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Abstract

We present molecular dynamics simulations of the homogeneous
(mechanical) melting transition of a bcc metal, vanadium. We study
both the nominally perfect crystal as well as one that includes point
defects. According to the Born criterion, a solid cannot be expanded
above a critical volume, at which a ’rigidity catastrophe’ occurs. This
catastrophe is caused by the vanishing of the elastic shear modulus.
We found that this critical volume is independent of the route by which
it is reached whether by heating the crystal, or by adding interstitials
at a constant temperature which expand the lattice. Overall, these
results are similar to what was found previously for an fcc metal,
copper. The simulations establish a phase diagram of the mechanical
melting temperature as a function of the concentration of interstitials.
Our results show that the Born model of melting applies to bcc metals
in both the nominally perfect state and in the case where point defects
are present.

1 Introduction

Over the years, several theories explaining the mechanism of melting have
been proposed. [1, 2, 5] This research has by now evolved to a state where
a clear distinction exists between two possible scenarios for the melting
transition: a first scenario of homogeneous, or mechanical melting resulting

1

http://arxiv.org/abs/cond-mat/0304215v1


from lattice instability [3, 4, 6] and/or a spontaneous generation of thermal
defects,[7, 8, 9, 10, 11] and a second scenario of heterogeneous, or thermody-

namic melting which begins at extrinsic defects such as a free surface or an
internal interface (grain boundaries, voids, etc).[12, 13, 14, 15, 16] Through-
out this paper we will use the term mechanical melting to describe the former
case, which we consider here. In particular, we take the view proposed by
Born that at the melting point a ’rigidity catastrophe’ is caused by the van-
ishing of one of the elastic shear moduli,[3, 4] C44, or C ′ = (C11 − C12)/2.
In other words, the crystal melts once it loses its ability to resist shear.
This condition determines the mechanical melting temperature, Ts, of a per-
fectly homogeneous bulk crystal and was confirmed in extensive studies of
fcc metals.[18, 19, 20, 11, 10]

Tallon[4] pointed out that a mechanical instability arises when the solid
expands up to a critical specific volume which is close to that of the liquid
phase (melt). In the study by Wang et al.[18, 19] of the mechanical melting
transition of an fcc solid under external stress, it was found that volume
expansion is the underlying cause of lattice instability. Kanigel et al. [11]
confirmed this scenario in a simulation of fcc copper in the presence of point
defects. They showed that the critical volume at which a crystal of copper
melts is independent of the path through phase space by which it is reached,
whether by heating of the perfect crystal or by adding point defects to expand
the solid at a constant temperature [11].

Solids can undergo mechanical melting only if they have no extended
defects [6], a situation which is conveniently realized in three-dimensional
computer simulations by means of periodic boundary conditions which elim-
inate the surface. Simulations of atomic dynamics for solids with an fcc
[18, 19, 20, 11, 10] or diamond [17] structures show, among other things, the
onset of a shear instability of the solid at a temperature Ts, which can exceed
the thermodynamic melting temperature Tm by some 20%, depending on the
details of the potential.

Given the considerable degree of understanding of the melting process of
fcc crystals, it is of substantial interest to see if the scenario of mechanical
melting also applies to solids having a different lattice structure. We there-
fore decided to study mechanical melting of a bcc metal, vanadium, by means
of computer simulations. We present details of the calculations in Sec. II. In
Sec. III we describe the results of the simulation of some physical properties
of a vanadium with and without point defects. In Sec. IV we present molec-
ular dynamics simulation results for mechanical melting in the presence of
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point defects. Finally, in Sec. IV, we discuss the implication of our results
for the question of the microscopic mechanism of melting.

2 Simulation details

We model the bulk melting transition of vanadium using the molecular dy-
namics simulation [24] technique. The choice of vanadium has no special
significance as we are only interested in the generic features of metallic solids
with a bcc lattice symmetry. While various many-body potentials for fcc met-
als [36] have been developed and thoroughly tested in numerous simulations,
the situation with such potentials for bcc metals is not as good. This can be
explained by the more complicated nature of the bcc metals in comparison
with fcc ones which manifests itself in the wide range of elastic constants
(and even in the negative values of the Cauchy condition C12 − C44 < 0 for
some bcc metals). The packing density of atoms in a bcc lattice is smaller
than in a fcc lattice (there are 8 nearest-neighbors in a bcc lattice and 12
nearest-neighbors in a fcc). However, the second nearest-neighbor distance
in the bcc structure is larger than the first nearest-neighbor distance by only
about 15%. Therefore, the interaction between the second order and the first
order nearest-neighbors in bcc metals is not negligible, even with screening.

In addition, band structure effects are crucial for bcc metals. A simple
approximation which assumes that the electron density can be considered as
a superposition of atomic orbitals is successful for fcc metals, but less appro-
priate for bcc metals. Therefore, for metals with the bcc structure electron
density is chosen to be an adjustable function, rather than a superposition
of atomic orbitals. Furthermore, angle dependent interactions could be very
important in bcc solids.

For our simulations, we chose the many-body interaction potential devel-
oped by Finnis and Sinclair [21] (FS), and modified by Rebonato et al. [22] FS
proposed a way to incorporate the delocalized physical nature of the metallic
bonding and the essential band character of bcc metals in a simple model.
The FS potential involves two short ranged potentials, a cohesive one and
a repulsive one. The cohesive potential is summed over neighbors and the
square root of the result describes the bonding energy. The cohesive energy
is therefore proportional to

√
z, where z is the atomic coordination number.

The square root form is used assuming that the band energy is the sum of
occupied one-electron levels, and according to the tight-binding model the co-
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hesive energy is proportional to the hopping integrals between the d-orbitals.
The repulsive potential is summed in the usual way to describe the repulsive
core-core interactions.

Our molecular dynamics (MD) simulations with the FS potential were
performed using the Parinello-Rahman [23] method and the Nose-Hoover
thermostat.[25, 26] This ensemble is identified as an isothermal-isotensional
ensemble (NtT), [27] which allows simulation of fluctuations in the shape and
volume of the sample (here, N is the number of atoms, T the temperature,
V the volume and t is the sample tension). The shape and volume thus
obtained were used for calculation of the shear modulus in a canonical (NVT)
ensemble. The shear elastic moduli were calculated using the fluctuations of
the stress tensor. [28]

The samples used for the simulations contained 2000 atoms, initially ar-
ranged as a perfect bcc crystal of size 10x10x20 unit cells. Periodic bound-
ary conditions were applied in all three directions. Point defects were in-
troduced either by the insertion of extra atoms between the lattice sites
(self-interstitials) or by the removal of atoms from the lattice (vacancies).
Newton’s equations of motion were solved using a predictor-corrector algo-
rithm. [24, 29] Throughout this study, interactive visualization with the AViz
program [30] was implemented.

3 Validation of the potential and order pa-

rameter

To learn about the capatibility of the potential, we examined some physical
properties of a perfect crystal. First, we calculated the thermal expansion
at zero external pressure. We found the thermal expansion coefficient at
low temperatures to be αc = (18 ± 6)× 10−6 K−1, in reasonable agreement
with the experimental value measured at room temperature αexp = 8.6 ×
10−6 K−1. Next, the thermodynamic melting temperature for our potential
was calculated, using the method of Lutshko et al. [34], to be Tm = 2220 ±
10 K. This value is close to the experimental value Tm = 2183 K, despite
the fact that the FS potential was constructed by fitting its parameters to
room temperature values of various physical properties of vanadium (lattice
constant, cohesion energy, shear elastic moduli, vacancy formation energy,
etc).
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In order to test the algorithm we calculated the shear moduli as a function
of temperature. The shear elastic coefficients decrease with temperature as
shown in Fig. 1. The accuracy of the simulations was estimated by monitoring

Figure 1: Variation of C ′ (triangles) and C44 (squares) with temperature.
The error bars represent statistical uncertainty.

the convergence of the shear elastic moduli calculated along symmetrically
equivalent directions. We found the difference to be approximately 10%.

Following the validation that our potential can indeed reproduce the phys-
ical properties of a perfect crystal with acceptable accuracy, point defects
were introduced. These point defects are distributed homogeneously through-
out the bulk of the solid. Only one type of point defects, e.g. vacancies or
self-interstitials were used in each run to avoid their mutual annihilation.

The configurations of atoms in the vicinity of a point defect inside the
bulk at low temperatures was investigated by means of the simulated tem-
pering method. [32, 33] The most energetically favored configuration of an
interstitial was found to be the < 011 > dumb-bell split - interstitial (See
Fig. 2) with a formation energy of Ef = 4.18 ± 0.02 eV . This formation
energy is in agreement with that of previous simulations [31].

To investigate the temperature dependence of the crystalline order, we
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Figure 2: The most energetically favored configuration is found to be the
< 011 > dumb-bell split - interstitial

define the structure order parameter η:
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where ~k = {0, 0, 2π/a} is a vector of the reciprocal lattice, ~ri is the position of
atom i, N is the number of the atoms in the sample, and the angular brackets
stands for ensemble average. For an ideal-crystal lattice at zero temperature,
η equals unity, while in the liquid state, η fluctuates near zero.

We calculated δη/δC, the change of the order parameter upon the intro-
duction of point defects. Here, C is the concentration of point defects, given
in % of the number of atoms. Fig. 3 shows the result of this calculation for
small C ,and at different temperatures. The introduction of self - interstitials
results in noticeable decrease of the structure order parameter (from η ∼ 0.6
to η ∼ 0.4), while the influence of vacancies is relatively weaker. With in-
creasing temperature, the order parameter becomes increasingly sensitive to
the introduction of point defects, as evidenced by the increase of the absolute
value of |δη/δC| with temperature. We believe that this increased sensitivity
results from the increase of the amplitude of thermal vibration of the atoms
in the immediate vicinity of the point defect.
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Figure 3: Influence of point defects: vacancies (diamonds) and self-
interstitials (squares) on the structure order parameter η as function of tem-
perature. The concentration of point defects, C, is given as a percent of the
total number of atoms. The error bars represent statistical uncertainty.

Introduction of self - interstitials increases the volume of the sample (See
Fig. 4) while vacancies decrease the volume, as shown in Fig. 5. The specific
volume of point defects at various temperatures was estimated using the
linear dependence of the volume on the number of defects, apparent in Figs. 4
and 5. The volume of the sample at a small number of vacancies can thus
be written as

V = (N −Nva)v +Nvavva (2)

here, N is the number of atoms in the sample, Nva is the number of vacancies,
v is the volume per atom in a perfect crystal of vanadium and vva is the
volume per vacancy. A similar relation for self-interstitials can be written as

V = Nv +Nsivsi (3)

where, Nsi is the number of self-interstitials and vsi is the volume per inter-
stitial. It is interesting to point out that the linear dependence appears to
hold even at temperatures close to Ts. This may indicate that the concept of
a point defect remains meaningful even under these conditions. The specific
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Figure 4: Total volume of the sample as a function of concentration of
interstitials at several temperatures: T = 2300 K (diamonds), T = 2200 K
(squares) and T = 2000 K (crosses). The concentration of point defects is
given as a percent of the total number of atoms. The error bars represent
statistical uncertainty.

volume of a point defect (in atomic volume units) is shown as a function of
temperature in Fig. 6. It is seen that at temperatures above 2000K these
specific volumes change rapidly. To a large degree, this increase can be ac-
counted for by the rapid decrease of the elastic coefficients of the crystal in
this temperature range.

4 The bulk melting transition

The prime goal of our simulations is the investigation of the role of point
defects in mechanical melting. In the simulations of mechanical melting of
fcc metals [6, 18, 11] it was established that the key parameter controlling
melting is the volume of the crystal. When the Born criterion is applied
to a superheated crystal lattice it establishes the existence of a critical vol-
ume above which the crystal becomes mechanically unstable and therefore
undergoes a phase transformation to the liquid state or some other crystal
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Figure 5: Total volume of the sample as a function of concentration of
vacancies at several temperatures: T = 2300 K (diamonds), T = 2200 K
(squares) and T = 2000 K (crosses). The concentration of point defects is
given in (%)of the total number of atoms. The error bars represent statistical
uncertainty.

structure. The critical volume is coupled with a maximum superheating tem-
perature, Ts. Simulations with fcc metals[6, 18, 11] showed that this critical
volume, vs, can be attained by expansion caused either by heating the crystal,
or by doping it with point defects at a constant temperature which expand
the crystal,[11] or by pure mechanical dilatation at zero temperature.[6, 18]
In this sense the mechanical melting process appears to be universal, i.e. it
is determined only by the sample expansion up to the critical volume.

In order to verify whether the same scenario holds in the case of a bcc
metal we carried out simulations using samples with various concentrations
of self-interstitials or alternatively, vacancies. The initial temperature of
each sample was chosen far below the melting point of a perfect sample,
T ≃ 0.7 Ts. As the samples were heated by gradually increasing the temper-
ature, at some point we observed an abrupt decrease of the structure order
parameter (see Fig. 7), together with a simultaneous increase of the total
energy and volume (see Fig. 8). This event determines the mechanical
melting temperature. The melting temperature of a sample without point
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Figure 6: The ratio of specific volume of point defects to the specific vol-
ume of an atom as a function of temperature: self-interstitials (squares) and
vacancies (triangles). The error bars represent statistical uncertainty.

Figure 7: Typical time dependence of the order parameter during mechanical
melting. This particular sample contained 0.25% interstitials at temperature
T = 2475K.
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Figure 8: Typical jump of the sample volume during the mechanical melting
transition. This particular sample contained 0.25% interstitials at tempera-
ture T = 2475K.

defects is found to be Ts = 2500±20 K. Since MD simulations are plagued by
statistical fluctuations in the temperature and volume, in practice it is very
difficult to reach the maximum superheating temperature, Ts. Therefore, the
accuracy in the determination of Ts in this way is about ∼ 1%.

The same temperature, Ts = 2500 ± 12 K, was also found from a least-
squares fit to the temperature dependence of C ′ as shown in Fig. 1 It is
the temperature where C ′ goes to zero. This indicates that as is the case
for fcc metals, homogeneous melting of the bcc metal results from a shear
elastic instability. This particular value of Ts applies to a crystal of vanadium
containing no defects, and is about 280 K higher than the thermodynamic
melting point Tm = 2220 ± 15 K obtained for our model using the method
proposed by J. F. Luthsko et al. [34]

Once point defects are introduced, it is found that Ts becomes a function
of their concentration. Results of simulations performed at different temper-
atures and defect concentrations are summarized in our phase diagram (See
Fig. 9). The fact that point defects lower the melting temperature has been
confirmed experimentally ( γ-irradiation lowers the melting point of pure
metals by an amount proportional to the dose, and thus to the number of
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generated point defects. [?, 9]) The lowering of Ts can be explained as fol-
lows: Introduction of self - interstitials leads to a significant local distortion
of the bcc lattice, and expands the volume of the solid, see Fig. 10. There-
fore, a solid containing self - interstitials reaches its critical volume already
at a lower temperature ( the melting temperature is lower). In contrast,
the effect of vacancies is rather minor, at least if their concentration is small
enough. The same effect of lowering of the bulk melting temperature induced
by interstitials was obtained by A. Kanigel et al. [11] for copper (fcc lattice).
However, at higher concentrations of point defects the decrease of Ts can
not be explained simply by volume expansion. This is especially notable in
the case of vacancies which decrease the volume, but at high enough con-
centrations also lower the melting temperature (See Fig. 9). We refer here
to the region in Fig. 9 where the concentration of point defects approaches
1%. These values are unrealistically large in comparison with the typical
laboratory values ≃ 0.001%. At these high concentrations, the concept of
a single point defect is unclear and one should perhaps consider clusters, or
extended defects. According to Jin et al. [20] extended defects can act as
nucleation centers for melting. Taking this point of view, the lowering of Ts

with defect concentration may result from the combined effect of (a) volume
expansion, and (b) introduction of nucleation centers for melting. Finally, it
should be noted that the calculated phase diagram is qualitative, because of
the finite sample size and limited simulation time.

Our results are broadly consistent with models of defect-induced melting
proposed by Fecht [?] and Granato. [7] According to Fecht [?] melting is
driven by the incorporation of point defects into the lattice. Point defects
increase the probability of heterophase fluctuations of liquid-like clusters in
the defective crystal and lower the Gibbs energy of the crystalline state.
Therefore, the melting temperature decreases as the concentration of point
defects increases.

The configuration of point defects (self-interstitials) in a fcc metals was
exploited by Granato [7] to construct a model giving the thermodynamic
properties of the crystalline and liquid states in a unified way. He found a
large diaelastic softening of the shear modulus with increasing defect con-
centration. This leads to a softening of the formation energy of interstitials,
which, together with the large entropy contribution from the interstitialcy
resonance modes, lowers the melting temperature. In the above discussion,
we have emphasized the role of lattice instability in establishing a maximum
superheating temperature at zero external pressure. However, due to ther-
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Figure 9: The influence of interstitials (squares) and vacancies (diamonds)
on the melting temperature of vanadium under periodic boundary conditions.

mal expansion, any temperature change is accompanied by a simultaneous
change of the volume. To decouple these two effects, we plot the dependence
of the shear modulus C ′ on the specific volume in Fig. 10. As this figure
shows, the dependence of C ′ on the specific volume appears to be universal,
in the sense that the value of C ′ is the same whether the volume at which
it is calculated was reached at by thermal expansion or by insertion of point
defects. In other words the main effect of interstitials is to expand the lattice.
Using the data plotted in Fig. 10 one can extract the value of the critical vol-
ume, vs(Ts), at which the system melts homogeneously under the conditions
of zero external stress.

Using this method we find vs = 14.87 ± 0.06 Ȧ3/atom and the melting
temperature Ts for various concentrations of point defects. The critical vol-
ume is close to the specific volume of liquid vanadium at the thermodynamic
melting temperature vliq = 15.3±0.05 Ȧ3 and to the experimental value [35]
of vliq = 15.2 Ȧ3.

Similar results were obtained for copper in MD simulations by J. Wang et
al. [18, 19] and by A. Kanigel et al. [11] It was found that the shear modulus
vanishes at a lattice strain of a/a0 = 1.024, where a lattice parameter at
Tm = 1350K, and a0 is the lattice parameter of copper at T0 = 300K. The
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Figure 10: Plot of the shear modulus C ′ against specific volume at vari-
ous concentrations of interstitials: squares - crystal without impurities (only
thermal expansion), diamonds - 0.05% concentration of interstitials, circles -
0.1%, triangles - 0.15%, crosses - 0.2%.

specific volume ratio of copper is (a/a0)
3 = 1.07 which is quite close to the

value obtained for vanadium v(Tm)/v(T0) = 1.06 ± 0.01. It is natural to
ask whether the ratio a/a0 is universal, independent of lattice structure. To
answer this question in a definitive manner, it would be useful to make similar
simulations on other bcc metals.

5 Summary and conclusions

In our simulations we observed that each shear elastic modulus is a continuous
and apparently universal function of the specific volume. The solid lattice
can be expanded either by thermal expansion or by the presence of self-
interstitials. The value of C ′ at any particular volume is independent of
the way by which this volume was reached, either by thermal expansion
alone, or by any combination of thermal expansion and of expansion due
to interstitials introduced into the sample at a constant temperature. The
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elastic energy of the lattice increases until a critical specific volume vs (close
to the specific volume of the melt) is reached where the shear modulus C ′

vanishes, triggering mechanical melting. Upon melting, the solid transforms
isothermally and discontinuously (see Figs. 7 and 8).

The process that triggers mechanical melting could be similar to the one
observed by Jin et al. [20] in simulations of the melting of a surface-free
Lennard-Jones crystal. There, melting occurs when the superheated crys-
tal spontaneously generates a sufficiently large number of extended defects
(clusters of spatially correlated destabilized particles which satisfy the Born
criterion). Those extended defects play the role of surfaces in initiating the
melting. In our simulations, point defects, especially in large concentration
where clusters of defects should be formed, could act as nucleation centers

for these extended defects (molten regions) inside the solid.
This paper was devoted to a simulation of the melting process of a homo-

geneous bcc metal, and its comparison with a similar process in fcc metals.
It is of great interest to extend these simulations to heterogeneous melting
which involves nucleation of the liquid phase at some preferred sites of the
solid, for example at the free surface. This study is the subject of a forth-
coming paper.
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