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Non-equilibrium Kondo effect in asymmetrically coupled quantum dot
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The quantum dot asymmetrically coupled to the external leads has been analysed theoretically by
means of the equation of motion (EOM) technique and the non-crossing approximation (NCA). The
system has been described by the single impurity Anderson model. To calculate the conductance
across the device the non-equilibrium Green’s function technique has been used. The obtained
results show the importance of the asymmetry of the coupling for the appearance of the Kondo
peak at nonzero voltages and qualitatively explain recent experiments.

PACS numbers: 73.23.-b, 73.63.Kv

I. INTRODUCTION

Recent advances in nanotechnology have allowed the
fabrication of structures containing quantum dots cou-
pled to the external environment. The quantum dot con-
sists of finite number of electrons confined to the small
region of space. It behaves like an impurity in a metal
[1] and allows the study of the many body correlations
between electrons. However, unlike an impurity which
parameters are fixed, the coupling of the quantum dot
to the external leads and its other parameters can be
changed in a highly controlled way. Most importantly
the non-equilibrium transport [2] can also be studied.
The discovery [3, 4] of the Kondo effect [5] in the quan-

tum dots connected to external leads by tunnel junctions
has resulted in an increased experimental [6]-[13] and the-
oretical [15]-[20] interest in this many body phenomenon.
The Kondo effect in the quantum dot manifests itself at
temperatures T lower than the Kondo temperature TK

as an increased conductance G through the system. It
is due to the formation of the so called Abrikosov-Suhl
or Kondo resonance at the Fermi energy. This is a many
body singlet state involving spin on the the quantum dot
and the electrons in external leads.
The experiments [3, 4, 6, 8] have confirmed the va-

lidity of the theoretical picture. They also discovered
phenomena the explanation of which requires new the-
oretical ideas. In particular they have shown the non-
orthodox and unexpected behavior of the systems in the
Kondo regime. These are inter alia the observation of
the Kondo peak at nonzero source-drain voltage [11, 12],
absence of the odd-even parity effects expected for these
systems [13] and observation of the singlet-triplet transi-
tion in a magnetic field. Besides the non-linear current-
voltage characteristics it has been possible to measure
charge distribution which led to the conclusion of spin-
charge separation in a Kondo regime, observe the evo-
lution of the transmission phase [9] and the detection of
two different energy scales [10] related to two stages of
the spin screening process in systems with spin S ≥ 1,
with one of the Kondo temperatures as high as 4K.
The great progress in theoretical understanding of the

Kondo physics in real quantum dots has been made dur-

ing last decade. The theory has concentrated on such
important aspects as the Kondo-driven transport in mul-
tilevel quantum dots [15], the coupled quantum dots [14],
double-dot structures in which existence of the Kondo
effect without spin-degree of freedom and new singlet-
triplet effects have been predicted [18], the nature (weak
vs strong coupling) of the Kondo effect at high voltage
[19], the spin-charge separation in the strongly correlated
quantum dot [17], the systems driven out of equilibrium
by different means [20] etc..

Here we shall focus our attention on the experimental
observation [11, 12] of the Kondo effect at nonzero source
drain voltages. To state the problem in the right per-
spective let us remind that in systems containing quan-
tum dot, the Kondo effect manifests itself at low tem-
peratures as an enhanced conductance observed at zero
source-drain voltage, VSD = 0 [1, 2, 5]. Occasionally,
the Kondo peak in conductance appearing at nonzero
voltages VSD 6= 0 [11] has been observed and this un-
usual behavior, called anomalous Kondo effect remains
unexplained. Recently this phenomenon has been stud-
ied systematically [12]. The authors have fabricated the
dot coupled weakly to one and strongly to another lead
and observed the evolution of the peak at VSD 6= 0. The
source-drain voltage VSD, at which the peak appears,
scales roughly linearly with a gate voltage, Vg. In the
experimental setup [12] the additional electrode deter-
mines the asymmetry in the coupling of the dot to left
and right leads.

It is the purpose of this paper to study the anoma-
lous Kondo peak observed at non zero voltage. We shall
present the results of the model calculations based on
the non-equilibrium transport theory [21] applied to the
quantum dot described by the Anderson model [22] with
asymmetric coupling to the leads. As we shall see the
asymmetry in the couplings is the main factor which
leads to this anomalous Kondo effect. The experimen-
tally observed shifts of the Kondo peak to higher values
of VSD with increasing gate voltage can be satisfacto-
rily explained by assuming that the values of the left
and right barriers change together with the gate voltage,
while the asymmetry in the couplings remains constant.
This scenario is realized in experiment [12].

http://arxiv.org/abs/cond-mat/0208560v1
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The organization of the rest of the paper is as follows.
In section II we introduce the model, give the formula
for the current through the quantum dot and discuss
briefly the methods (equation of motion (EOM) with
slave boson representation of electron operators and non-
crossing approximation (NCA)) used to calculate on-dot
Green’s function relegating some technical details to the
appendix. In section III we present the results of our nu-
merical calculations of the tunneling conductance across
the asymmetrically coupled single level quantum dot in
U = ∞ limit. Conclusions are given in section IV.

II. THE THEORY

For the sake of simplicity we discuss here the dot with
single energy level. The theoretical analysis of the trans-
port through quantum dot usually starts with the follow-
ing, Landauer type, formula [2] for the current

J =
e

~

∑

σ

∫

dω[fL(ω)− fR(ω)]

×
ΓL
σ (ω)Γ

R
σ (ω)

ΓL
σ (ω) + ΓR

σ (ω)

(

−1

π

)

ImGr
σ(ω + i0+) (1)

Here fλ(ω) denotes the Fermi distribution function
for lead λ with chemical potential µλ, Gr

σ(ω) is the
(retarded) impurity Green’s function and Γλ

σ(ω) =
2π

∑

k |Vλk|
2δ(ω − ελk) is the effective coupling of local-

ized electron to conduction band.
The current J flowing across the system depends on

the source-drain voltage VSD = (µL − µR)/e, where e is
the electron charge. The differential conductance of the

system defined asG(VSD) = dJ(VSD)
dVSD

is directly measured

experimentally [3].
To calculate the on-dot Green’s function Gσ(ω + i0+)

we shall describe the dot coupled to the external leads
by the single impurity Anderson Hamiltonian [22]

H =
∑

λkσ

ελkc
+
λkσcλkσ + Ed

∑

σ

d+σ dσ

+Un↑n↓ +
∑

λkσ

(Vλkc
+
λkσdσ +H.c.) (2)

Here λ = R,L denote the right (R) or the left (L) lead
in the system. Other symbols have the following mean-
ing: c+λkσ (cλkσ) denotes creation (annihilation) operator

for a conduction electron with wave vector ~k, spin σ in
the lead λ, Vλk is the hybridization matrix element be-
tween conduction electron of energy ελk in the lead λ
and localized electron on the dot. Ed is the single parti-
cle energy at the dot. n↑ = d+↑ d↑ is the number operator
for electrons with spin up localized on the dot and U is
the (repulsive) interaction energy between two electrons.
Our calculations are restricted to very low temperatures,
much smaller than the orbital level spacing in quantum
dot so it is legitimate to consider single energy level Ed.

There are various methods [2] of calculating the on-dot
Green’s function entering the current (1). Here we shall
apply two of them: equation of motion method (EOM)
and non-crossing approximation (NCA). In both cases
we assume that the Coulomb repulsion U between elec-
trons on the dot is the largest energy scale. Therefore we
take the limit U = ∞. The original correlated electron
operators are expressed as products of auxiliary fermion
and boson ones [2].
When using equation of motion method (EOM) we ap-

ply a mean field like approximation for the slave bosons
and calculate all matrix elements of the Keldysh Green’s
functions, including the distribution one [23]. In the pro-
cess we consistently decouple all elements of the higher
order Keldysh Green functions [24]. The relevant for-
mulae and some technical details can be found in the ap-
pendix. As we shall see the method gives correct position
of the Kondo peak. However, like the standard EOM it
leads to incorrect width of the peak and the occupations.
Therefore we have used the non-crossing approximation
(NCA), which is generally accepted technique of solving
the problem at hand [5]. In the NCA one maps the in-
finite U Anderson model onto the slave boson one and
calculates both boson and fermion propagators. They
are expressed by the coupled integral equations [2].
Where appropriate we shall present the results ob-

tained by both techniques.

III. NUMERICAL RESULTS

Let us first discuss the relation between the experi-
mental parameters and those entering the model and the
theory. The effective coupling ΓL and ΓR have been esti-
mated in ref.[12] to be 170 µeV and 80 µeV respectively.
Their values and the ratio ΓL/ΓR ≈ 2 have been ar-
gued to remain constant during the measurements. The
source-drain voltage VSD is the difference of the chemical
potentials of the external leads. The (back)gate voltage
Vg controls the position of the on-dot energy level Ed.
As already mentioned we stick here to the U = ∞ limit.
In this limit there can be at most a single electron with
energy Ed on the dot at a time.
We start the presentation of the results with the com-

parison of the (equilibrium) density of states of a quan-
tum dot coupled to two leads obtained by means of NCA
and EOM approaches. It is shown in the Fig. (1). The
main features of the DOS remain the same in both ap-
proaches. However the height and the width of the Kondo
peak is much larger in the NCA. Moreover the spectral
weight is shifted towards higher energies. In turn this
leads to different occupations shown in the inset of the
Fig.(1).
Now let’s turn to the nonequilibrium (µL 6= µR)

density of states. In this case the high energy fea-
tures to large extend remain the same as in equilibrium
(see Fig.(1)), so the only low energy DOS is shown in
the Fig.(2). The upper panel presents results obtained
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FIG. 1: The equilibrium density of states on the quantum dot
obtained within EOM (solid line) and NCA (dashed line).
Note the relative shift of the spectral weight with respect
to the chemical potential µ = 0 which results in different
occupations shown in the inset. The parameters are: Ed =
−2, ΓL = ΓR = 1 and T = 10−3.

via equation of motion technique for Keldysh (matrix)
Green’s function.In the lower panel the results obtained
with the non-crossing approximation are shown. The
coupling is asymmetric with ΓL/ΓR = 2 (dashed lines)
and 1

2 (dotted lines). The case of the symmetric coupling
ΓL = ΓR is also shown (solid lines) for comparison. Few
features have to be noted. First we see that the Kondo
peak is always located at energies coinciding with those
of the Fermi levels of the leads. Thus in non-equilibrium
we get (in the density of states) two Kondo resonances
pinned to Fermi energies of the left and right electrodes.
Note also that the heights of the respective Kondo reso-
nances strongly depend on the value of the hybridization.
The overall shape of the density of states is similar. The
positions of the Kondo peaks are roughly the same but
they differ in width and heigths. The peaks obtained in
EOM , are much narrower and smaller. As a result the
curves in figure (2a) differ from that in figure (2b).

These details in the energy dependence of the density
of states may shortly be a matter of direct measurements.
In fact it has been recently predicted theoretically [25]
that the on-dot density of states can be measured in a
device containing quantum dot coupled to three leads.
The very weakly coupled third lead will act as a tunneling
tip in conventional tunneling microscope and will probe
the non-equilibrium density of states. The conductance
spectrum measured by this additional electrode has been
shown [25] to follow the non equilibrium density of states,
like one shown in Fig.(2).

Returning to our main subject we show in Fig.(3) the
differential conductance spectrum corresponding to the
same ’experimental setup’ as discussed previously in con-
nection with figure (2). For comparison we have also plot-
ted in this figure the conductance through the symmet-
rically coupled quantum dot. In the symmetric situation
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FIG. 2: The nonequilibrium density of states obtained within
a) - EOM and b) - NCA for the symmetric ΓL = ΓR (solid
lines) and asymmetrically coupled quantum dot with ΓL =
2ΓR (dashed) and ΓL = 1

2
ΓR (dotted lines). µR = −µL = 0.2

and the other parameters are the same as in Fig. (1).

(ΓL = ΓR) the Kondo resonance is located exactly at zero
bias (VDS = 0), but for ΓL > ΓR (ΓL < ΓR) it is shifted
to the negative (positive) voltages VDS . This finding is in
nice qualitative agreement with the experimental studies
on the transport through the quantum dot in the pres-
ence of the asymmetric barriers [12]. While the observed
shifts calculated within EOM and NCA are of compa-
rable magnitude the clear differences in their shape are
visible. The NCA peaks are much higher and more sym-
metric in vicinity of their maxima. For asymmetric cou-
pling the Kondo resonance in the conductance is pinned
to the position of the Fermi level of that lead which is
more strongly coupled (larger Γ) to the dot. It is thus
mainly the relative coupling which rules the value of the
shift.
In Fig.(4) we show the systematic change of the

G(VDS) with increasing asymmetry ΓL/ΓR of the cou-
pling. The upper curves in both panels corresponds to
ΓL/ΓR = 5.5 while lower one is for symmetric coupling
ΓL/ΓR = 1 in steps of 0.5. The increase of the asymme-
try ΓL/ΓR from 1 to 5.5 continuously moves the Kondo
peak away from VSD = 0 position. We have checked
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FIG. 3: The differential conductance (G(eVSD) =
dJ/d(eVSD)) obtained within a) - EOM and b) - NCA for
the symmetric ΓL = ΓR (solid lines) and asymmetrically cou-
pled quantum dot with ΓL = 2ΓR (dashed) and ΓL = 1

2
ΓR

(dotted lines).

that increasing asymmetry to still higher values does
not lead to bigger shifts. This is easy to understand
as for large asymmetry one of barriers is not transpar-
ent enough to produce the clear Kondo resonance in the
density of states.
The position of the on-dot electron energy level Ed in-

fluences anomalous Kondo peak for the asymmetric dot
with ΓL/ΓR = 2 to lesser extend. It is only important
that it takes a value appropriate for observing a Kondo
resonance. For all appropriate Ed the shifts are of com-
parable magnitudes.
The data displayed in the figure (4) qualitatively agree

with those plotted in figure (5) of [11] and figure (3)
of [12]. However, theoretical shifts of the Kondo peak
position are smaller than the experimental.
There may be additional factors which affect the po-

sition of the peaks. We have checked that the energy
dependence of ΓL,R introduces only small quantitative
differences in the density of states and differential con-
ductance, and does not lead to better agreement between
theory and experiment. Similarly the calculations within
EOM approach for finite values of U show that finite
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FIG. 4: The differential conductance obtained within a) -
EOM and b) - NCA for the different asymmetric couplings.
The lower curve is for ΓL = ΓR while the upper one - ΓL =
5.5ΓR. Other parameters are Ed = −10 and T = 10−2 in
units of ΓR.

U leads to minor corrections as also does the presence
of the additional energy levels in the vicinity of Fermi
energy. In all the cases studied one gets usual behavior
with Kondo peak located at VSD = 0 for symmetric cou-
pling to both leads and the anomalous Kondo effect for
asymmetric coupling. This proves the importance of the
asymmetry in the observattion of it.
In experimental setup [12] the changes of the gate volt-

age Vg, which in first place affect the position of the elec-
tron energy level also modify the height of the barriers
and their transparency Vk. This effect is of special impor-
tance in the quantum dots defined in the two dimensional
electron gas where the voltage at a single electrode cou-
ples capacitively to other electrodes [26]. If we assume
that (as in experiments) ΓL/ΓR remains constant (= 2)
and that the decrease of the energy Ed is accompanied
by the simultaneous increase of the couplings ΓR and ΓL

then the calculated shifts get larger.
The occurence of the Kondo resonace is possible at

low enough temperature. It is also well known [2] that
changes of temperature move slightly the Kondo peak.
We have checked this and found that if temperature is
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raised the position of the peak moves slightly away from
the VSD = 0. At finite temperature the occupation of the
dot changes and the Abrikosov-Suhl resonances smear
out and this leads to small changes in the position of the
Kondo peak.
We thus have combined all above contributions, i.e. as-

symetry in the couplings ΓL 6= ΓR, their Ed-dependence,
and assumed high enough, but still below TK , temper-
ature to get larger shifts of the Kondo peak. We have

0.0
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G
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V
S

D
)

eVSD

FIG. 5: The NCA calculated differential conductance as
a function of source-drain voltage VSD for various values of
the Ed and ΓL, ΓR at fixed ΓL/ΓR = 2. The lowest curve
correspond to Ed = −3, ΓL = 1, while upper one is for Ed =
−12, ΓL = 6.4 in units of Γ0 equal to initial coupling of the
left lead. The temperature T = 5 10−2 is below estimated
Kondo temperatures.

shown the results in Fig.(5). The various curves have
been calculated for T = 5103 which is below Kondo tem-
perature. In the figure the change of the position of the
on dot energy level is accompanied by the simultaneous
change of the barrier transparency. The bottom curve
in figure (5)corresponds to Ed = −3Γ0, Γ0 = ΓL, while
the upper one corresponds to Ed = −12Γ0, ΓL = 6.4Γ0.
Here Γ0 is equal to experimentally estimated value of of
the smaller of couplings [12]. The ratio ΓR/ΓL is kept
constant and equal 2 as estimated in [12]. The data are
in nice qualitative agreement with experiments. The the-
oretical shifts, however, are smaller than experimental by
a factor of 5-10. To check whether this is due to different
asymmetry ratio we plot in figure (6) the results obtained
for ΓR/ΓL = 4. The shifts have increased.

IV. CONCLUSIONS

We have found that the emergence of the Kondo peak
at non zero voltages VDS 6= 0 is caused by asymmetric
coupling of the dot to the external electrodes. These re-
sults are in qualitative agreement with experimental data
on the transport through the quantum dot asymmetri-
cally coupled to the leads [11, 12]. The theoretical Kondo

0

0.1

0.2

0.3

0.4

-1 -0.5 0 0.5 1

G
(e

V
S

D
)

eVSD

FIG. 6: The same as in Fig. (5) but for asymmetry ΓL/ΓR =
4. The lowest curve correspond to Ed = −4, ΓL = 1, while
upper one is for Ed = −17.5, ΓL = 12.8 in units of Γ0 equal
to initial coupling of the left lead.

peaks in differential conductance, however, are narrower
than experimental ones. Their maxima move to nonzero
VSD with increasing the asymmetry or the position of
the on-dot energy level. The simultaneous change of Ed

and ΓL, ΓR can semi-quantitatively explain experimental
data. More experimental results are needed to draw firm
conclusions such as the applicability of simple Anderson
model to asymmetrically coupled quantum dots. It fol-
lows from the presented studies that the asymmetry of
the couplings is a necessary ingredient for the explana-
tion of the anomalous Kondo effect. Within the Anderson
model one always gets normal Kondo effect for symmetric
couplings and small shifts of the Kondo peak to non-zero
voltages for asymmetric couplings. Our inability to ex-
plain quantitatively the experimental data may indicate
the necessity of much better theoretical treatment of the
model or even better model for the description of these
complicated systems. There is a possibility that the ex-
perimentally observed features, even though similar to,
do not represent genuine Kondo effect. In fact some re-
searches [27] have seen very small shifts, consistent with
present calculations, even for quite asymmetrically cou-
pled quantum dots.
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APPENDIX A

To find the current accross the system, Eq.(1), it is
enough to calculate the on-dot retarded Green’s function.
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The NCA method to get Gr
σ(ω) has been extensively

discussed previously [2] and there is no need to repeat
its derivation again. For the sake of completeness let us
only note that we have adapted the formulae derived in
the second paper of the reference [2].
The EOM method to calculate the GF is straightfor-

ward and in U → ∞ limit leads to

Gr
σ(ω) =

1− 〈n−σ〉

ω − Ed −
∑

λ Σ
r
σλ(ω)

(A1)

with the self-energy

Σr
σλ(ω) =

∑

λk

|Vλk|
2 1 + f(ω − µλ)

ω − ǫλk
. (A2)

In the equation (A1), 〈n−σ〉 denotes the average on-
dot occupation number of the spin −σ electrons. In the
equilibrium one calculates 〈n−σ〉 self-consistently from

the retarded Green’s function Gr
−σ(ω). Here we are

dealing with nonequilibrium situation and 〈n−σ〉 can-
not be calculated directly from Gr

−σ(ω). Instead the
nonequilibrium [21] Green’s function technique has to
be used. The occupation of the dot at time t is ex-
pressed via Keldysh ”lesser” Green’s function 〈nσ(t)〉 =
〈c+σ (t) cσ(t)〉 = −iG<

σ (t, t). In the steady state one gets

〈nσ〉 = −i

∫ ∞

−∞

dω

2π
G<

σ (ω). (A3)

This shows that the consistent calculations of the re-
tarded GF requires the knowledge of ”lesser” one. The
equation of motion for the ”lesser” GF has been formu-
lated by Niu et al [23]. For the Hamiltonian of the form
H = H0+HI they derived the following general equation
for the ”lesser” GF

〈〈A|B〉〉<ω = g<(ω)〈[A,B]±〉+ gr(ω)〈〈[A,HI ]|B〉〉<ω + g<(ω)〈〈[A,HI ]|B〉〉aω , (A4)

here g<(r)(ω) is the ”lesser” (retarded) GF of the nonin-
teracting part H0 of Hamiltonian.
To treat strong correlations we use the version [24] of

the slave boson technique and rewrite the Hamiltonian
in the form

HSB =
∑

λkσ

(ελk − µλ)c
+
λkσcλkσ + εd

∑

σ

f+
σ fσ +

∑

λkσ

Vλk(c
+
λkσb

+fσ + f+
σ bcλkσ), (A5)

where new fermionic (f+
σ , fσ) and bosonic (b+, b) op-

erators have been introduced. Calculating the on-dot
Green’s function G<

σ (ω) = 〈〈b+fσ|f
+
σ b〉〉<ω we have taken

the third term of HSB as an interaction part HI and the
first two terms of it as H0.
The average occupation number is found to be

〈n〉 = −
1

2π

∑

σ

∫ ∞

−∞

dω
∑

λ

ImΣr
σλ(ω)fλ(ω)|G

r
σ(ω)|

2.(A6)

Note that in turn it depends on the retarded Green’s
function. This closes the system of equations.
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