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We report on a general method for the calculation of the frequency-dependent optical response of
clusters based upon time-dependent density functional theory (TDDFT). The implementation is
done using explicit propagation in the time domain and a self-consistent program that uses a lin-
ear combination of atomic orbitals (LCAO). Our actual calculations employ the SIESTA program,
which is designed to be fast and accurate for large clusters. We use the adiabatic local density ap-
proximation to account for exchange and correlation effects. Results are presented for the imaginary
part of the linear polarizability, ℑα(ω), and the dipole strength function, S(ω), of C60 and Na8,
compared to previous calculations and to experiment. We also show how to calculate the integrated
frequency-dependent second order non-linear polarizability for the case of a step function electric
field, γ̃step(ω), and present results for C60.

I. INTRODUCTION

Although density functional theory (DFT)1,2 is a very
successful theory for the ground state properties, the ex-
cited states calculated within the Kohn-Sham scheme of-
ten are much less successful in describing the optical re-
sponse and the excitation spectra. The solution to this
problem, in principle, is the extension of DFT to the
time-dependent systems. It is interesting to note that
the first calculation3 using TDDFT preceded any for-
mal development and it relied heavily on the analogy
with the time-dependent Hartree-Fock method. The first
steps towards the formulation of TDDFT were done by
Deb and Gosh4,5 who focused on potentials periodic in
time, and by Bartolotti6,7 who focused on adiabatic pro-
cesses. Runge and Gross8 established the foundations
of TDDFT for a generic form of the time-dependent po-
tential. TDDFT was further developed9,10 to acquire a
structure that is very similar to that of the conventional
DFT. A very interesting feature of TDDFT, that does
not appear in DFT, is the dependence of the density func-
tionals on the initial state. For more information about
TDDFT the reader is advised to read the authoritative
reviews of Gross, Ullrich, and Gossmann,11 and Gross,
Dobson, and Petersilka.12

The polarizability describes the distortion of the charge
cloud caused by the application of an external field. It is
one of the most important response functions because it
is directly related to electron-electron interactions, and
correlations. In addition, it determines the response to
charged particles, and optical properties. A quantity of
particular interest is the dipole strength function, S(ω),
which is directly related to the frequency-dependent lin-
ear polarizability, α(ω), by

α(ω) =
e2h̄

m

∫ ∞

0

S(ω′)dω′

ω′2 − ω2
. (1)

By taking the imaginary part of Eq. (1) we obtain

S(ω) =
2m

πe2h̄
ωℑα(ω). (2)

The dipole strength function, S(ω), is proportional to
the photoabsorption cross section, σ(ω), measured by
most experiments and, therefore, allows direct compar-
ison with experiment. In addition, the integration of S
over energy gives the number of electrons, Ne, (f-sum
rule ) i.e.

∫ ∞

0

dES(E) =
∑

i

fi = Ne, (3)

where fi are the oscillator strengths. This sum rule is
very important because it provides an internal consis-
tency test for the calculations, indicating the complete-
ness and adequacy of the basis set used for the compu-
tation of the optical response.
Optical probes are some of the most successful exper-

imental tools that allow access to the properties of clus-
ters. Consequently, there are many calculations of the
optical response of small atomic aggregates. In particu-
lar, there exist several theoretical studies of the examples
chosen here, C60 and Na8. This allows us to calibrate
the accuracy of our method in comparison with other
computational schemes. One of the first ab initio calcu-
lations of the dipole response of atomic clusters within
TDDFT was performed by Yabana and Bertsch,13 who
studied large sodium and lithium clusters, and the C60

molecule using a real time and space approach. For small
Na clusters, Vasiliev et al.14 calculated the absorption
cross section using the time-dependent density functional
response theory (TD-DFRT) developed by Casida.15

The purpose of this work is to propose a method that
will have significant advantages for the calculation of the
polarizability of large clusters, reducing considerably the
computation time while retaining the desired accuracy.
This paper is organized as follows: In section II, we de-
scribe the method of calculation. In section II C, we
give details about the way we solve the time-dependent
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Kohn-Sham equation and briefly summarize other meth-
ods available. In section III, we present an overview of
relevant calculations and the results of our calculation
for C60 and Na8. We compare our results with other cal-
culations and experiments. In section IV, we describe
the calculation and present the results for the imaginary
part of the integrated frequency-dependent second order
non-linear polarizability for the case of a step function
electric field, ℑγ̃step(ω), for C60. In section V, we give
the conclusions.

II. METHOD OF CALCULATION

A. Electronic structure calculations

Our method involves the description of the elec-
tronic states using linear combination of atomic orbitals
(LCAO). Because the size of the LCAO basis is small,
compared with other usual choices like plane waves or
real space grids, the TDDFT calculations can be done
efficiently using the techniques described below. Our
scheme is based on the SIESTA16–18 code, which is used
to compute the initial wavefunctions and the Hamilto-
nian matrix for each time step. SIESTA is a general-
purpose DFT code which uses a local basis, and has been
specially optimized to deal with large systems. As such,
it represents an ideal tool for treating large clusters. Core
electrons are replaced by norm-conserving pseudopoten-
tials19 in the fully nonlocal Kleinman-Bylander20 form,
and the basis set is a general and flexible linear combi-
nation of numerical atomic orbitals (NAOs), constructed
from the eigenstates of the atomic pseudopotentials.17,21

The NAOs are confined, being strictly zero beyond a cer-
tain radius. In addition, the electron wavefunctions and
density are projected onto a real space grid in order to
calculate the Hartree and exchange-correlation potentials
and their matrix elements.
The use of confined NAOs is very important for the

efficiency of the SIESTA code. With them, by exploit-
ing the explicit sparseness of the Hamiltonian and den-
sity matrices, the computational cost for the construction
and storage of the Hamiltonian and the electronic den-
sity can be made to scale linearly with the number of
atoms, in the limit of large systems. Therefore, a consid-
erable effort has been devoted to obtain orbital bases that
would meet the standards of precision of conventional
first-principles calculations, while keeping their range as
small as possible. A simple scheme for the generation
of transferable bases that satisfy both requirements was
presented in Refs. 17 and 22. These bases, which we
utilize in this work, have been successfully applied to
study the ground state properties of very different sys-
tems, ranging from insulators to metals, and from bulk to
surfaces and nanostructures.18 It is not obvious however
that these confined basis sets will be also adequate for
the TDDFT calculation of the optical response. In this

paper we show that, at least for the two systems consid-
ered, the optical absorption can be accurately calculated
using basis of NAOs with reasonable confinement radii,
and a moderate number of orbitals per atom. Our results
are in good agreement with other TDDFT calculations
using computationally more demanding basis sets.
Our approach is to carry out the calculations in the

time domain, explicitly evolving the wavefunctions. We
consider a bounded system in a finite electric field, i.e.
the Hamiltonian includes a perturbation ∆H = −E · x.
For the linear response calculations in this paper we have
set the value of this field to 0.01 eV/Å. The system is
solved for the ground state using standard time indepen-
dent density functional theory.23 Then we switch off the
electric field at time t = 0, and for every subsequent
time step we propagate the occupied Kohn-Sham eigen-
states by solving the time-dependent Kohn-Sham equa-
tion (h̄ = 1)

i
∂Ψ

∂t
= HΨ, (4)

where H is the time-dependent Hamiltonian given by

H = −
1

2
∇2 + Vext(r, t) +

∫

ρ(r′, t)

|r− r′|
dr′ + Vxc[ρ](r, t).

(5)

The calculation of the exchange-correlation potential is
done using the adiabatic local density approximation
(ALDA) where Vxc takes the form

Vxc[ρ](r, t) ∼=
δELDA

xc [ρt]

δρt(r)
= V LDA

xc [ρt](r). (6)

ELDA
xc [ρt] is the exchange-correlation energy of the homo-

geneous electron gas.24 It is important to notice that the
Vxc in ALDA is local both in time and space. For every
time step we solve Eq. (4), and from the new wavefunc-
tions we construct the new density matrix

ρµν(t) =
∑

i occ

cµi (t)c
ν
i (t), (7)

where cµi (t) are the coefficients of the occupied wavefunc-
tions which correspond to the basis orbitals φµ(r). ρ

µν(t)
has to be calculated and stored for overlapping orbitals
only. The electron density is then obtained by

ρ(r, t) =
∑

µ,ν

ρµν(t) φµ(r)φν (r), (8)

and used for the calculation of the Hamiltonian in the
new cycle.

B. Calculation of the polarizabilities

For every time step we calculate the dipole moment
D(t) of the electrons in the cluster. This defines the
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response to all orders and the frequency dependent re-
sponse is found by the Fourier transform

D(ω) ≡

∫

dteiωt−δtD(t). (9)

In our case we Fourier transform the dipole moment only
for t>0. It is necessary to include a damping factor δ in
order to perform the Fourier transform. This damping
factor gives the minimum width of the peaks of the imag-
inary part of the response. Physically, it can be regarded
as an approximate way to account for broadening. To lin-
ear order the polarizability is given byD(ω) = α(ω)E(ω),
so that

ℑα(ω) = ω
ℜD(ω)

E
, (10)

where the field is given by E(t) = E θ(−t). After Fourier
transforming the dipole moment we obtain the elements
of the frequency-dependent polarizability tensor αij(ω).
We repeat the calculation with the electric field along
different axis unless the symmetry is high enough that
this is not needed. The average linear polarizability is
given by

< α(ω) >=
1

3
Tr{αij(ω)}. (11)

The choice of the coordinate system does not affect the
average polarizability because of the rotational invariance
of the trace.

C. Solution of the time-dependent Kohn-Sham

equation

Efficient solution of the time-dependent Kohn-Sham
equation (Eq. (4)) is of particular interest because to-
gether with the calculation of the Hamiltonian, they are
the most time consuming parts of the calculation. In this
section we describe our approach of solving Eq. (4), as
well as other existing methods used for the same purpose.
In the LCAO formalism Eq. (4) takes the form

i
∂c

∂t
= S−1Hc (12)

where S is the overlap matrix between the orbitals and c
is the column of the coefficients of the local orbitals. The
overlap matrix is fixed for a given atomic configuration,
hence we have to calculate and invert it only once.
The formal solution of Eq. (12) is

c(t) = U(t, 0)c(0) = Texp

(

−i

∫ t

0

S−1H(t′)dt′
)

c(0),

(13)

where T is the time ordering operator. The most elemen-
tary solution is obtained by breaking the total evolution
operator into evolution operators of small time durations

U(t, 0) ≃

N−1
∏

n=0

U((n+ 1)∆t, n∆t), (14)

where ∆t = Ttot

N
and

U(t+∆t, t) = exp
(

−iS−1H(t)∆t
)

. (15)

Ttot is the total time that we allow the system to evolve.
The differences among propagation schemes arise from
the way the exponential in Eq. (15) is approximated.
In our approach, we approximate the exponential in Eq.
(15) with the Crank-Nicholson operator.25 The coeffi-
cients between the steps n + 1 and n are related by the
equation

cn+1 =
1− iS−1H(tn)

∆t
2

1 + iS−1H(tn)
∆t
2

cn. (16)

This method is unitary, strictly preserving the orthonor-
mality of the states for an arbitrary time evolution. For
time independent Hamiltonians it is also explicitly time
reversal invariant, and exactly conserves energy. In prac-
tice, with a suitable choice of ∆t, the energy is satisfacto-
rily conserved even when the Hamiltonian changes with
time. For example, in the calculations described below,
the drift of the total energy at the end of the simulation
(∼130 fs in both cases) was only ∆Etot/Etot ∼ 3× 10−7

for C60 and, ∼ 8× 10−6 for Na8, after NC60
∼ 6100 and

NNa8
∼ 2800 time steps, respectively. The larger energy

drift in the case of Na8 is attributed to the use of larger
time step. The method is stable when ∆t∆Emax << 1,
where ∆Emax is the range of the eigenstates of S−1H .
We can increase the stability of the solution if we in-
clude more terms of the expansion in the numerator and
denominator of the Crank-Nicholson operator, i.e.

cn+1 =
1− iS−1H ∆t

2 − 1
2 (S

−1H ∆t
2 )2 + i 16 (S

−1H ∆t
2 )3

1 + iS−1H ∆t
2 − 1

2 (S
−1H ∆t

2 )2 − i 16 (S
−1H ∆t

2 )3
cn.

(17)

By including more terms in the expansion it is possible ei-
ther to increase the time step preserving the accuracy, or
to increase the accuracy of the dynamics and the energy
conservation for a given time step. The main advantage
of using a bigger time step is the saving of time because
we have to calculate the Hamiltonian fewer times. The
energy resolution will not be affected since it depends on
the total time that we allow the system to evolve.
The method presented in this work has many similar-

ities with that described by Yabana and Bertsch,13 the
main difference being the use of an LCAO basis set in
the present case. However, this is a key difference be-
cause the size of the matrices used in the calculations
is considerably smaller compared to other basis choices.
In addition, our method has other advantages associated
with the real time formulation of TDDFT. Only occu-
pied states are used in the calculation, in contrast to the
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perturbative approach15,26 where there is a sum over the
excited states of the system. The implementation is rela-
tively simple, since we use essentially the same operations
as already used to find the ground state properties. It is
also advantageous that nonlinear effects can be included
in a straightforward way. One disadvantage of the real
time approach is the calculation of the Hamiltonian for
every time step. Although this is not an attractive fea-
ture there is no other way to calculate the time evolution
of the system.
There are many other ways to approach the solution

of the equations. For completeness, we discuss in the
Appendix several methods that could be of potential rel-
evance for our calculations. One of the main goals of
these methods is to enable longer time steps. This would
be a great advantage in our work; however, the fact that
the self-consistent Hamiltonian changes as a function of
time, limits their use.

III. DISCUSSION OF RESULTS

A. Small metal clusters: Na8

The first calculation we performed is the optical re-
sponse of Na8. The main purpose of this calculation was
to investigate the accuracy of our method in the case of
a small cluster, where the effects related to the confine-
ment of the orbitals should be more noticeable and where
the size of our basis is much smaller than in previous cal-
culations using real space grids.14 Na8 is the smallest
closed shell Na cluster that its optical response exhibits
the presence of a plasmon which is experimentally ob-
served at 2.53 eV.27,28 The width of the plasmon is due
to Landau damping.29

Previous work can be grouped into two types: earlier
work on jellium spheres27,29–31 that reproduces the qual-
itative features but not the quantitative energies of the
peaks, and more recent work14,32 that takes into account
the detailed atomic structure and is in general in very
good agreement with experiment.27,28 In the first cate-
gory are the calculations of Selby et al .,27,30 who calcu-
lated the photoabsorption cross section using the modi-
fied Mie theory, which is a classical theory. The plasmon
was found to be at ∼ 2.76 eV. By using the self-consistent
jellium model in the time dependent local density approx-
imation (TDLDA), first introduced by Ekardt,29 Yan-
nouleas et al.31 calculated the photoabsorption cross sec-
tion of Na8 and predicted the plasmon position at 2.82
eV.
Bounačić-Koutecký et al.32 calculated the absorp-

tion spectrum of Na8 using the configuration-interaction
method (CI). Because the all-electron calculation is com-
putationally very demanding, they obtained the excited
states by a non-empirical effective core potential cor-
rected for the core-valence correlation using a core po-
larization potential. The position of the plasmon was
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FIG. 1. Dipole strength function of Na8 vs. energy.
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FIG. 2. Imaginary part of the linear polarizability of Na8
vs. energy.

predicted at ∼ 2.55 eV. Vasiliev et al.14 calculated the
photoabsorption cross section using TD-DFRT.15 Their
calculations made use of norm-conserving pseudopoten-
tials and a real-space mesh as a basis set. The position
of the plasmon agreed with the photoabsorption experi-
ments of Selby et al.27 and Wang et al.28 within 0.1-0.2
eV.
In our calculation we let the system evolve for the

total time of T=31.42 eV−1. The energy resolution,
determined by ∆ω = π

T
, is, in consequence, equal

to 0.1 eV. The time step is 11.025 ×10−3 eV−1, and
the damping factor used in the Fourier transform is
0.095 eV. Troullier-Martins pseudopotentials19 including
non-linear partial core corrections33 for the exchange-
correlation interaction between valence and core elec-
trons, and an auxiliary real-space grid16 equivalent to
a plane-wave cutoff of 70 Ry are also used in this
calculation. The basis set includes 13 NAOs per
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atom: two radial shapes to represent the 3s states
plus a polarization17 p shell with confinement radii
rs=r

Pol.
p =12.2 a.u., and two additional 3p and 3d shells

with radii rp=rd=10.0 a.u..
Fig. 1 and Fig. 2 present, respectively, our results for

the dipole strength function and the imaginary part of
the linear polarizability of Na8 for energies up to 4 eV.
The shape of these curves is in excellent agreement with
both, the calculations of Vasiliev et al.14 and, the experi-
ments of Wang et al..28 However, the results appear to be
shifted to higher energies. In fact, the maximum of the
plasmon peak is obtained at 2.86 eV, which is 0.33 eV
higher than the experimentally observed value. This shift
to higher energies seems to be related to the extension
of the LCAO basis: using more confined orbitals we get
a larger shift. The integrated dipole strength is equal
to 6.97 out of 8, thus fulfilling 87.13 % of the sum rule.
The partial fulfillment of the sum rule signifies the incom-
pleteness of our basis set. The static linear polarizability
α(0) can be obtained from standard (static) calculations
of the induced dipole as a function of the applied field.
Using this approach we obtain a value of 13.2 Å3/atom.
An alternative way to calculate α(0) is provided by the
formula

α(0) =
e2h̄

m

∫ ∞

0

S(ω)dω

ω2
=

2

π

∫ ∞

0

ℑα(ω)

ω
dω, (18)

from which we obtain a value of 12.5 Å3/atom. (This
result can also be derived from the fact that for the step
perturbation D(t = 0) = α(0)E.) The discrepancy be-
tween both estimations is probably related with the lack
of energy resolution of the calculated α(ω) to perform the
integral in Eq. (18) with the required accuracy. Both
results are in reasonable agreement with the values of
14.6 Å3/atom and 14.7 Å3/atom, computed by Vasiliev
et al.14,34 using the TDLDA and finite field methods, re-
spectively.

B. Large molecules: C60

The best known Buckyball C60 is a very interesting
system with strong electron-electron interactions due to
the confinement. There are quite a few calculations con-
cerning the optical properties of C60 and in particular
its optical response. The main feature of the optical re-
sponse of C60 is the presence of two collective excitations
(plasmons). The low energy plasmon can be associated
with the π electrons while the high energy plasmon with
both the σ and π electrons, in analogy with the plasmons
in graphite.35,36 The plasmons have been observed by a
plethora of experiments.37–41

The earliest theoretical work42–45 on C60 involved sim-
plifying approximations for the electron states (tight-
binding or spherical averaging) and for the electron in-
teraction (neglect or RPA-like treatments). We will com-
pare our results with those of Westin et al.46 and Yabana

and Bertsch13, who used large basis sets and realistic
carbon potentials. Westin et al. used single particle
wavefuctions, determined from a local density approx-
imation (LDA) calculation, to evaluate the dipole ma-
trix elements which combined with a sum over states ap-
proach yielded the unscreened frequency-dependent lin-
ear polarizability. Screening was included in a RPA-like
fashion by introducing an effective screening parameter.
The polarizability calculated in the static limit was used
to evaluate this parameter for the calculation of the dy-
namic response. The optical response and the sum rule
for the low energy part were in reasonable agreement with
the experiment of Leach et al..41 Yabana and Bertsch13

used TDLDA, evolving the system in real space and time,
to calculate the dipole strength function of C60. Their
calculation also gives reasonable agreement with the ex-
perimental data of Leach et al.,41 for the sum rule of the
low energy part although it misses many details of the
structure. This calculation is very similar in quality to
ours.
The total simulation time in our calculation of the po-

larizability and dipole strength of the C60 molecule is
again 31.416 eV−1, and the corresponding maximum en-
ergy resolution of 0.1 eV. The time step however, which
is set equal to 5.145 ×10−3 eV−1, is smaller than the one
used for Na8. This is because of the higher frequency
range of the response of C60. The damping factor used
in the Fourier transform is equal to 0.34 eV in this case.
Troullier-Martins pseudopotentials19, a double-ζ polar-
ized basis set, and a real-space grid cutoff16 of 70 Ry
were used in this calculation. There are 13 NAOs per
C atom: two different radial shapes for the description
of the 2s states, another two for the 2p, plus an addi-
tional shell of d orbitals. The radii of confinement used
are rs=5.12 a.u. and rp=r

Pol.
d =6.25 a.u. (corresponding

to an energy shift17 of 50 meV). For C60, the calculated
spectra show small dependence in these radii, at least as
far as they are not selected to be very stringent. In Fig. 3,
the dipole moment is shown as a function of the time step
number. The dipole strength function obtained from the
time evolution of the dipole moment is shown in Fig. 4
for energies up to 60 eV. Its main features are the low
energy transitions that come from the π electrons and
the σ and π electron transitions in the region of 14-27
eV. In the low energy part of dipole strength function we
have peaks at 3.46, 4.35, 5.36, and 5.84 eV, which agree
very well with the ones obtained by the calculations of
Westin et al..46 By integrating the dipole strength func-
tion over energy we get the sum rule strength. The total
sum rule strength is 223.78 out of 240. Therefore, we
satisfy the sum rule up to 93.24 %. This reflects the in-
completeness of our basis set, which fails to reproduce
some of the excitations in the high energy part of the
spectrum. The σ plasmon is broadened, but this is a
common feature of all the TDDFT calculations done for
C60.

13 In Fig. 5, the imaginary part of the polarizability is
given as function of energy. By using Eq. (18), the static
linear polarizability α(0) is found to be 91.1 Å3, while
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FIG. 3. Dipole moment of C60 vs. number of time steps.
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FIG. 4. Dipole strength function of C60 vs. energy.
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FIG. 5. Imaginary part of the linear polarizability of C60

vs. energy.

our finite field calculations produce a value of 87.3 Å3.
Results for α(0), from very accurate finite-field calcula-
tions using fifteen values of the field, are given in section
IV. Both values are higher than the lower limit estima-
tion of 62.5 Å3 from quantum-mechanical calculations,47

and in good agreement with the value of 85 Å3 obtained
by Yabana and Bertsch.13 They also agree well with the
experimental values of 79.3 Å3 from UV absorption,48

and 85.2 Å3 from EELS spectra.49,50

IV. NON-LINEAR POLARIZABILITIES

Because of the non-perturbative nature of our method
we are able, for large values of the applied field, to obtain
non-linear polarizabilities. In this section, we present
the calculation of the imaginary part of the integrated
frequency-dependent second order non-linear polarizabil-
ity, ℑγ̃step(ω), which is related to the response to a step
function, for C60. Because C60 is centrosymmetric the
first order non-linear polarizability, β(ω), and all other
polarizabilities involving an even number of fields, van-
ish by symmetry.
The advantage of the explicit time method is that ex-

actly the same methods can be used to calculate the non-
linear response of the system. The disadvantage is that
(unlike the linear case where each Fourier component is
independent) the non-linear response depends upon the
detailed spectrum of the applied field. Here we derive
the non-linear response of an electric field coupled to a
C60 for the case where the field is the step function used
before. A different calculation would have to be done
to find the non-linear response to a field with a different
time dependence.
First we give the relation of our calculation to the gen-

eral definition of second order non-linear response, as a
function of time, which is51

D(3)(t) =

∫ t

−∞

dt1

∫ t

−∞

dt2

∫ t

−∞

dt3 (19)

γ(t; t1, t2, t3)E(t1)E(t2)E(t3).

For the case of a step function perturbation i.e. E(t) =
E θ(−t), it takes the form

D(3)(t) = iE3 lim
δi→0+

∫

dω1dω2dω3

(2π)3
(20)

e−i(ω1+ω2+ω3)tγ(−ω1 − ω2 − ω3;ω1, ω2, ω3)

(ω1 − iδ1)(ω2 − iδ2)(ω3 − iδ3)
.

We Fourier transform Eq. (20) and obtain the second
order non-linear response as a function of frequency

D(3)(ω) = iE3 lim
δi→0+

∫

dω2dω3

(2π)2
(21)

γ(−ω;ω − ω2 − ω3, ω2, ω3)

(ω − ω2 − ω3 − iδ1)(ω2 − iδ2)(ω3 − iδ3)
.
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The quantity we calculate is the real part of the second
order non-linear response, ℜD(3)(ω), from which we can
extract the imaginary part of the integrated second order
non-linear polarizability, ℑγ̃step(ω). Explicit details are
given below and in analogy to Eq. (10) ℑγ̃step(ω) is given
by

ℑγ̃step(ω) = −ω lim
δi→0+

∫

dω2dω3

(2π)2
(22)

ℑγ(−ω;ω − ω2 − ω3, ω2, ω3)

(ω − ω2 − ω3 − iδ1)(ω2 − iδ2)(ω3 − iδ3)
= ω

ℜD(3)(ω)

E3
.

Just as in Eq. (18) for the linear term, ℑγ̃step(ω) can be
related to the static second order non-linear polarizability
by the expression

2

π

∫ ∞

0

dω

ω
ℑγ̃step(ω) = γ(0; 0, 0, 0). (23)

Eq. (23) can be trivially derived by realizing that
D(3)(t = 0) = γ(0; 0, 0, 0)E3 when a step function pertur-
bation is applied. Alternatively, we can derive Eq. (23)
directly from Eq. (21) by applying the Kramers-Kroning
relations for γ(−ω1 − ω2 − ω3;ω1, ω2, ω3). In fact, with
the help of the Kramers-Kroning relations we can derive
another interesting equality for the first moment of our
integrated response,

1

3

∫

dω ℑγ̃step(ω) =

∫

dω ℑγ(−ω;ω, 0, 0). (24)

For the calculation of γ̃step(ω) we calculate the re-
sponse of the system under two different step function
perturbations. In the first calculation the field used is
equal to E1 = 0.10 V/Å, and we assume that the re-
sponse D1(ω) is linear with respect to the field. This
assumption is true since for ω = 0 the non-linear terms
contribute to the response only 4.82×10−3%. The con-
tribution is of the same order of magnitude for ω 6= 0.
In the second calculation the field is equal to E2 = 1.00
V/Å, and we assume that the response D2(ω) consists of
the linear response and the second order non-linear re-

sponse D
(3)
2 (ω). The values of the field are in the same

range as those used by Westin et al.46 for the determina-
tion of the static second order non-linear polarizability.
Using Eq. (10), we have that

D1(ω) = α(ω)E1(ω) = α(ω)
E1

iω
(25)

and

D2(ω)− α(ω)E2(ω) = D
(3)
2 (ω). (26)

From Eq. (22) it follows that

D
(3)
2 (ω) =

γ̃step(ω)

iω
E3

2 , (27)

and from Eqs. (25), (26), and (27) we obtain
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FIG. 6. Imaginary part of the integrated second order
non-linear polarizability , ℑγ̃step(ω), of C60 vs. energy.

γ̃step(ω) =
iω

E3
2

(

D2(ω)−
E2

E1
D1(ω)

)

. (28)

Our calculation for γ̃step(ω) is quite straightforward in
contrast to the perturbative method where it becomes
computationally very demanding.
In Fig. 6, we present the results, up to 60 eV, for

ℑγ̃step(ω), where ℑγ̃step(ω) is given by Eq. (22). As ex-
pected, ℑγ̃step(ω) has both positive and negative values.
The reason why ℑγ̃step(ω) does not vanish below some
finite frequency (as does the linear response) is because
the second-order non-linear term represents many pro-
cesses of both absorption and emission of photons and
the C60 molecule can couple to a continuum of modes
that extends to zero frequency. This can also be seen in
the integral expression Eq. (22).
Similarly to the case of the linear polarizability, we

can obtain an estimation of the magnitude of γ(0; 0, 0, 0)
from static self-consistent calculations performed with fi-
nite fields. This value can be contrasted to similar calcu-
lations in the literature, providing an estimation of the
uncertainty of our calculations of the non-linear terms,
and an internal consistency test for our calculation of the
integrated frequency-dependent second order non-linear
polarizability. We have followed here a procedure similar
to that used in Ref. 52, performing LDA calculations of
the total energy and electric dipole of the C60 molecule
for fifteen different values of an external static electric
field E ranging from 0.003 V/Å to 2.0 V/Å. The results
of the total energy were then fitted using the expression
Wtot =W0-

1
2αE

2- 14γE
4, where α is the linear polarizabil-

ity and γ the second order non-linear polarizability. The
values obtained for α and γ are, respectively, 85.3 Å3 and
3.54×10−36 esu. The results for the dipole moment were
fitted to the expression D=αE+γE3. The corresponding
values obtained are 85.3 Å3 and 3.71×10−36 esu. These
values of γ(0; 0, 0, 0) are in excellent agreement with the
value of 3.72×10−36 esu obtained using Eq. (23), thus
confirming the validity of our calculation for γ̃step(ω).
All of the values obtained by our calculations are smaller
than the upper bound of 3.7×10−35 esu proposed by the

7



experiments of Geng and Wright.53 Also, our results for
γ(0; 0, 0, 0) are in reasonably good agreement with other
LDA calculations in the literature. Quong et al.52 re-
ported values of 82.7 Å3 and 7.0×10−36 esu, for α and γ,
respectively, using an all-electron method with a Gaus-
sian expansion as a basis set. Van Gisbergen et al.54

reported very similar values, 82.5 Å3 and 7.3×10−36 esu,
using a computational scheme based on a frozen-core ap-
proximation, and a basis set of Slater functions. It is
interesting to note that these results are much smaller
than those obtained using simplified tight-binding mod-
els within an independent electron picture, where the
effects of screening are neglected. In such calculations
the values of γ(0; 0, 0, 0) obtained are of the order of
200×10−36 esu.55–57

V. CONCLUSION

We presented a method for the calculation of the op-
tical response of atoms and clusters. The main features
of the method are the description of the wavefunctions
in terms of an efficient local orbital (LCAO) basis and
the explicit evolution of the system in time. This ap-
proach is designed for large clusters and in fact it gives
excellent results for C60. It is also shown to work remark-
ably well even for systems for which the LCAO basis is
very small, such as Na8. Our approach has the desirable
features that only occupied states are needed and that
all the most computationally intensive operations are es-
sentially the same as those used to calculate the ground
state properties. In addition, non-linear effects can be
included in a straightforward way, and we have shown
how to calculate the second order non-linear response for
C60.
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APPENDIX: ALTERNATIVE APPROACHES FOR

THE SOLUTION OF THE TIME-DEPENDENT

KOHN-SHAM EQUATION

Other ways to approximate the exponential in Eq. (14)
include the expansion of the exponential in a series of
Chebyshev polynomials58

exp
(

−iS−1H∆t
)

≃ exp (−i(∆E/2 + Emin)∆t)× (A1)

N
∑

n=0

an

(

∆E t

2

)

φn(Hnorm)

where φn are the Chebyshev polynomials, and the ex-
pansion coefficients an(x) can be shown to be analo-
gous to Bessel functions of the first kind of order n.
Hnorm is a normalized Hamiltonian 2(S−1H−Eav)/∆E,
where Eav=(Emax+Emin)/2, ∆E=Emax−Emin. Emax

and Emin are, respectively, the maximum and minimum
eigenvalues of S−1H . The Chebyshev polynomials are
chosen because their error decreases exponentially when
N is large enough, due to the uniform character of the
Chebyshev expansion.58 Time reversal is built into the
expansion coefficients, but the method does not effec-
tively conserve norm or energy. While it works remark-
ably well for time-independent Hamiltonians,59 for time-
dependent Hamiltonians the method becomes inefficient
as the Chebyshev polynomials of the Hamiltonian have
to be recalculated for each time step.
Another approximation for the exponential in Eq. (14)

is performed by using the split-operator method intro-
duced by Feit et al.60 According to this method, the ex-
ponential which contains the Hamiltonian operator can
be split as

exp[−i(T + V )∆t] ≃ (A2)

exp(−i
1

2
T∆t) exp(−iV∆t) exp(−i 12T∆t).

This method was later generalized by Suzuki61 for an ar-
bitrary number of operators, providing higher order ex-
pansions (formula (A2) corresponds to second order in
∆t), and a rigorous extension of the method to time-
dependent Hamiltonians.62 The split operator method
takes advantage of the fact that it is very convenient to
treat operators in their diagonal representations. For ex-
ample, it is trivial to apply the kinetic energy operator
to a wave-function in Fourier space, while the effect of
a local potential is more easily calculated in real space.
This method is, in principle, unconditionally stable and
norm conserving. On the other hand, it does not con-
serve energy and it can only be used to Hamiltonian op-
erators which can be split into two non-commuting parts
with a simple transformation between them. Therefore,
the method is very well suited for plane wave or real
space methods, where efficient fast Fourier transform al-
gorithms provide an exact transformation between finite
plane-wave expansions and real space grids. In other
words, they span exactly the same subspace of functions,
and it is possible to switch between representations where
the kinetic energy and the potential are diagonal within
a given subspace. For an LCAO basis this is not possi-
ble. If we take an arbitrary wavefunction expanded in an
orbital basis ψ(r) =

∑

ν c
νφν(r), the result of applying

the operator exp(−iV t) using a grid of points in real-
space f(ri) = exp(−iV (ri)t)ψ(ri) will be, in general, not
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representable using the same local basis, i.e. some of
the resulting function has been spilled from the subspace
spanned by the local basis.
An alternative way to solve Eq. (12) is by using the

second-order differencing (SOD) method introduced by
Askar and Cakmak.63 In SOD the symmetric relation is
used

c(t+∆t)− c(t−∆t) = (e−iS−1H(t)∆t − eiS
−1H(t)∆t)c(t)

(A3)

and by expanding the exponential in Taylor series, the
second-order propagation scheme is obtained

c(t+∆t) ≃ c(t−∆t)− 2i∆tS−1H(t)c(t). (A4)

By construction SOD obeys the time-reversal symmetry.
SOD is stable, and norm and energy are approximately
conserved, only if the Hamiltonian is Hermitian. In spite
of its simplicity, an important drawback of this method
for its application to large systems is that it is necessary
to store the wavefunctions at two different time steps,
which may require a large amount of memory.
Finally, another method for solving Eq. (12) is the

short iterative Lanczos.59,64 It is very convenient for cal-
culations that involve very big Hamiltonians, especially
when they are time independent. The Hamiltonian is
projected to a subspace of smaller dimensionality and
takes a tridiagonal form that makes easy to perform cal-
culations. The Lanczos recurrence creates a set of orthog-
onal polynomials which constitute a finite polynomial ap-
proximation of the operator. An interesting feature of the
method is its dependence on both the operator and the
initial vector. The Lanczos recurrence relation is

(S−1H) qj = βj−1qj−1 + αjqj + βjqj+1. (A5)

The coefficients are αj = (qj, (S
−1H) qj) and βj−1 =

(qj−1, (S
−1H) qj), where (a,b) = a†Sb is the usual com-

plex inner product, and (qi,qj) = δij . Matrices H and
S have Nb × Nb dimension and the vectors qj have Nb

components, Nb the total number of basis functions. For
very large Nb, where the method is particularly useful,
the inverse S−1 is not directly calculated but an itera-
tive method is used instead.64 The recurrence relation is
initiated by setting

q0 = c(0) (A6)

and

(S−1H) q0 = α0q0 + β0q1. (A7)

After P iterations, the projected operator (S−1H)P =
(qj, (S

−1H) qi) is a P × P matrix with a tridiagonal
form that can be very easily diagonalized. The solution
of Eq. (12) becomes

c(∆t) = Z†e−iDP∆tZc(0), (A8)

where Z is the Nb×P transformation matrix that diago-
nalizes (S−1H)P and DP is the diagonalized matrix. For
an arbitrary initial condition, the accuracy of the time
evolution achieved with Eq. (A8) is equivalent to a P
order expansion of the evolution operator

c(∆t) =

P−1
∑

k=0

−itk

k!
(S−1H)k c(0), (A9)

and, consequently, the energy is only approximately con-
served. However, the propagator in Eq. (A8) is unitary,
and the normalization condition is strictly preserved. For
time independent Hamiltonians, Eq. (A8) can be used to
evolve the wavefunction for a time interval τ that depends
on P . For times larger than τ , the time evolution pre-
dicted by a P order expansion becomes inaccurate, and
it is necessary to recalculate propagator using c(τ) as the
starting point for the recurrence procedure. The method
is, therefore, very well suited to follow the evolution of
wavefunctions described by a large basis set during short
periods of time (< τ).
For the purpose of the calculation of response func-

tions, we believe that the method adopted in this paper,
based on the Crank-Nicholson operator, is superior to the
short iterative Lanczos, at least for moderate basis sizes.
There are several reasons for this: i) We need to evolve
the wavefunctions for long times. ii) The Hamiltonian is
time dependent. This implies that the recurrence cycle
for the calculation of the approximated time evolution
operator has to be repeated for each time step. iii) In
our case, we have to evolve all the occupied states. The
propagator in Eq.(A8), however, depends on the initial
state. Therefore, it is necessary to develop some general-
ization of the scheme presented. For example, it might be
also possible to construct an approximate time evolution
operator starting from some weighted linear combination
of the occupied states, and projecting it into a subspace
of dimension P > Nocc, where Nocc is the number of
occupied wavefunctions.
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14 I. Vasiliev, S. Öğüt, and J. R. Chelikowsky, Phys. Rev.
Lett. 82, 1919 (1999).

15 M. E. Casida, in Recent Developments and Applications of

Modern Density Functional Theory, edited by J. M. Semi-
nario (Elsevier, Amsterdam, 1996).

16 D. Sánchez-Portal, P. Ordejón, E. Artacho, and J. M. Soler,
Int. J. Quant. Chem. 65, 453 (1997).

17 E. Artacho, D. Sánchez-Portal, P. Ordejón, A. Garćıa, and
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