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The optical absorption of a single spherical semiconductor quantum dot in an electrical field is
studied taking into account the nonlocal coupling between the electric field of the light and the po-
larizability of the semiconductor. These nonlocal effects lead to a small size and field dependent shift
and broadening of the excitonic resonance, which may be of interest in future precision experiments.

I. INTRODUCTION

In recent years, optical investigations on semiconduc-
tor quantum dots (QDs) have attracted much attention
both from the physical and technological points of view.
Such quasi zero dimensional systems display a discrete
atomic–like density of states which is essentially different
from that of higher dimensional systems, see e.g. text-
books [1,2] and reviews [3–5]. In order to realize the full
potential of QDs, it is very important to understand the
basic physical properties of single QDs whose fabrication
and spatially resolved optical spectroscopy became pos-
sible in the last decade, see e.g. [6–8].
Optical properties of semiconductor microstructures

are usually described in the approximation of a homo-
geneous effective medium, which is applicable as long as
the optical wave length in the structure is much larger
than the relevant length scales in the system. This is a
well accepted and frequently stated condition, e.g. Eq.(4)
of Ref. [9]. Near a sharp excitonic resonance, however,
this condition is violated and the homogeneous medium
approximation breaks down. Hence, the nonlocal charac-
ter of the relation between the electrical field of the light
and the polarization of the QD comes into play. In par-
ticular, this holds if the dimensions of the QD become
comparable with the exciton Bohr radius, see e.g. the
discussion by Schmitt–Rink et al. [10].
In the bulk of a semiconductor, radiative decay of an

exciton is forbidden by conservation of momentum. In
a confined structure, however, such decay processes be-
come possible and they are considered to be relevant
to estimate the long intrinsic radiative lifetimes of ex-
citons [11]. The nonlocal coupling leads to an additional
size and polarization dependent line–shift and line width–
which contributes to the radiative decay of an exciton in
a confined system and, thus, should be taken into ac-
count in the analysis of precision experiments. Ultra-
narrow (30 . . . 60µeV ) photoluminescence lines have been
reported [6, 7] which, presumably, are still broader than
the intrinsic line–width. We expect that the width of
absorption lines is of the same order. However, with the
exception of Refs. [9, 12], the nonlocal coupling between
the polarization and the electric field of the light wave is
generally omitted without giving reasons.
The physical motive of our paper is to formulate a

sound theoretical basis of optical absorption (extinction)
in a confined system with the inclusion of nonlocality
and to give a reliable prediction of the corrections to the
line–shift and line width. Following Ivchenko and Ka-
vokin [12], we solve the scattering problem of an incident
electromagnetic wave on a QD with inclusion of the spa-
tial dependence of the polarizability in the vicinity of a
single excitonic resonance line. In addition, we consider
the influence of a (symmetry breaking) static electric field
which uncovers nonlocal effects, Sec. II. Sec. III contains
our numerical results and discussion for a CdSe QD in
an external electric field. Unexpectedly, the numerical
values are rather small but the field induced line shift is
of the same order of magnitude as the experimental line–
width without field. Hence, the reported corrections may
be relevant in future precision experiments.

II. THEORY OF NONLOCAL OPTICAL

ABSORPTION

A. Nonlocal Susceptibility

In linear response theory the relation between the po-
larization and electric field reads [13]

P(r, ω) =

∫

χ(r, r′;ω)E(r′, ω) d3r′ . (1)

In a local approximationχ(r, r′;ω) = δ(r−r′)χ(ω). Non-
locality has different origins in the bulk and in a QD.
In the homogeneous bulk χ depends only on the relative
coordinate r1 = r−r′ so that Eq.(1) becomes in Fourier–
space P(q, ω) = χ(q, ω)E(q, ω). The wave number de-
pendence of χ(q, ω) is usually termed spatial dispersion
and it originates from the delocalized nature of the exci-
tations. On the other hand, in a QD χ depends on both
r and r′ and nonlocality is governed by the confinement
of the wave functions, see Eq. (2).
Near resonance the contribution of a single exciton line

to the polarizability is given by [2, 13]

χαβ(r, r
′;ω) =

(

e

m0

)2
1

h̄ω2
0

pcvα p
cv
β

ω0 − ω − iΓ

×Φ(r, r)Φ∗(r′, r′) , (2)
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where, α, β ∈ {x, y, z}, ω0 is the exciton transition fre-
quency, Γ is a phenomenological damping rate, pcv is
the interband momentum matrix element, and Φ(re, rh)
denotes the exciton envelope–function. In addition, we
neglect optical anisotropy and approximate χα,β by a di-
agonal matrix. As a result, we have

Pex(r, ω) = ǫ0T (ω)Φ(r)Λ(ω) , (3)

Λ(ω) =

∫

d3r′ Φ∗(r′)E(r′, ω) , (4)

T (ω) = T0
ω0

ω0 − ω − iΓ
, (5)

T0 =
e2|pcv|2
ǫ0m2

0 h̄ ω
3
0

. (6)

For shortness, Φ(r) := Φ(r, r). Clearly, the length scale
of nonlocality is set by the exciton envelope function,
and nonlocal corrections are expected to be particularily
important for small QDs.

B. Scattering Problem

We consider a linearily polarized monochromatic elec-
tromagnetic wave propagating along the x–axis which is
scattered by the QD centered at the origin. Following
Jackson [14], the electric field is represented by

E(r, ω) = êηEie
ikx +Es(r, ω) , (7)

Es(r, ω) =
k20
ǫ0

∫

d3r′ G(r− r′)Pex(r
′, ω) . (8)

êη is the unit polarization vector in direction η, k0 = ω/c,
k2 = ǫbk

2
0 , ǫb is a “background” dielectric constant, which

accounts for all non–resonant contributions at higher fre-
quencies to the polarization which are not contained in
Eq.(2), and G is the matrix Green function of the wave–
equation

Gαβ(r) =

(

δαβ +
1

k2
∂2

∂rα∂rβ

)

eikr

4πr

=
eikr

4πr

[

2

3
δαβ +

(

3
rαrβ
r2

− δαβ

)

×
( 1

(kr)2
− i

kr
− 1

3

)

]

. (9)

r = |r|. Pex implicitly depends on the unknown E field,
Eq. (3,4), but, fortunately, the vector Λ(ω), can be ob-
tained directly [12]. Multiplying Eq. (7) by Φ∗(r) and
integrating over r, we obtain a linear vector equation

Λ(ω) = êηEiΦ
∗(kêx) +Ξ(ω)Λ(ω) (10)

which can be solved by matrix inversion

Λ(ω) = Ei Φ
∗(kêx) [I−Ξ(ω)]

−1
êη . (11)

Φ(k) is the Fourier–transform of Φ(r), Ξ is a 3×3 matrix,

Φ(k) =

∫

d3rΦ(r) e−ıkr , (12)

Ξ(ω) = k20 T (ω)K , (13)

K =

∫

d3r

∫

d3r′ G(r− r′)Φ∗(r)Φ(r′) , (14)

and I is the 3 × 3 unit matrix. Eq. (11), together with
Eqs. (3,7,8) completes the solution of the electromagnetic
scattering problem. The magnetic field of the wave is
given by H = −ı∇ × E/(µ0ω). Large nonlocal correc-
tions are expected to occur if det [I−Ξ(ω)] ≈ 0. (This
condition is equivalent to Eq.(4) in Ref. [9]).

C. Optical Absorption

The optical absorption is determined by the time–
averaged energy flux S̄ through a closed surface centered
around the QD, where S = E ×H. S̄ = S̄i + S̄s + S̄ext

can be decomposed in an incident, scattered, and extinc-
tion contribution [14, 15]. In addition, we assume that
the QD is surrounded by a nonabsorbing medium of the
same background dielectric constant. As a result, the net
absorbed energy flux becomes

Wa = −
∮

A

S̄·êr dA =Wi −Ws +Wext . (15)

Wi = 0, whereas Ws,Wext > 0. Wext = Wa +Ws gives
the missing energy flux out of the incident wave.
To calculate the optical absorption of the QD we only

need the scattered field in the far field, r ≫ R ≥ r′. In
leading order, we obtain

Es(r, ω) = Ei

eikr

4πr
F(êr, ω) , (16)

F(êr, ω) = −k20 T (ω)Φ∗(kêx)Φ(kêr) êr × [êr × ξ] , (17)

Hs(r, ω) =

√

ǫ0ǫb
µ0

êr×Es(r, ω) , (18)

ξ(ω) = [I−Ξ(ω)]
−1

êη . (19)

F(êr, ω) is the scattering amplitude of the wave in di-
rection r. Eqs.(16-19) can be considered as a nonlocal
generalization of Mie–scattering.

The scattered energy flux is easy to obtain as the re-
spective electric and magnetic fields are transversal

Ws = Ii

∣

∣

∣

∣

k20 T (ω)

4π
Φ(kêx)

∣

∣

∣

∣

2

×
∫

|Φ(kêr)|2
(

|ξ|2 − |êr · ξ|2
)

dΩr . (20)

Ii =
√

ǫ0ǫb/µ0E
2
i /2 is the intensity of the incident light

wave and dΩr is the surface element of the unit sphere.
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For kR ≪ 1 the integration is trivial so that Eq. (20)
simplifies to

Ws = Ii
k40
6π

|T (ω) ξ(ω)Φ(kêx)Φ(k = 0)|2 . (21)

The extinction is conveniently calculated from the op-
tical theorem which relates Wext to the imaginary part
of the scattering amplitude in forward direction [14, 15]

Wext =
Ii
k
ℑ êη F(êx, ω)

=
Ii
k
|Φ(kêx)|2 ℑ

{

k20 T (ω)
(

[I−Ξ(ω)]
−1

)

ηη

}

. (22)

For typical material parameters (Eg ≈ 2 eV, R ≈ 5nm,
Γ = 0.1 . . . 1meV) |Ξαβ(ω0)| <∼ 0.1 so that an expansion
of (I − Ξ)−1 is reasonable. For a rough estimate, we
consider the zeroth–order and assume kR ≪ 1, where
ξ = êη so that Ws/Wext ≈ 10−4, i.e. the optical ab-
sorption is dominated by the extinction. Our numerical
results indicate that this estimate holds for other reason-
able parameters, too.
Up to first order [I−Ξ]−1 = I+Ξ+O(Ξ2) the optical

cross section σa = σext =Wext/Ii is given by

σa(ω,R) =
ω0

c
√
ǫb
T0 |Φ(k = 0)|2

×ℑ
{

ω0

(ω0 +∆ω0)− ω − ı(Γ + ∆Γ)

}

, (23)

∆ω0 − ı∆Γ = −k20T0Kηη . (24)

∆ω0 and ∆Γ respectively denote the shift and broad-
ening of the excitonic resonance which are caused by the
nonlocality, and |Φ(k = 0)|2 is a measure of the oscillator
strength of the excitonic line.
For the first order nonlocal correction of the line–width

and line–shift, only the diagonal elements of Eq. (14) are
needed. According to Eq. (9) (second line), the Green
function is made up of an isotropic and a traceless term,

G = G(1) + G(2). Therefore, Kηη = K(1) + K
(2)
η ,

where K(1) is independent of the polarization η and

K
(2)
x +K

(2)
y +K

(2)
z = 0. Moreover, in the ground state we

still have rotational symmetry around the z–axis, thus

K
(2)
x = K

(2)
y = −K(2)

z /2, and, in addition, Kαβ = 0,
α 6= β, so that the inversion of [I − Ξ], Eq.(22), is triv-
ial. For Fz = 0 the ground state exciton wave function

is isotropic which implies K
(2)
η = 0 for all η.

D. Exciton States

In a spherical QD with infinite confinement the elec-
tron/hole Hamiltonians (without external field) read

Hj = − h̄2

2m∗

j

∆ , (25)

where r ≤ R, j=e/h, and m∗

j are the respective effec-
tive masses. The eigenstates of Hj (omitting the indices
j=e/h) are well known from textbooks, e.g. Ref. [16]

ψ
(0)
nlm(r) = Fnl(r)Y

m
l (θ, ϕ) , (26)

Fnl(r) =

√

2

R3

jl(aln
r
R
)

jl+1(aln)
, (27)

E
(0)
nl =

h̄2a2ln
2m∗R2

. (28)

Electron/hole energies count from their respective band
edges, quantum numbers n, l,m have their usual mean-
ing and aln, n = 1, 2, . . . denotes the nth positive zero of
the spherical Bessel function jl(x) [17].
Next, we consider noninteracting electron–hole pair

states which are the eigenstates of He +Hh,

Ψ
(0)
λeλh

(re, rh) = ψ
(0)
λe

(re)ψ
(0)
λh

(rh) , (29)

E
(0)
λeλh

= E
(0)
λe

+ E
(0)
λh
, (30)

where λj = (nj , lj ,mj) label the electron/hole states.
For shortness, the pair states and energies, Eqs. (29,30),
will be denoted by |λ > and Ep, where λ = (λe, λh). For
a discussion of pair and exciton states in QDs see, e.g.
Chapter 3 of Ref. [4].

6 Coulomb energy
pair energy

field energy 1
field energy 2

E
  (

R
y)

10
R  (nm)

150 5
0

2

4*

FIG. 1. Different energy scales which are set by the con-
finement: pair energy Eq.(30), Coulomb energy in first–order
pertubation theory for Fz = 0, and field–energy, eFzR, for
(1) Fz = 1 and (2) 5MeV/m. Ry∗ denote the excitonic Ryd-
berg–energy [2].

In the final step we have to include the Coulomb in-
teraction between the electron and the hole inside the
QD as well as the interaction with the electrical field (in
z–direction) Fz. For QD sizes of R = 2 . . . 20nm the
localization energy, Coulomb–energy, and relevant field–
energies eRFz are approximately of the same magnitude,
see Fig. 1.
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Therefore, we found it convenient to expand the exci-
ton states in the QD directly in terms of the pair states
Eqs. (29, 30), rather than first constructing exciton states
for Fz = 0. Total angular momentum of the electrons
and holes is not conserved but there is still rotational
symmetry around the z–axis so that the z–component of
total electron–hole angular momentum M = me +mh is
a good quantum number.

|κ,M〉 =
∑

λ

Cκ,M
λ |λ〉 . (31)

κ is an additional exciton quantum number. Expansion
(31) leads to the algebraic eigenvalue problem

∑

λ′

Cκ,M
λ′

(

Eλ′δλλ′ + eFz〈λ|ze − zh|λ′〉

− e2

4πǫ0ǫb
〈λ| 1

|re − rh|
|λ′〉

)

= EM
κ Cκ,M

λ , (32)

where EM
κ is the exciton energy in a QD as measured

with respect to the gap. (For shortness it will be some-
times referred to by Eex). The z– and Coulomb matrix
elements can be obtained analytically and some details
are listed in Appendix A.

III. RESULTS AND DISCUSSION

Numerical studies have been performed for an optical
transition to the excitonic ground state and the param-
eters are appropriate for CdSe: m∗

e = 0.11m0,m
∗

h =
0.44m0, Eg = 1.9eV, ǫb ≈ 9.8 [18]. This implies
T0 = 0.3nm3 and Ry = 13meV. For a QD radius of
R = 5nm the pair energy is Ep = 170meV and the
exciton binding energy is Eb = 60meV so that in to-
tal the exciton energy (as measured from the gap) be-
comes Eex = Ep − Eb = 110meV. Even for the nar-
rowest excitonic lines which have been observed so far,
h̄Γ ≈ 30µeV [6–8], the linear approximation Eq.(23) is
still reasonable, |Ξηη | ≈ 10−5ω0/Γ < 0.3. Although these
experiments refer to photoluminescence rather than to
optical absorption similar results for the line–shift and
line–width are expected.

There are two sources which cause the excitonic res-
onance frequency to change with the radius or applied
field: change of the “atomic” transition frequency ω0 in
the dot (=difference of energy levels which is not ex-
plicitely considered here) and the radiation induced shift
and damping ∆Γ, ∆ω0 which originate from the (nonlo-
cal) coupling to the electromagnetic field, see Figs. 2,3.

3020100

0
∆ω

(µ
eV

)

z

5040

10

20

0

-10

R=3

R=5

R=7

R=9

a)

F    (MV/m)

µe
V

504030

(

2010

)

0

z

0
∆ω

-15

-10

-5

0

R=9

R=7

R=5

R=3

b)

F    (MV/m)

FIG. 2. Nonlocal contribution to the exciton line shift. (a)
Light polarization parallel and (b) perpendicular to the ap-
plied field. (R in nm).

eV
∆Γ

   
(µ

0.0

0.3

40 503020

0.1

z

0.2)

100

R=9

R=7

R=5

R=3

F    (MV/m)

FIG. 3. Nonlocal contribution to the exciton line–width as
a function of the applied field. (Polarization dependence not
resolved. R in nm).
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1.0

2.0
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z

0.0
50403020100

R=9

R=7

R=5

R=3

F    (MV/m)

|Φ
(κ

=0
)|2

FIG. 4. Relative oscillator strength in the exciton ground
state as a function of the applied field (R in nm).

For Fz = 0: K
(2)
η = 0, hence, ∆Γ and ∆ω0 are both

independent of the polarization direction η. With ap-

plied field, K
(2)
η 6= 0 but |ℑK(2)

η | ≪ |ℑK(1)|, hence
∆Γ is (almost) independent of η. With increasing field,

|ℜK(2)
η | > |ℜK(1)|, so that ∆ω0 displays a pronounced

polarization dependence. For large applied fields, the
electron and hole states become spatially separated so

that both K(1) and K
(2)
η tend to zero. Therefore, ∆ω0,

∆Γ as well as the oscillator strength, Fig. 4, tend to zero.
Therefore, ∆ω0 runs over an extremum when the pair
energy approximately equals field energy, see Fig. 1. Be-

cause of the different signs of K
(2)
y and K

(2)
z , ∆ω0 display

a maximum/minimum for y/z polarization.
Eventually we list some general results: (i) Smaller

dot radii require larger fields to generate comparable
changes of the electronic states, (ii) the importance of
nonlocal corrections increases with decreasing dot radii
and deviations from spherical symmetry, (iii) the non-
local contributions are rather insensitive with respect to
the electron–hole Coulomb interaction, and (iv) the leak-
age of the exciton wave function in the host material may
be incorporated using an effective radius Reff = R + λ,
where λ is aproximately the decay length of the (electron)
wave function, λ ≈ 1nm.
Although the reported influence of the nonlocal cou-

pling between the light and the polarization of the semi-
conductor is unexpectedly small, such corrections may be
of increasing importance for the analysis of future preci-
sion experiments on single QDs, in particular in an ex-
ternal field or in non–spherical shaped structures. To
the best of our knowledge, the smallest line width re-
ported so far is that of localized biexciton states in a
GaAs/AlGaAs structure at low temperatures which is
30µeV [6]. The field dependence may come into play for
QDs sandwiched between two metallic leads similar to
those which have been fabricated recently, e.g. [19, 20].
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APPENDIX A: MATRIXELEMENTS

The z–matrix elements can be obtained analytically,

〈n′l′m′|z|nlm〉 = 〈n′l′|r|nl〉〈l′m| cos θ|lm〉δm,m′ , (A1)

where the angular part is listed in CX of Ref. [16].

〈n′l′|r|nl〉 = 2R

jl+1(α)jl′+1(β)
Il,l′(α, β) (A2)

with abbreviations α = aln, β = al′n′ , and

Il,l′ (α, β) =

∫ 1

0

dρ ρ3 jl(αρ) jl′ (βρ) . (A3)

In particular, for l′ = l+1, Eq. (A3) can be rewritten by
using the recursion formula for jl+1(x) in terms of jl(x),
and j′l(x), as given by (10.1.22) in Ref. [17]

Il,l+1(α, β) =

(

l

β
+

∂

∂β

)
∫ 1

0

ρ2 jl(αρ) jl(βρ) dρ . (A4)

The remaining integral is a special case of (11.3.29) with
(10.1.1) in Ref. [17] when jl(α) = 0 and α 6= β are used.
For l′ = l−1 we have only to interchange the role of α, β.

The Coulomb matrix elements are calculated by first
expanding |re − rh|−1 in terms of spherical harmon-
ics [14], and subsequently performing angular integra-
tions of triple products of spherical harmonics in terms
of Clebsch–Gordan coefficients [16]

〈

λ′
∣

∣

1

|re − rh|
∣

∣λ
〉

=

∞
∑

l=0

1

2l+ 1
Wλ,λ′ Zλ,λ′ . (A5)

Wλ,λ′ summarizes the result of r–integrations, and Zλ,λ′

contains a sum onm of products of matrix elements of the
angular part of the wave–functions. Zλ,λ′ is only nonzero
if le + l′e + lh + lh = even and max{|le − l′e|, |lh − l′h|} ≤
l ≤ min{le+ l′e, lh+ l′h}. The remaining integrations have
been done numerically with Mathematica [21].
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APPENDIX B: EVALUATION OF K

Expanding Φ(re, rh) in terms of pair states, Eq. (31),
we obtain

Kαβ =
∑

λ1λ
′

1
λ2λ

′

2

C∗

λ1λ
′

1

Cλ2λ
′

2

(λ1λ2|Gαβ |λ′1λ′2) , (B1)

(λ1λ2|Gαβ |λ′1λ′2) =
∫

d3r1

∫

d3r2Gαβ(r1 − r2)

×ψ∗

λ1
(r1)ψλ2

(r2)ψ
∗

λ′

1

(r1)ψλ′

2

(r2) . (B2)

Electron and hole wave functions are identical, hence the
labels e/h have been dropped. The definition used in
Eq.(B2) looks skew but it is useful for the evaluation in
analogy with the Coulomb matrix elements. The diago-

nal elements are split into two parts: Kηη = K(1)+K
(2)
η ,

where K(1) is independent of the light polarization.
The numerical evaluation of K(1) is conveniently done

by first expanding exp(ik|r1 − r2|)/|r1 − r2| in terms
of spherical harmonics [14], and then follow closely
the evaluation of the Coulomb matrix elements. If
kR < 0.3, the expansion of the exponential function in

(λ1λ2|G(1)
αβ |λ′1λ′2) leads to fast converging series and, to

leading order, we have

R
∣

∣

∣
ℜ
{

(λ1λ2|G(1)|λ′1λ′2)
}∣

∣

∣

<∼ 10−1 ,

R
∣

∣

∣
ℑ
{

(λ1λ2|G(1)|λ′1λ′2)
}∣

∣

∣

<∼ (λ1λ2|
kR

6π
|λ′1λ′2) . (B3)

Therefore, the imaginary part of K(1) is proportional to
the oscillator strength, Eq(23),

ℑ
{

K(1)
}

=
k

6π
|Φ(k = 0)|2 +O

(

(kR)2
)

. (B4)

The evaluation of K
(2)
η is more difficult than that of

K(1) as it depends on the polarization direction and

G
(2)
η ∼ r−3 is singular at r = 0. The latter problem,

however, can be circumvented by doing the angular in-
tegrations first. In addition, the parity of the spherical
harmonics, (−1)l, implies that the matrix elements of
G(2) obeys the same angular momentum selection rules
as G(1). For kR < 0.3, we estimate the G(2) matrix
elements as

R|ℜ
(

λ1λ2|G(2)
η |λ′1λ′2

)

| <∼
0.2

(kR)2
, (B5)

R|ℑ
(

λ1λ2|G(2)
η |λ′1λ′2

)

| <∼
0.002

(kR)2
. (B6)

Therefore, contributions of G(2) to ℑK are expected to
be small even in an applied field. For the real part, how-
ever, the situation is opposite. Without the electrical
field, the excitonic ground state is mainly made up of
electron/hole pair states of the type |n00;n′00 >, with

∑ |Cn00;n′00|2 > 0.96, if R > 5nm, so that the G(2)–
elements almost vanish for small fields.
The final expression for the numerical evaluation of the

G(2)–elements becomes a sum of two five–dimensional in-
tegrals, which have been performed numerically. To cal-
culate the optical properties, the lowest 30 pair states
were used which lead to 140 independent integrals. The
estimated numerical accuracy is 0.5%.
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