—E(w;O;l)
o 27T

The evaluation of the functions(w; «) andG(w; «) fol- +E(w;a;0)]}
lows a standard route found in textboal®ef. 73, Sec. 4.3;

Ref. 45, Sec. 4.4, or Ref. 74, Ch.)2@echnically, the task is "

to evaluate a particular characteristic function qinaultidi- j wl+
mensional Gaussian distribution. The result is again Gauss- —e

ian, into which only second-order correlation functions enter.

Ng(w)  mwgy {(Izwz
0

w (? - w(z))z + Y w?

2 . R 20w P’ ior 122 o’
We introduce the operatdk(r; a) =A(7) +iaX(7), so that -t 5| = Fop+ 2ot | [ (B18)

2 Z 2 2 m m (UO 0
F(r: a)_<eiA(r;a)e—iAT(O;a)>O, G(r: a):<e—iA(r;—a)eiAT(o;—a)>o_

Since H(’,Sc is quadratic inX, X; andp, p; we may rewriteF

The analytical structure of thE function, in particular the
power law decay for large times at zero temperatt(e)

andG as x 70 r—o, T=0, d=mPy/fm, remains the same as in the
p(l 2 2, 2, 2 ) a=0 casé* since it only depends on the behavior of the
F(7;a) = exp 3(2A(T; )A'(0;a) — A%(T; @) = AT™(0;a))o/, prefactorl2w3 - 2al o/ m+ a?w?/ mPw? at o — 0"
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