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The surface dynamics and thermodynamics of metal nanowires are investigated in a continuum
model. Competition between surface tension and electron-shell effects leads to a rich stability
diagram, with fingers of stability extending to extremely high temperatures for certain magic con-
ductance values. The linearized dynamics of the nanowire’s surface are investigated, including both
acoustic surface phonons and surface self-diffusion of atoms. On the stability boundary, the surface
exhibits critical fluctuations, and the nanowire becomes inhomogeneous. Some stability fingers co-
alesce at higher temperatures, or exhibit overhangs, leading to reentrant behavior. The nonlinear
surface dynamics of unstable nanowires are also investigated in a single-mode approximation. We
find evidence that some unstable nanowires do not break, but rather neck down to the next stable
radius.

PACS numbers: 68.35.Ja, 47.20.Dr, 61.46.+w, 68.65.La

I. INTRODUCTION

Metal wires play an essential role in all electrical cir-
cuits, from power distribution between cities to inter-
connects in integrated circuits. In today’s technology,
feature sizes down to approximately 100nm are the state
of the art, but current trends,1 consistent with Moore’s

law,2 extrapolate to 1nm technology by 2020. A question
of fundamental importance is whether metal will retain
its role as the conductor of choice even at the ultimate
limit of atomic-scale technology, or whether it must be
replaced with more exotic conductors, such as carbon
nanotubes.3

A macroscopic analysis of the mechanical properties
of thin metal wires suggests that it might be difficult
to fabricate wires thinner than a few thousand atoms
in cross section: Consider a cylindrical wire of radius R
and length L. The maximum tension that the wire can
sustain before the onset of plastic flow is FY = πR2σY ,
where σY is the yield strength. On the other hand, the
force due to the surface tension σs in a thin wire is
Fs = −πRσs. If |Fs| > FY , one would expect the wire
to undergo plastic flow and, if L > 2πR, to break up
under surface tension, as in the Rayleigh instability of a
column of fluid.4 This estimate gives a minimum radius
for solidity, Rmin = σs/σY . The parameters for several
simple metals are given in Table I. Plateau realized as
early as 1873 that this surface-tension driven instability
of a cylinder is unavoidable if cohesion is due solely to
classical pairwise interactions between atoms.5

A great deal of experimental evidence has accumu-
lated over the past decade, however, indicating that
metal nanowires considerably thinner than the above
estimate can be fabricated by a number of different
techniques.11,12,13,14,15,16,17,18 Even wires with lengths
significantly exceeding their circumference were found to
be remarkably stable,13,14,17 indicating that some new

mechanism must intervene to prevent their breakup.

An important technique which has been used to model
the energetics of metal nanowires is classical molecular
dynamics,19,20,21,22,23,24 which utilizes short-ranged in-
teratomic potentials optimized to fit the bulk properties
of solids. This technique has had considerable success,
including predicting the formation of metal nanocon-
tacts in STM experiments19 and predicting novel, non-
crystalline order in nanowires.22 However, this approach,
which neglects quantum-size effects, is unable to avoid
the Rayleigh instability in long wires.22,23,24

A clue to the resolution of this problem was provided
by the observation of electron-shell structure in conduc-
tance histograms of alkali metal nanocontacts.15 Like
the surface tension, quantum-size effects arising from the
confinement of the conduction electrons within the cross-

Metal σY σs σs(FEM) γs γs(FEM) σs/σY Gmin

(MPa) (N/m) (N/m) (pN) (pN) (nm) (G0)

Cu 210 1.5 0.83 190 140 7.1 2300

Ag 140 1.0 0.51 154 95 7.4 1900

Au 100 1.3 0.51 257 96 13 5600

Li 15 0.44 0.37 99 75 29 26000

Na 10 0.22 0.17 39 41 22 10000

TABLE I: The yield strength σY ,6 surface energy σs,
7 and

curvature energy γs
8 of various monovalent metals. The

values9,10 in the free-electron model, σs(FEM) = εFk
2
F /80π

and γs(FEM) = 4εF kF/45π
2, are shown for comparison. For

a wire of radius R < σs/σY , the stress due to surface tension
exceeds σY , signalling a breakdown of macroscopic elasticity
theory. The electrical conductance Gmin of a ballistic wire of
radius Rmin = σs/σY is shown in the rightmost column, in
units of the conductance quantum G0 = 2e2/h. Note that
G/G0 is approximately equal to the number of atoms that fit
within the cross section for monovalent metals.
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FIG. 1: Stability of cylindrical metal nanowires as a function
of radius and temperature. Shaded regions indicate stability
with respect to small perturbations, A(R0, T ) > 0; unshaded
regions denote unstable configurations, A(R0, T ) < 0. Here
TF is the Fermi temperature, kF the Fermi wavevector, and
R0 the mean radius of the wire. The quantized conductance
values of some of the stable wires are indicated.

section of the wire become increasingly important as the
wire is scaled down to atomic dimensions. In fact, a
linear stability analysis25 of metal nanowires within the
free-electron model found that the Rayleigh instability
can be completely suppressed for certain favorable radii.
In this article, we investigate the surface dynamics and

thermodynamics of simple metal nanowires in a contin-
uum approach, in order to shed further light on their
unusual stability properties. The starting point for our
analysis is the thermodynamic stability diagram shown
in Fig. 1. Competition between surface tension and
electron-shell effects leads to a complex landscape of sta-
ble fingers and arches extending up to very high tem-
peratures: wires whose electrical conductance is a magic
number 1, 3, 6, 12, 17, 23,... times the conductance quan-
tum G0 = 2e2/h are predicted to be stable with respect
to small perturbations up to temperatures well above
the bulk melting temperature TM ≈ .01TF , where TF

is the Fermi temperature. This finding suggests that
metal nanowires may be remarkably robust, which is
cause for optimism about their potential for nanoelec-
tronics applications.26 Fig. 1 is akin to a phase diagram

for metal nanowires; the nature of the different phases is
revealed in this article through a study of the surface dy-
namics for small perturbations about a cylinder. We find
that the stable fingers correspond to homogeneous (i.e.,
translationally invariant) phases, while the intervening
regions correspond to inhomogeneous phases.

II. THE MODEL

The continuum model we employ allows for an ana-
lytical treatment of the long-wavelength surface modes
used to characterize the different phases in Fig. 1, as
well as a correct treatment of quantum-size effects, which

are essential to stabilize long nanowires. The ionic de-
grees of freedom of the wire are modeled as an incom-
pressible, irrotational fluid, and the conduction electrons
are treated as a Fermi gas confined within the wire by
Dirichlet boundary conditions at the surface. Electron-
electron interactions are included only at a macroscopic
level (by requiring the wire to be electrically neutral),
since it is well known9,10,27 that the leading mesoscopic
shell-correction to the energy is independent of interac-
tions. Calculations including interactions at the mean-
field level28,29 yield shell effects very similar to those in
the free-electron model.9,30

Modelling the ionic degrees of freedom as a fluid is
motivated by the argument presented in Table I, which
indicates that metal nanowires thinner than a few thou-
sand atoms in cross section should be very plastic. The
free-electron model for the conduction electrons is ap-
propriate to describe electron-shell effects in monovalent
metals, and as the values in Table I indicate, even de-
scribes some macroscopic properties of alkali metals semi-
quantitatively. Although the continuum approximation
is not justified a priori in the limit of atomically-thin
wires, this model is nonetheless justified a posteriori by
its success in describing simple metal clusters31 of com-
parable dimensions. Cohesion and quantum transport in
gold nanocontacts were also successfully described with
this model.30,32,33 The directionality of bonding due to
contributions from p-, d- and f -electrons is of course ab-
sent from the free-electron model, as are element-specific
effects, such as the tendency toward surface reconstruc-
tion, which was argued to play an essential role in the
formation of atomic chains.34 Nonetheless, wires with
G = G0 are predicted to be very stable within the
free-electron model, and the strength of a metallic bond
in such a wire is significantly greater than that in the
bulk.9,30

An empirical justification for our continuum model
comes from experimental results indicating that electron-
shell effects dominate over ionic ordering in sufficiently
thin alkali metal16 and gold18 wires. Yanson et al.16

found an interesting interplay between electron-shell ef-
fects and atomic-shell effects in alkali metal nanocon-
tacts. Electron-shell effects were found to be most im-
portant in the lighter elements lithium and sodium, pre-
sumably due to the larger Fermi energies of the conduc-
tion electrons and the lighter, more mobile ions, while
atomic-shell effects were most important in the heavier
element potassium. A crossover from electron-shell struc-
ture to atomic-shell structure in conductance histograms
was found for conductance values G/G0 ≈ 36 in potas-
sium, while electron-shell effects were found to dominate
even for G/G0 > 100 in lithium. An intermediate be-
havior was observed for sodium. Interestingly, the com-
petition between the two effects was found to be history
dependent. In a particular sequence of histograms ob-
tained by cycling a potassium break junction, an evolu-
tion from atomic-shell structure to electron-shell struc-
ture was observed.16 Most recently, a similar interplay
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between electron-shell structure and atomic-shell struc-
ture was also observed in gold nanocontacts.18

These fascinating experimental results cry out for
deeper theoretical investigations of the stability and
structure of metal nanowires. While the geometry of
the nanowires studied in Refs. 15,16,18 was not directly
determined, they may be rather short due to the fabri-
cation method, so that the connection35 to the contacts
may play an important role. In this article, we study the
more theoretically tractable—and more technologically
relevant—problem of the stability and surface dynamics
of long metal nanowires. Our analysis should be directly
relevant for the nanowires studied in Refs. 13,17.

III. LINEAR STABILITY ANALYSIS

In our continuum model, the ionic degrees of free-
dom are completely determined by the surface coordi-
nates of the wire. Motivated by the fact that only modes
which preserve axial symmetry participate in the surface-
tension driven instability of a cylinder,4 we restrict our
consideration to axially-symmetric perturbations,

R(z, t) = R0 +
∑

n

b(qn, t)e
iqnz, (1)

where R(z, t) is the radius of the wire at position z
and time t, R0 is the unperturbed radius, and b(q, t) =
b∗(−q, t) are complex Fourier coefficients. Periodic
boundary conditions are assumed for a wire of length
L, so that qn = 2πn/L, with n an integer bounded by
|n| ≤ N ≈ kFL/π (a lattice cutoff). Since the total num-
ber of atoms comprising the nanowire is unchanged by
the perturbation, b(0, t) is related to the other b(qn, t) by
volume conservation

b(0, t) +
b2(0, t)

2R0
= − 1

R0

N
∑

n=1

|b(qn, t)|2, (2)

and may be eliminated.
For small perturbations, the grand canonical potential

of the electron gas is quadratic in the Fourier coefficients
b(q, t), and determines the potential energy U of the ions
in the Born-Oppenheimer approximation,

U = U0(R0, T ) + L
N
∑

n=1

α(qn;R0, T )|b(qn, t)|2, (3)

where U0(R0, T ) is the potential energy of an unper-
turbed cylinder,

U0(R, T )

L
= πR2u+ 2πRσs − πγs + V (R, T ). (4)

Here u is the macroscopic free energy density of the elec-
tron gas, σs is the surface tension, γs is the surface curva-
ture energy (c.f. Table I), and V is a mesoscopic electron-
shell correction. The mode stiffness α(q;R0, T ) has the

...

(2,1) (3,1) (4,1)

(4,2) (5,2) (6,2)

...

FIG. 2: Classical periodic orbits27,36 of an electron in a plane
perpendicular to the axis of the wire, labeled (v, w), where v
is the number of vertices and w is the winding number.

following form25 in the semiclassical approximation, valid
for long-wavelength perturbations:

α(q;R, T ) = −2πσs/R+ 2π(σsR− γs)q
2

+

(

∂2

∂R2
− 1

R

∂

∂R

)

V (R, T ), (5)

where

V (R, T ) =
2εF
π

∞
∑

w=1

∞
∑

v=2w

avw(T )fvw
v2Lvw

cos(kFLvw−3vπ/2).

(6)
The sum in Eq. (6) includes all classical periodic or-
bits (v, w) in a disk billiard (see Fig. 2). Lvw =
2vR sin(πw/v) is the length of an orbit, the factor fvw =
1 for v = 2w, 2 otherwise, accounts for the invari-
ance under time-reversal symmetry of some orbits, and
avw(T ) = τvw/ sinh τvw (τvw = πkFLvwT/2TF ) is a
temperature-dependent damping factor.27,36

Since ∂2α/∂q2 > 0 for all physically meaningful radii,
long-wavelength perturbations cost the least energy,37

and the stability of the wire is determined by the sign
of A(R0, T ) ≡ α(q = 0;R0, T ). For A(R0, T ) > 0, a
nanowire is stable with respect to all small perturba-
tions, and is hence a metastable thermodynamic state.
For A(R0, T ) < 0, the nanowire is unstable. The stabil-
ity diagram so determined is shown in Fig. 1. In Fig.
1, the values σs = σs(FEM) and γs = γs(FEM), ap-
propriate for alkali metals, were used (c.f. Table I). For
larger values of σs (e.g. for noble metals), the maximum
temperatures (in units of TF ) of the stable fingers are
reduced somewhat, but the stability diagram is qualita-
tively similar.
Further insight into the stability criterion A > 0 is

provided by the identity

A(R0, T ) =

(

∂2

∂R2
0

− 1

R0

∂

∂R0

)

U0(R0, T )

L
. (7)

The wire can lower its potential energy via a volume-
conserving separation into thicker and thinner segments
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if and only if A < 0. A < 0 thus corresponds to an
inhomogeneous phase, while A > 0 corresponds to a ho-

mogeneous phase.
Our analysis of stability in terms of the convexity of

the constrained energy functional is quite different from
simply comparing the energy of cylinders of different
radius,22,29,38 which does not address the fundamental
question: whether any cylinder is stable. We also point
out that for a sufficiently large system, the number of
atoms is conserved—neglecting sublimation—and the de-
pletion of atoms from a finite segment of wire38 can be
described as a finite-wavelength perturbation of a larger
system.
Note that our stability analysis is carried out at fixed

L. The tensile force necessary to fix the length of the wire
is given by F = −∂U0/∂L [plus a small correction due
to surface fluctuations, c.f. Eq. (22)], and was previously
calculated as a function of radius in this model in Refs.
9,10,30. Our stability analysis is thus appropriate to de-
scribe nanowires under tensile stress, such as those stud-
ied in the experiments of Refs. 11,12,13,14,15,16,17,18.
The stability of a nanowire with free ends is an open
question.

IV. LINEARIZED SURFACE DYNAMICS

A. Surface phonons

We first consider inertial dynamics of the ionic back-
ground. Assuming that the ionic medium is irrotational
and incompressible,39 its velocity distribution ~v(~r, t) can
be written in terms of a potential satisfying the Laplace
equation

∇2Φ(~r, t) = 0, (8)

where ~v(~r, t) = −∇Φ(~r, t). The general solution to this
equation with axial symmetry, which is regular at r = 0,
can be written4

Φ(~r, t) = Φ(r, z, t) =

N
∑

n=−N

d(qn, t)I0(qnr)e
iqnz, (9)

where I0 is the modified Bessel function of order zero and
r is the distance of an ion from the z-axis.
For small deformations, the relation between the co-

efficients d(qn, t) in the expansion (9) and the Fourier
coefficients b(qn, t) of the surface perturbation (1) can be
determined by the condition that the radial component
of the velocity at the surface is

vr = −∂Φ(r, z, t)

∂r
|r=R0

=
∂R(z, t)

∂t
(10)

plus terms O(b3). Therefore, we have

d(qn, t) = − 1

qnI1(qnR0)

∂b(qn, t)

∂t
, (11)

where I1 is the first-order modified Bessel function. The
kinetic energy of the ionic medium is then given by

K =
ρi
2

∫

d3r∇Φ∗(~r, t) · ∇Φ(~r, t)

= L

N
∑

n=1

m(qn, R0)

∣

∣

∣

∣

∂b(qn, t)

∂t

∣

∣

∣

∣

2

, (12)

where ρi is the ionic mass density, and

m(q, R) = ρi
2πR I0(qR)

qI1(qR)
. (13)

Details of the derivation of Eqs. (12) and (13) are given
in Appendix A. Combining Eqs. (3) and (12) yields a
Hamiltonian for surface phonons, with frequencies

ω(q;R0, T ) =

√

α(q;R0, T )

m(q, R0)
. (14)

Generically, ω(q) ∝ q as q → 0 due to the q-dependence
of m(q, R0). Eq. (14) thus describes acoustic surface

phonons. On the stability boundary A = 0, one has
ω(q) ∝ q2 as q → 0. For A < 0, ω is imaginary, and long-
wavelength modes grow exponentially [see Fig. 5(a)].

B. Surface diffusion

The surface deformation (1) also produces a gradient
in chemical potential that drives the surface atoms to
diffuse—a process likely to be important for large-scale
deformations.35 The surface current of atoms is given by
Fick’s law

~J = −ρsDs

kBT
∇µ, (15)

where ρs is the surface density of atoms andDs is the sur-
face self-diffusion constant. Using the continuity equa-
tion for the surface current, Eq. (15) can be converted
into a (linearized) equation of motion for the profile
R(z, t)

∂R(z, t)

∂t
=

ρsDsva
kBT

∂2µ

∂z2
, (16)

where va = 3π2/k3F is the volume of an atom. The chem-
ical potential µ of an atom is obtained by calculating the
change in free energy with the addition of an atom at
point z0,

µ(z0, t) = U [R(z, t) + Cδ(z − z0)]− U [R(z, t)], (17)

where C = va/2πR is chosen so that the volume of an
atom is added. From Eq. (3), one obtains

µ(z, t) = µ0 +
εF va
πR0

N
∑

n=−N

α(qn;R0, T ))b(qn, t)e
iqnz,

(18)
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where µ0(R0, T ) is the chemical potential of the unper-
turbed cylinder. Combining Eqs. (16) and (18) yields an
equation of motion for the Fourier component b(q, t),

∂b(q, t)

∂t
= −Γ(q;R0, T )b(q, t), (19)

where the relaxation rate

Γ(q;R0, T ) =
ρsDsv

2
a

πR0kBT
q2α(q;R0, T ). (20)

Thus, one finds that under surface diffusion alone, a per-
turbed metastable wire relaxes exponentially toward a
cylindrical shape. For α < 0, the mode grows exponen-
tially.

C. Combined dynamics

Combining inertial and diffusive processes, the lin-
earized (classical) equation of motion for the surface
modes is

∂2b(q, t)

∂t2
+ Γ(q)

∂b(q, t)

∂t
+ ω2(q)b(q, t) = 0. (21)

From the q-dependence of Eqs. (14) and (20), one sees
that Γ(q)/ω(q) → 0 as q → 0, indicating that diffusive
processes can be neglected in this limit, at least for small
deformations. In general, the relative time scales for in-
ertial and diffusive dynamics depend on the value of Ds.
For this quasi-one-dimensional diffusion problem, one can
estimate Ds ∼ (ωD/ρs) exp(−Es/kBT ), where ωD is the
Debye frequency and Es is the activation energy for sur-
face diffusion, which is comparable to the energy of a
single bond in the solid. With this estimate, one has
ω(q) ≫ Γ(q) for all q, indicating that the surface phonons
are underdamped.
The picture of the surface dynamics of (meta)stable

metal nanowires which emerges from this analysis is that
there is a separation of timescales: on short timescales,
the surface oscillates rapidly about the cylindrical equi-
librium shape, while on much longer timescales, surface
atoms diffuse irreversibly.

V. CRITICAL SURFACE FLUCTUATIONS

In the harmonic approximation [Eqs. (3) and (12)],
the total free energy Ω(R0, T ) of the nanowire is given
by the free energy of the unperturbed cylinder plus the
Helmholtz free energy of the surface phonons,

Ω = U0 +
N
∑

n=1

[

~ωn + 2kBT ln
(

1− e−β~ωn

)]

, (22)

where ωn ≡ ω(qn;R0, T ) and β = 1/kBT . The equilib-
rium tension in the wire is

F = −∂Ω

∂L
= −∂U0

∂L
+ δFphonon, (23)

FIG. 3: Root-mean-square fluctuations of the radius of
metastable sodium nanowires of length L = 10R0. δR is
undefined for unstable wires within the harmonic approxima-
tion, and is not shown.

where the main contribution −∂U0/∂L was previously
calculated in Refs. 9,10,30, and δFphonon is a small cor-
rection that is singular at the stability boundaries, where
the surface modes become soft.
The softening of the surface modes on the stability

boundaries leads to critical surface fluctuations. Given
the stiffness (5) and frequency (14) of the surface modes,
the mean-square thermal fluctuation δR2 of the radius of
the nanowire can be calculated in the usual way40

δR2 ≡ 〈(R −R0)
2〉 = 1

L

N
∑

n=1

~ωn[2f(ωn) + 1]

α(qn;R0, T )
, (24)

where f(ω) = [exp(β~ω) − 1]−1 is the Planck distribu-
tion. Note that, aside from a small quantum correc-
tion, the magnitude of the surface fluctuations follows
from the equipartition theorem applied to Eq. (3), and
is thus largely independent of the nature of the surface
dynamics—whether inertial or diffusive.
Fig. 3 shows δR for nanowires of finite length at room

temperature as a function of their mean radius. The
ionic mass and Fermi temperature were taken to be that
of sodium. Within a metastable region, kF δR ≪ 1
and is approximately independent of L, indicating that
such wires are nearly atomically smooth at this temper-
ature. The zero-point motion contributes roughly fifty
percent of the surface fluctuation within a stable region
for sodium nanowires at T = 300K. With increasing
temperature, the thermal contribution to δR grows pro-
portional to

√
T , according to the equipartition theorem.

Note that the harmonic approximation is expected to
break down when kF δR ∼ 1.
The surface fluctuation δR exhibits sharp peaks at the

stability boundaries, reaching the value

δR2
∣

∣

A(R0,T )=0
=

kBT

4π3(σR0 − γ)
L, (25)

plus a small quantum correction. δR thus scales as L1/2

on the stability boundary, like the finite-size scaling at
the roughening transition of a planar interface.41 At T =
0, δR remains small and approximately independent of L
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on the stability boundary. The absence of critical surface
fluctuations at T = 0 is also consistent with the behavior
of planar interfaces.40

The stability boundary A(R0, T ) = 0 defines a
(multiple-valued) critical temperature Tc = Tc(R0) as
a function of the mean radius, or alternatively a criti-
cal mean radius Rc = Rc(T ) as a function of tempera-
ture (see Fig. 1). Within the harmonic approximation,
δR grows with an exponent ν = −1/4 as R0 → Rc or
T → Tc, as expected from the Ornstein-Zernicke fluctua-
tion theory. This critical behavior, which is cut off when
δR approaches the value given in Eq. (25), is illustrated
in Fig. 3.
One can also study the time-dependence42 of δR for an

initially cylindrical wire undergoing thermal fluctuations.
Using the classical equipartition theorem, for each mode
we have

〈|b(qn, t)|2〉 =
2kBT

L

sin2(ωnt)

α(qn;R0, T )
(26)

where sin2(ωnt) describes the standing capillary waves.
The surface fluctuations then grow as a function of time
according to

δR2(t) =
4kBT

L

N
∑

n=1

sin2(ωnt)

α(qn;R0, T )
. (27)

On the stability boundaries A(R0, T ) = 0, the dispersion
relation ω(q) ∼ q2, and one finds asymptotically δR(t) ∼
t1/4 for times ω−1

1 ≫ t ≫ ω−1
N . The dynamic exponent

z = 1/4 differs from that of a planar interface42 due to
the different dispersion relation for the surface modes.
However, all these scaling relations hold only in a lim-

ited range, since the asymptotic limit δR → ∞ charac-
terizing the roughening transition40,41,42 is unphysical in
nanowires, due to their finite radius. On the stability
boundary, the surface does not roughen in a thermody-
namic sense, but the nanowire does become inhomoge-
neous.

VI. REENTRANT BEHAVIOR

Perhaps most interesting is the reentrant behavior oc-
curing on the arches and overhangs in the stability di-
agram, Fig. 1. For instance, a wire with kFR0 = 19 is
metastable and homogeneous in the temperature interval
Tc1 < T < Tc2, with Tc1 ≈ .0072TF and Tc2 ≈ .046TF .
The surface exhibits critical fluctuations as T → T+

c1 or
T → T−

c2, at which points the wire makes a transition to
an inhomogeneous phase. The transition at Tc2 is con-
ventional, in the sense that the inhomogeneous phase is
the high-entropy phase. However, the inhomogeneous
phase below Tc1 has lower entropy than the homoge-
neous phase above Tc1. Fig. 4(a) shows the total entropy
S = −∂Ω/∂T of the nanowire as a function of tempera-
ture, including both electron and phonon contributions,

FIG. 4: (a) The total entropy per unit length of a nanowire
with kFR0 = 19 versus temperature. The ionic mass was
taken to be that of sodium. (b) The electron-shell potential
V (R0, T ), from Eq. (6).

where Ω is given by Eq. (22). The electronic entropy is
regular at the critical points, but the phonon entropy is
singular in the harmonic approximation, due to the emer-
gence of soft surface modes. The singular contribution to
the phonon entropy is

Ssing(R0, T ) = − ~

L

N
∑

n=1

f(ωn)
∂ω(qn;R0, T )

∂T
, (28)

indicating that the softening of a phonon mode with de-
creasing temperature indeed leads to a decrease in en-
tropy.
To understand the counterintuitive behavior at Tc1, it

is useful to consider the electron-shell correction V to
the energy of the wire, shown in Fig. 4(b). Above Tc1,
V has a single broad minimum near kFR0 = 19, but as
the temperature is lowered, and the fine structure in the
shell potential emerges, this single minimum splits into
two minima at kFR0 = 18.75 and kFR0 = 19.2. To lower
its free energy, the system would like to fall into one of
these two minima, but due to volume conservation, such
a global change is not possible. The wire thus undergoes
phase separation into thick and thin segments.35

VII. UNSTABLE WIRES

Finally, let us discuss the dynamics of unstable wires.
Fig. 5(a) shows the real and imaginary parts of the sur-
face phonon frequency versus wavevector for a typical
unstable wire. One mode b(qm, t) grows exponentially
faster than all others in the harmonic approximation, and
thus may be expected to dominate. For a single Fourier
component b(qm), the potential energy U [b(qm)] of the
nanowire can be evaluated for arbitrarily large b using
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semiclassical perturbation theory. U may be expanded
semiclassically as9,27

U = uV + σsS − γsC + δU. (29)

The volume V , surface area S, and integrated mean cur-
vature C of the nanowire can be calculated for arbitrary

deformations by simple geometric considerations. Us-
ing semiclassical perturbation theory,43,44,45 the electron-
shell correction δU can again be expressed in terms of the
classical periodic orbits of a disk billiard, leading to an
expression similar to Eq. (6):

δU [b(qm)]

L
=

2εF
π

∞
∑

w=1

∞
∑

v=2w

avw(T )fvw
v2Lvw

[(

1 +
b(0)

R0

)

cos(θvw)J0(φvw)−
2b(qm)

R0
sin(θvw)J1(φvw)

]

, (30)

where θvw = kFLvw(1 + b(0)/R0) − 3vπ/2, φvw =
2kFLvwb(qm)/R0, Ji is the i-th order Bessel function,
and b(0) is related to b(qm) by Eq. (2). The result is
shown in Fig. 5(b). Although the wire is unstable to
breakup under a hypothetical long-wavelength perturba-
tion, the energy of the fastest growing mode reaches a
minimum at a finite amplitude, suggesting that the sur-
face deformation saturates, and that the wire does not
break up, but rather necks down to the next stable ra-
dius. A similar scenario is predicted under the diffusive
dynamics of Eq. (19). An explicit nonlinear dynamical
simulation35 confirms these predictions.

FIG. 5: (a) The dispersion relation for the surface modes of
an unstable nanowire with kFR0 = 8.95 at T = 0. The ionic
mass was taken to be that of sodium. (b) The potential en-
ergy U [b(q)] of the same nanowire for sinusoidal deformations
with q = 0 and q = qm = 0.208kF , respectively. Note that the
energy U0 of a straight wire has been subtracted. The differ-
ent energies of these two modes is mainly due to the increased
surface energy at finite q.

VIII. CONCLUSIONS

The stability and surface dynamics of metal nanowires
were investigated in a continuum approach, including
electron-shell effects. A thermodynamic phase diagram
for jellium nanowires was derived, which predicts that
cylindrical wires with certain “magic” conductance val-
ues are stable with respect to small perturbations up to
remarkably high temperatures. On the stability bound-
ary, the surface exhibits critical fluctuations, and the
nanowire becomes inhomogeneous. Both surface phonons
and surface self-diffusion of atoms were included in the
linearized surface dynamics. It was found that in-
ertial dynamics (phonons) always dominate the long-
wavelength behavior, including the critical points. (It
must be emphasized, however, that this conclusion holds
only for small perturbations of the surface. The irre-
versible diffusion of surface atoms is undoubtedly crucial
for large-scale surface deformations.35) A novel reentrant
behavior was predicted, in which a straight wire is stabi-
lized at intermediate temperatures, but undergoes phase
separation into thick and thin segments as the temper-
ature is lowered. Finally, for unstable wires, the surface
deformation was found to grow exponentially, dominated
by a single Fourier component, and to saturate at a finite
amplitude, indicating that unstable wires may not break,
but rather neck down to the next stable radius.
The results presented in this article should be di-

rectly relevant for nanowires made of monovalent met-
als, especially the alkali metals and gold, for which
there is clear experimental evidence of electron-shell
effects.15,16,18 Moreover, this simple model may provide
qualitative insight into the generic surface properties
of metal nanowires, which could guide investigations of
more realistic, material-specific models.
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APPENDIX A: THE IONIC KINETIC ENERGY

Here we present some details of the derivation of the
expression (12) for the kinetic energy of the ions. Insert-
ing Eq. (9) into the first line of Eq. (12) and performing
the z-integral, one obtains

K = πρiL
∑

n

∫ R0

0

rdr
[

q2nI
′2
0 (qnr) + q2nI

2
0 (qnr)

]

|d(qn, t)|2.

(A1)

Using the relation I ′0(x) = I1(x) and the identity

d

dx
[xIm(x)I ′m(x)] = x

[

I ′2m +

(

1 +
m2

x2

)

I2m

]

, (A2)

the radial integral in Eq. (A1) may be performed, leading
to the result

K = πρiL

N
∑

n=−N

qnR0I0(qnR0)I1(qnR0)|d(qn)|2. (A3)

Finally, eliminating d(qn, t) from Eq. (A3) using the re-
lation (11), one obtains the second line of Eq. (12).
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11 C. Rubio, N. Agräıt, and S. Vieira, Phys. Rev. Lett. 76,
2302 (1996).

12 C. Untiedt, G. Rubio, S. Vieira, and N. Agräıt, Phys. Rev.
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