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Laser Spinning of Nanotubes: A path to fast-rotating microdevices
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We show that circularly polarized light can spin nanotubes
with GHz frequencies. In this method, angular moments
of infrared photons are resonantly transferred to nanotube
phonons and passed to the tube body by “umklapp” scatter-
ing. We investigate experimental realization of this ultrafast
rotation in carbon nanotubes, levitating in an optical trap
and undergoing mechanical vibrations, and discuss possible
applications to rotating microdevices.
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Carbon nanotubes [1] have unique mechanical and elec-
tronic properties with many potential applications [2].
They possess a huge Young modulus Y > 1 TPa, which
adjusts their autonomous mechanical oscillations to MHz
frequencies [3]. Moreover, their ”molecular structures”
remain naturally stable even at large deformations [4].
Therefore, rotationally symmetric structures based on

stiff nanotubes could form ideal piston-rods for nanoscale
applications. In contrast to chemically driven bio-motors
[5], spinning with Hz frequencies, such tubular structures
could rotate very fast, if angular momentum is efficiently
transferred to them and friction is reduced.
Small heteropolar molecules can be dissociated [6], if

synchronously rotated with a dipolar laser trap, which
accelerates its angular velocity. Larger molecules [7] and
micro-particles [8] can be rotated by absorption of an-
gular momentum from circularly polarized or ”twisted”
laser beams. Nanotubes are excellent candidates for this
asynchronous driving, where the system rotational fre-
quency is much smaller than the light frequency.
Here, we investigate ultrafast asynchronous rotation

induced in nanotubes by excitation of their vibrational

modes with circularly polarized light. The mode selection
is restricted by radiational heating, since each photon
absorbed by the tube transfers to it angular momentum
h̄ and energy h̄ω. The resulting heating can be limited
in excitation of infrared (IR) A2u or E1u phonon modes,
active in graphite [9] and nanotubes [10].
In Fig. 1 we show two schemes for spinning nanotubes.

In the upper one, circularly polarized light beam propa-
gates along the symmetry axis of the single-wall (SWNT)
or multi-wall (MWNT) nanotube, levitating in an opti-
cal trap. The photon angular momentum is transferred
to circularly polarized phonons, counter-propagating on
the tube circumference (see Fig. 2), and latter passed by
scattering to the tube body. The angular momentum of
light could be also directly passed to the nanotube in ex-
citation of its dense rotational levels. The resulting tube
rotation with angular frequency ωrot is mostly balanced

FIG. 1. Scheme for nanotube (up) and tubular ring (down)
spinning with angular velocity ωrot in a laser trap. Their ro-
tation is induced by absorption of circularly polarized pho-
tons from a laser beam with intensity E

+, propagating along
the axis of rotational symmetry. Scattering of molecules with
tubes damps the rotation.

by friction with the surrounding molecules. In the lower
configuration, a closed nanotube ring [11] is analogously
rotated by absorption of circularly polarized photons.
We can describe the excitation of nanotube phonons by

circularly polarized light, and the subsequent relaxation,
with the simplified Hamiltonian

H =
∑

α

h̄ωα b†α bα +
∑

α±

µα±
E±(t)

(

b†α±
+ bα±

)

+
∑

α±,β,γ

(

cα±,β,γ b†α±
bβ bγ +H.c.

)

+Hd . (1)

The first two terms describe phonon modes α = (band, k)
and coupling of the chosen IR circularly polarized optical
phonons, with operators [12] b†α±

= 2−1/2 (b†αx±ib†αy) and

bα±
= 2−1/2 (bαx ∓ ibαy), to the light intensity E±(t) of

the same polarization. The third term denotes decay of
these IR phonons, with wave vectors k ≈ 0, into phonon
pairs with opposite wave vectors ±k, which most likely
come from the same acoustical branch [13,14]. These
also can not carry angular quasi-momentum L, which is
passed to the tube by umklapp processes. The result-
ing tube rotation is predominantly damped by scattering
with molecules, as described in Hd [15].
In Fig. 2, we show two (doubly degenerate) IR modes

in the elementary cell, with 40 atoms, of the (10,10)
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FIG. 2. Nanotube cross-sections with light-induced atomic
displacements (open circles) from equilibrium positions (filled
circles) in two IR phonon modes, with the A2u and E1u sym-
metries. A circularly polarized light, E

+, excites phonon
waves, which propagate uni-directionally on the tube circum-
ference in phase with the light polarization.

nanotube. In the A2u and E1u modes, the atoms move
out-of-plane and in-plane, respectively, orthogonal to the
tube axis [16], as shown by open circles. Combination of
the two degenerate linearly polarized modes forms a cir-

cularly polarized phonon mode, of either symmetry, which
can absorb angular quasi-momentum from circularly po-
larized photons. The atomic displacements break the
tube symmetry and induce electric dipoles (+ -), which
follow in time the polarization of the circulating electric
field E

+. The effect does not rely on coherent light and
can be also realized in tubular rings (see Fig. 1).
As an example, we consider excitation of the A2u mode.

The total number n+
A2u

of circularly polarized phonons,
excited in the vicinity of k = 0, is given by the Boltzmann
equation

∂n+
A2u

∂t
= ṅ+

A2u
−

n+
A2u

− n+
A2u;equil.

τA2u

. (2)

ṅ+
A2u

is their injection rate and τA2u
= 2h̄/γA2u

≈ 2 ps, is

the relaxation time, where γA2u
≈ 22 cm−1 is the width

of the IR phonon lines in nanotubes [10]. We neglect
small populations n−

A2u
of phonons with the opposite po-

larization, resulting in scattering.
The absorption line of the A2u (E1u) mode was ob-

served near ωA2u
= 870 cm−1 (1580 cm−1) in both

graphite and C nanotubes. In graphite, the A2u mode
has an oscillator strength [9] f ≈ 0.004, which we as-
sume to approximately hold in C nanotubes. Its optical
dipole moment is [17] µA2u

= e
√

3 h̄ f/2mosc ωA2u
≈

10−31Cm, where mosc = MCarbon/2 is the oscillator
mass. Using the Fermi’s Golden rule, and assuming that
n+
A2u;equil.

≈ 0, we obtain the injection rate

ṅ+
A2u

≈ 2π

h̄
|µA2u

E+|2 ρ(ωA2u
) , (3)

where ρ(ωA2u
) is the density of phonon modes at k = 0.

An armchair (10,10) nanotube of length l = 1µm has
n ≈ 1.6× 105 C atoms and N = n/40 = 4000 elementary
cells (A2u modes with k 6= 0). About 10% of these modes
(around k = 0) fall in the energy window γA2u

, thus
giving the effective mode density ρ(ωA2u

) ≈ 400/γA2u
.

For a field strength E+ = 10 kV/m, we then obtain
from Eq. 3 that ṅ+

A2u
≈ 2.5 × 105 s−1. The IR phonons

thus absorb the angular quasi-momentum with the rate
L̇A2u

= h̄ṅ+
A2u

≈ 2.5× 10−29 Nm.
We can understand the angular quasi-momentum umk-

lapp processes by unrolling the nanotube, and loosely
binding many such sheets into a superlattice of lattice
constant as = 2πr, where r is the tube diameter. Then,
the IR phonons modes have the transversal wave vec-
tor K0 = 2π/as, which falls in the middle of the sec-
ond Brillouin mini-zone of size Q = K0. In a two-
phonon umklapp decay, the momentum conservation is
K0 +K1 +K2 = Q (transversal wave vectors of the de-
cayed acoustical phonons are K1,2 = 0), where the vector
Q interconnects centers of the first and second mini-zone.
In the nanotube, we can vector multiply this identity by
h̄r, and obtain the (umklapp) angular quasi-momentum
conservation L0 + L1 + L2 = h̄Q × r (L1,2 = 0), where
L0 = h̄K0 × r ≡ h̄.
In Eq. 2 these processes are represented by the relax-

ation time τA2u
, which could be derived from Eq. 1 follow-

ing Klemens [13]. Its experimental value, τA2u
≈ 2 ps, is

in agreement with decay times of the suggested processes
realized in other systems [14]. Since ab initio calculations
of the phonon matrix elements cα±,β,γ are lacking, we use
this value of τA2u

in our modeling. Eq. 2 then gives the
steady-state angular quasi-momentum in the A2u phonon
bath LA2u

= h̄∆n+
A2u

= L̇A2u
τA2u

≈ 5.2× 10−41 Js.
The angular momentum is transferred to the tube body

at the rate L̇ ≈ L̇A2u
. Nanotubes in liquids [15] or

under atmospheric conditions would rotate slowly, since
collisions with the surrounding molecules quickly dissi-
pate the acquired angular momentum. On the other
hand, in low-vacuum environment, with realistic col-
lisional rates κ ≈ 10−12 − 10−13 cm3 s−1, damping
times of the order τdamp ≈ 10 s are readily achievable.
The tube thus keep a steady-state angular momentum
L ≈ L̇A2u

τdamp ≈ 2.5× 10−28 Js.
The nanotube rotation frequency ωrot can be found

upon calculating its principal moments of inertia [18–20]

A = B = M

(

r2e + r2i
4

+
l2

12

)

, C = M
r2e + r2i

2
. (4)

Here M = ρ l, re, ri, and l are the nanotube mass (ρ is
the linear density), exterior and interior radii, and length,
respectively. For the (10, 10) armchair nanotube with
r = (re + ri)/2 ≈ 0.68 nm and l = 1µm, we obtain M ≈
1.9× 10−20 kg and A ≈ 1.6× 10−33 kg m2 ≈ 1.8× 105C.
Finally, we find the rotation speed ωrot = L/C ≈ 28

GHz for this elementary nano-mechanical device. Cen-
trifugal acceleration on its surface is enormous, a =

2



rω2
rot = 0.5×1012m/s2 ≈ 1011 g. This value surpasses by

two orders of magnitude the acceleration obtained with
sub-millimeter steel balls [21], and by five orders of mag-
nitude acceleration in the fastest centrifuges [22]. Since
for a = 1011 g the force on each C atom, F ≈ 13µeV/Å is
still negligible with respect to chemical forces (1 eV/Å),
the tube rotation could be further increased. On this
path to “tera-gravity”, unique parameters of nanotubes
can play a pivotal role.
We can now discuss in more details practical spin-

ning experiments. Isolated SWNT or MWNT have been
grown, for example, on an AFM tip [23], which can be
later placed inside an optical trap. The nanotube can be
severed from the tip using, for instance, a focused elec-
tron beam [24]. Detached tubes could be also transported
to the trap by recently developed nano-tweezers [25]. The
optical trap can be formed by two linearly and mutually
parallel polarized counter-propagating laser beams [26].
Nonresonant scattering of trap-beam photons from the

nanotube with polarizability α produces a force, oriented
in the direction of increasing light intensity I, that re-
sults in the potential U = −α I/2 c (c is the speed of
light). The longitudinal αzz ≈ 500 Å3/atom and radial
αxx ≈ 25 Å3/atom static polarizabilities of semiconduct-
ing nanotubes [27] are quite different, and this difference
is even larger in metallic tubes. Therefore, the tube in
the trap remains oriented along the beam polarization
axis, where it experiences the trapping potential

U ≈ −U0 e
−r2/σ2

r
−z2/σ2

z ≈ −(U0 − S r2) e−z2/σ2

z . (5)

Here x, y, z (r = x2 + y2) are the tube center-of-mass
coordinates, and S = S0 l = U0/σ

2
r is the trap rigidity.

To prevent thermal escape of the tube from the trap, we
consider a trap depth U0 = nαzz I/2 c ≈ 10 eV, and ob-
tain I ≈ 1.2 GW/cm2. The trap laser frequency must be
below the band gap, Eg ≈ 1 eV, and away from the fre-
quencies of the tube internal modes, see below. Assuming
that σr ≈ 1µm, we find S0 = U0/l σ

2
r ≈ 1.6 J/m3.

Small amounts of defects and adsorbants on the tube
walls do not prevent its spinning, but can shift its rota-
tion frequency. In accordance with the De Laval principle
of self-balancing [20], such a partially-coated nanotube
floating in the trap would rotate around an eccentric axis.
Rapid rotation of the nanotube can be also limited by its
mechanical vibrations in the trap, as discussed below. To
avoid its large oscillations, the critical frequencies should
be quickly passed during the acceleration [19,20].
The cylindrical whirl mode [20] reflects the rigid-body

vibrations of the tube orthogonal to the trap axis. The
forward (backward) cylindrical frequencies are ωcyl =

±
√

S0/ρ ≈ ±9.2 MHz. In the conical whirl mode, the
tube ends move in opposite directions with respect to the
tube/trap axis. For a tube distorted through the angle
θ, the torsional moment is MF ≈ −S0 l

3 θ/6, resulting in
the Euler’s equation, [19] Aω2

con = C ωrot ωcon +S0 l
3/6.

Using A ≈ ρ l3/12, valid for l ≫ r, we obtain

ωcon =
Cωrot

2A
±

√

(

Cωrot

2A

)2

+
2S0

ρ
. (6)

We can see that the modal frequencies depend on ωrot

due to gyroscopic effects [20]. Since the ratio C/A ≈ l−2

is small, the effects are suppressed by the potential U , so
that ωcon ≈

√
2ωcyl. From Eq. 6, we find that they begin

to play a role for tube lengths l < (re+ri)
√

3ωrot/ωcyl ≈
130 nm. If the trap is suddenly switched off, a micron-
long nanotube rotating with frequency ωrot = 28 GHz,
and initially disturbed on its side, would precess with the
frequency ωprec = Cωrot/A ≈ 175 kHz.
In long nanotubes, one needs to consider also flexural

vibrations [18–20]. The critical flexural frequencies ωf

can be evaluated from the equations for lateral deflections
x(z), y(z) at different points z along the trap axis, if the
rigid body approximation is abandoned. The equation
for the x deflection is

Y I
∂4x

∂z4
= −ρ

∂2x

∂t2
− S0 x

+ a
∂2

∂t2

(

∂2x

∂z2

)

+ c ωrot
∂

∂t

(

∂2y

∂z2

)

. (7)

Here Y is the Young modulus, I = π (r4e − r4i )/4 is the
second moment of nanotube cross-section and the factors
c = 2a = ρ (r2e+r2i )/2 are the densities of the moments of
inertia [19], which correspond to the bulk expressions in
Eq. 4 in the limit l → 0. The equation for the y deflection
results from Eq. 7 by exchanging x ↔ y and a negative
sign in the last term.
The flexural frequencies correspond to the solutions

x = x0 cos(ωf t), y = y0 sin(ωf t) in Eq. 7. This substi-
tution gives an ordinary differential equation, identical
for both the x and y deflections. For simplicity, we ap-
ply the clamped-end approximation, with the boundary
conditions x0(z = ± l

2
) = d2x0(z = ± l

2
)/dz2 = 0. The

solutions are x0(z) = A0 cos(ξz) or x0(z) = A0 sin(ξz),

where ξ2 =
(

α +
√

α2 − 4 β Y I
)

/2 Y I, α = aω2
f −

c ωrot ωf , and β = S0 − ρω2
f . Therefore, ξ = nπ/l, with

n = 1, 2, 3, ... indexing the eigenmodes, which leads to
the critical flexural frequencies (ωfn = ωrot)

ωfn =

√

S0/ρ+ (nπ/l)4 Y I/ρ

1− (nπr/l)
2
/2

. (8)

We use the values Y ≈ 5.5 TPa and h = re − ri = 0.066
nm, found in molecular dynamics simulations [28].
In Fig. 3, we show the dependence of the lowest criti-

cal frequencies ωfn on the tube length l, calculated from
Eq. 8 using the numerical values for Y , h, ρ, S0 and r. For
long tubes, the frequencies ωfn coincide with ωcyl, while
for shorter tubes (l < 1.3µm), the bending term sur-

passes the trap term, and ωfn = (nπ/l)
2
√

Y I/ρ. In the
continuum description, gyroscopic effects become only
important for high eigenmodes n ≈ l/r. In the inset
of Fig. 3, we also show the dependence of ωfn on n for
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FIG. 3. Dependence of the critical flexural frequencies ωfn

on the nanotube length l. The two thin horizontal dashed
lines correspond to ωcyl and ωcon. In the inset, we show ωfn

as a function of the bending modal number n for nanotubes
of different length.

tubes of different lengths. The huge Young modulus Y
makes the density of critical frequencies ωfn relatively
low, especially for short nanotubes. This allows for a
rapid traversal to the “supercritical state”, which is real-
ized above the flexural or other vibrational frequencies.
Rotating nanotubes could form parts of nano-motors,

centrifuges or stabilizers. Centrifugal studies could be
performed inside microtubes with large diameters d ≈
10 µm [29] or in assemblies made from nanotube rings,
forming strong but flexible skeletal coats. One could also
think about possible applications of rotating tubes in liq-
uids. Slowly rotating coiled nanotubes [30] could, for ex-
ample, propel microscopic systems, which would chem-
ically power the rotation of these tubes that attached
to their surfaces in bearings [31], as in bio-motors. We
believe that unique properties of nanotubes made from
carbon and other materials could foster applications with
rotating micro-elements.
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