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Abstract

We analyze electron transport through a quantum shuttle for the applied volt-

age below the instability threshold. We obtain current-voltage characteristics

of this system and show that at low temperature they exhibit pronounced

steps. The temperature dependence of the current is calculated in the range

from 2K to 300K and it demonstrates a wide variety of behavior - from 1/T

decreasing to an exponential growth - depending on how deep the shuttle is

in quantum regime. The results obtained are compared to experimental data

on electron transport through long molecules.
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Recent achievements in nanotechnology facilitate development of a new generation of
nanodevices incorporating mechanical degrees of freedom, nanoelectromechanical systems
(NEMS) [1–3]. In this, one of the most promising device structure is a single-electron shuttle
[4] carrying an electron flow between two contacts. Even classical aspects of this model were
shown to be important for a description of electron transport through a nanomechanical
bell [5] and a C60 single-molecule transistor [6]. Theoretical analysis of such a system in
the classical framework was done in Refs. [7–9]. However, many properties of NEMS can
only be understood on a fully quantum mechanical basis. Quantum regime of the shuttle
having mass m and characteristic frequency ω0 occurs when an amplitude of zero-point

mechanical fluctuations, ∆xzp =
√

h̄/2mω, is of order of a tunneling length λ involved in
dependence of the tunnel matrix elements on the distance x between the shuttle and the
leads, Tkα(x) = Tkα exp(x/λα) (α = L,R;λL = −λ, λR = λ). Effects of quantization of
the mechanical motion were examined in Refs. [10–12] and the occurrence of the shuttle
instability was predicted in Refs. [13,14] for the zero temperature case.

In the present paper we examine the electron transport through the shuttle system at
low applied bias voltage (below the instability threshold) with the special stress on the
temperature effects. To accomplish this, we perform a combined theoretical analysis of
mechanical motion and electron transport in the model of the quantum shuttle carrying a
single electron level (strong Coulomb blockade regime). We show that at low temperature
current-voltage characteristics exhibit pronounced steps. The first step takes place when the
applied voltage compensates the initial separation between the single electron energy level in
the shuttle. The second step occurs when the applied voltage facilitates electron tunneling
from the left lead to the shuttle with absorption of virtual ”quantum” of mechanical motion
(phonon) by electron with consequent emission of this ”phonon” during electron tunneling
from the shuttle to the right lead. Moreover, we demonstrate that there is instability of
electron transport through the shuttle, when the applied voltage is enough to produce this
”phonon” absorbed by the shuttle system.

We show that the character of the current through the system as a function of temper-
ature is strongly dependent on quantum parameter

ν0 =
h̄

2mω0λ2

which defines a relative level of zero-point mechanical fluctuations. In particular, we demon-
strate that systems with relatively small zero-point mechanical fluctuations (ν0 ≤ 0.1) ex-
hibit weak temperature dependence of the current-voltage characteristics I(V, T ), whereas
for the quantum shuttle with ν0 ≥ 0.4 we obtain the current as the exponential function of
temperature. It should be emphasized that the model of the quantum shuttle can be of prime
importance for theoretical explanation of some aspects of electron transport through single
molecules and self-assembled monolayers [15]. An organic molecule is coupled to the leads
with elastic links [16] and may oscillate as a whole. These oscillations are reflected in the
temperature dependence of the current-voltage characteristics of the system [17]. It should
be noted that experimental current-voltage characterizations of organic monolayers demon-
strate a wide variety of temperature behaviour - from a weak temperature dependence for
molecules C8, C12, and C16 sandwiched between Au contacts [18] to an exponential temper-
ature dependence of a conductance and current that has been observed by D. Stewart et al
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[19] in experiments with a Langmuir-Blodget monolayer of eicosanoic acid (C20) connected
to Pt electrodes. The latter results have not yet explained because only no temperature
dependence (in the case of direct tunneling) or activation dependence (in the case of hop-
ping transport) were expected. We suggest that the mechanical molecular motion may be
the reason for such exponential dependence. The difference in measured temperature de-
pendences probably reflects the difference in connections of the molecules to electrodes and,
consequently, the different parameters ν0 for these systems.

To examine the electron transport through the quantum shuttle, we start from the Hamil-
tonian having the form (h̄ = 1, kB = 1)

H =
p2

2m
+

mω2
0x

2

2
+ E0a

+a+
∑

kα

Ekαc
+
kαckα −

∑

k

(Tkαc
+
kαa + T ∗

kαa
+ckα)e

x/λα . (1)

Here α = L,R, λL = −λ, λR = λ, and V is a voltage applied to the leads [20]. The equations
of motion, derived from the Hamiltonian, Eq.(1), are given by

iȧ = E0a−
∑

kα

T ∗

kαckαe
x/λα ,

iċkα = Ekαckα − Tkαae
x/λα ,

ẍ+ ω2
0x =

∑

kα

1

mλα
(Tkαc

+
kαa + T ∗

kαa
+ckα)e

x/λα . (2)

It should be noted that we take into account nonlinearities associated with a nonlinear
exponential dependence of the tunneling elements on the distance between the shuttle and
the leads.

The electric current through the shuttle is defined as I = IL = −IR, where

Iα = e
d

dt

∑

k

〈c+kαckα〉 = −ie
∑

k

T ∗

kα〈a
+ex/λαckα〉+ h.c. (3)

With the expression for the electron amplitude in the lead derived from Eq.(2), as

ckα(t) = c
(0)
kα(t) + iTkα

∫

dt1e
−iEkα(t−t1)a(t1)e

x(t1)/λαθ(t− t1), (4)

and using the formula

〈a+(t)ex(t)/λαc
(0)
kα(t)〉 =

−iTkα

∫

dt1fα(Ekα)e
−iEkα(t−t1)θ(t− t1)〈[a

+(t)ex(t)/λα , a(t1)e
x(t1)/λα ]+〉, (5)

resulted from the Langreth theorem, we obtain the electric current, as given by

Iα = −e
∑

k

|Tkα|
2
∫

dt1fα(Ekα)e
−iEkα(t−t1)θ(t− t1)〈[a

+(t)ex(t)/λα , a(t1)e
x(t1)/λα ]+〉+

∑

k

|Tkα|
2
∫

dt1e
−iEkα(t−t1)θ(t− t1)〈a

+(t)a(t1)〉〈e
x(t)/λα , ex(t1)/λα〉+ h.c. (6)
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Electrons in the α−lead are assumed to be described by the Fermi distribution fα(E) =

f(E−µα) =
[

exp
(

E−µα

T

)

+ 1
]

−1
. For averaged values of electron correlators we have approx-

imate expressions 〈a+(t)a(t1)〉 = NeiE0(t−t1), 〈a(t1)a
+(t)〉 = (1−N)eiE0(t−t1) with N = 〈a+a〉

being a steady-state electron population of the shuttle that can be found from the condition
IR+ IL = 0. Using previously derived formulas (see Appendix in Ref. [17]) in the wide-band
limit we obtain the expression for the current, as

Iα = eνceΓα

+∞
∑

m=−∞

+∞
∑

l=−∞

Jm(ν0)Il(νc){N [1 − fα(E0 −mω0 − lω0)]−

(1−N)fα(E0 +mω0 + lω0)}. (7)

Here, Jm(ν0) and Il(νc) are usual and modified Bessel functions of order m and l, respec-
tively, Γα = 2π

∑

k |Tkα|
2δ(ω −Ekα), and νc = 〈x̃2〉/λ2 is a relative dispersion of mechanical

oscillations for the nonequilibrium case. In the following, we consider symmetric coupling
between the shuttle and the leads, ΓL = ΓR = Γ. A steady-state value of the electron
population in the shuttle is determined by the relation

N = C/D, (8)

with

C =
∑

ml

Jm(ν0)Il(νc)[fL(E0 +mω0 + lω0) + fR(E0 +mω0 + lω0)]

and

D =
∑

ml

Jm(ν0)Il(νc)[2− fL(E0 −mω0 − lω0) + fL(E0 +mω0 + lω0)−

fR(E0 −mω0 − lω0) + fR(E0 +mω0 + lω0)]. (9)

In the case of relatively small zero-point mechanical fluctuations, ν0 ≪ 1,
∑

l Il(νc) = eνc , we
have the simple formulas for the shuttle population N and for the current I, as

N = e−νc
∑

l

Il(νc)
fL(E0 + lω0) + fR(E0 + lω0)

2
,

I = IL = eΓeνc
∑

l

Il(νc)
fR(E0 + lω0)− fL(E0 + lω0)

2
. (10)

It should be noted that effective temperature of the biased nanomechanical system, which
is determined by the dispersion of mechanical fluctuations, 〈x̃2〉, can be different from the
equilibrium temperature T [17], so that we cannot neglect nonlinearities caused by νc even
when ν0 ≪ 1.

To calculate a relative dispersion of mechanical fluctuations, νc = 〈x̃2〉/λ2, the equation
(2) for the shuttle position can be rewritten in the form of quantum Langevin equation

ẍ+ γẋ+ ω2
0x = ξ, (11)

with a damping rate
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γ = ν0Γe
νcB(ω0), (12)

and a fluctuation source,

ξ =
∑

kα

(T ∗

kα/mλα){a
+ex/λα , c

(0)
kα}+ h.c., (13)

which is characterized by the spectrum K(ω) = ν0e
νcΓ(h̄ω0/m)A(ω0). Here, we introduce

the following dimensionless combinations of the Fermi distributions, A(ω) and B(ω), as

A(ω) =
∑

α

∑

ml

Jm(ν0)Il(νc)×

{N [2− fα(E0 −mω0 − lω0 − ω)− fα(E0 −mω0 − lω0 + ω)] +

(1−N)[fα(E0 +mω0 + lω0 + ω) + fα(E0 +mω0 + lω0 − ω)]}

and

B(ω) =
∑

α

∑

ml

Jm(ν0)Il(νc)×

{N [fα(E0 −mω0 − lω0 − ω)− fα(E0 −mω0 − lω0 + ω)] +

(1−N)[fα(E0 +mω0 + lω0 − ω)− fα(E0 +mω0 + lω0 + ω)]}. (14)

The relative level of mechanical fluctuations, νc, can be found from the self-consistent equa-
tion:

νc = ν0
A(ω0)

B(ω0)
, (15)

supplemented by the equation (8) for the steady-state electron population N of the shuttle.
We have solved self-consistent set of equations, Eqs. (8) and (15), and substituted the

obtained values of N and νc into Eq. (7) for electric current. Corresponding current-voltage
characteristics are shown in Figure 1 for various temperatures, energetic separation between
the electron level in the shuttle, E0 and equilibrium chemical potential of the leads, µ, being
0.2ω0, ω0/2π = 1THz, and for quantum parameters ν0 = 0.7 (Fig.1(a)) and ν0 = 0.07
(Fig.1(b)). It is evident from these Figures that there are pronounced steps in the low-
temperature current-voltage characteristics at the bias voltages (i) eV/2 = E0 − µ and (ii)
eV/2 = ω0 − E0 + µ. The first one occurs when the chemical potential of the left lead
passes through the energetic level of the shuttle, while the second one corresponds to the
passing of the chemical potential of the right lead through the virtual level with energy
E0 − ω0. In the latter case, tunneling of an electron of the left lead having energy E0 − ω0

to the shuttle level with energy E0 is accompanied by absorption of virtual ”quantum” of
mechanical motion (phonon) with further tunneling of this electron to the state of the right
lead having energy E0 − ω0 accompanied by emission of this ”phonon”. This second step is
much more pronounced for the case of larger ν0. When the chemical potential of the left lead
passes through the virtual level with energy E0 + ω0 (at the voltage eV/2 = ω0 + E0 − µ),
electron tunneling from the left lead to the shuttle can be accompanied by absorption of
such a phonon by the shuttle, and the system becomes unstable. To illustrate this, we
present in the Inset of Fig.1(a) the current-voltage characteristics (in the logarithmic scale)
with various values of E0 − µ. It should be noted that the condition for this instability is
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identical with that found in Ref. [14]. Finally, one can see in Fig.1(a) that current-voltage
characteristics become more smoother and steps disappear with temperature increasing.

The temperature dependence of the current through the quantum shuttle system is of
special interest. It is shown in Figure 2 in the logarithmic scale for E0 − µ = 0.2ω0, eV =
0.4ω0, ω0/2π = 1THz, and various values of quantum parameter ν0. It is evident from this
Figure that initial decrease of the current with temperature increasing is followed by the
strong exponential growth at larger values of ν0. The exponential temperature dependence of
the current-voltage characteristics has been also predicted for the model of a tunnel junction
having its matrix elements modulated by the vibrational motion [17,21]. In this model [22],
the position of the oscillator affects directly a probability of electron tunneling between leads
and the temperature dependence involved in distribution functions of the leads is integrated
out. Correspondingly, the exponential temperature dependence, caused by fluctuations of
an oscillator displacement, occurs for any levels of zero-point mechanical fluctuations, and,
in particular, for ν0 ≪ 1. The present study reveals that an inclusion of a single-electron
state into the vibrating molecule leads to an additional factor 1/T in the formulas for current
and conductance (caused by the temperature dependencies of the distribution function of
electrons in the leads) that smooth out the exponential T-dependence in the case of small
ν0. Indeed, for high temperatures, (T ≫ |E−µα|, one can see that νc = ν0(2T/h̄ω0), so that
the current, Eq.(7) is described by the formula

I = eΓ exp(4Tν0/h̄ω0)
eV

4T
, (16)

where a temperature dependence reveals itself not only in the exponent e4Tν0/h̄ω0 as for the
tunnel junction coupled to the mechanical oscillator [17,21], but also in the factor 1/T . An
outcome of a competition between these two factors depends crucially on the value of the
relative level of zero-point mechanical fluctuations ν0. At small ν0 the factor 1/T dominates,
whereas at larger ν0 the current-temperature curve demonstrates a very pronounced expo-
nential temperature dependence. However, ν0 depends on the inverse tunneling length of
system squared and even small variations of the tunneling length can bring about completely
different behavior. Accordingly, the experimental data of Refs. [18,19] might correspond to
slightly different conditions of connections between molecules and leads and still exhibit very
different temperature dependence of the electron current.

In conclusion, we have analyzed electron transport through a quantum shuttle having
single electron energetic level. We have shown that at low temperature there are pronounced
steps in current-voltage characteristics corresponding to direct tunneling through the shuttle
and to tunneling accompanied by consequent absorption and emission of virtual ”quantum”
of mechanical motion (phonon) by electron. We have found that when the applied voltage
facilitates the emission of ”real phonon” during electron tunneling from the left lead to the
shuttle, the instability of electron transport occurs. The temperature dependence of electric
current has also been determined in the range from 2K to 300K. Mechanical motion of the
shuttle leads to the exponential temperature dependence while the temperature dependence
of the electron distribution function in the leads brings about the factor 1/T at high temper-
ature. The competition of these two factors gives rise to wide variety of current-temperature
curves depending on quantum parameter ν0, such as decreasing of current with temperature
increasing (at small ν0), a weak temperature dependence (at the intermediate values), and
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a strong exponential growth (at large ν0). This variety was previously demonstrated in the
experiments on electron transport through long molecules [18,19].
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FIGURES

FIG. 1. Current-voltage characteristics of quantum shuttle system at E0 − µ = 0.2ω0 and at

various temperatures; (a) for quantum parameter ν0 = 0.7, (b) for quantum parameter ν0 = 0.07.

Inset: Instability of electron transport at higher voltages for various separations of the electron

energetic level in the shuttle and equilibrium chemical potential of the leads.

FIG. 2. Temperature dependence of the electric current through the shuttle for various values

of quantum parameter ν0.
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A. Yu. Smirnov and L. G. Mourokh, Figure 1(a) of 2. 
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A. Yu. Smirnov and L. G. Mourokh, Figure 1(b) of 2. 
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A. Yu. Smirnov and L. G. Mourokh, Figure 2 of 2. 


