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We determined the ionic and electronic structure of sodium
clusters with even electron numbers and 2 to 59 atoms in ax-
ially averaged and three-dimensional density functional cal-
culations. A local, phenomenological pseudopotential that
reproduces important bulk and atomic properties and facil-
itates structure calculations has been developed. Photoab-
sorption spectra have been calculated for Na2, Na8, and Na+9
to Na+59. The consistent inclusion of ionic structure consid-
erably improves agreement with experiment. An icosahedral
growth pattern is observed for Na+19 to Na+59. This finding is
supported by photoabsorption data.

PACS: 36.40.Vz,31.15.Ew,71.15.H,36.40.Wa

I. INTRODUCTION

Since the pioneering experiments of Knight et al.
1

and their interpretation in terms of the jellium model,2,3

sodium clusters have attracted great attention, both ex-
perimentally and theoretically. This is due to the fact
that sodium is the “simple metal” par excellence, and
thus is best suited for the study of fundamental effects.
From photoabsorption experiments it is known that
small sodium clusters have overall shapes that strongly
vary with size and are determined by electronic shell
effects.4–8 On the other hand, cold clusters with several
thousand atoms build icosahedra,9 i.e., they show ionic
shell effects, whereas the bulk material crystallizes in a
bcc lattice. Recent experiments indicate that both ionic
and electronic degrees of freedom play a role in deter-
mining the structural and thermal properties of clusters
with several tens of atoms.10

On the theoretical side, there have been different ap-
proaches to obtain an understanding of the delicate inter-
play between ions and electrons that is the source of this
variety. On one hand, relatively transparent models like
the shell and jellium models in several levels of sophistica-
tion have been widely used.2,3,11–16 On the other hand,
quantum chemistry and density functional theory offer
methods to study clusters on the highest level of sophis-
tication presently possible. But ab initio calculations in
the strictest sense, i.e., taking all electrons into account,
have only been performed for a few selected cases for the
smallest clusters, due to the enormous computational ef-
fort that they require.17–19 Taking only the valence elec-
trons into account reduces the complexity considerably,

but the expense for searching low-energy configurations
in three dimensions20–24 still grows rapidly with the sys-
tem size. The largest ab initio studies of sodium clusters
to our knowledge are the recent finite-temperature inves-
tigations presented in Refs. 25,26.

Several models have been developed to bridge the gap
between the ab initio calculations and the shell and jel-
lium models. The ”Spherically Averaged Pseudopoten-
tial Scheme” (SAPS) describes the ions by pseudopoten-
tials, in most cases local ones, and the valence electrons
are restricted to spherical symmetry.27 Models based
on a volume-averaged or perturbational treatment of
ionic effects28,29 improve on the treatment of the elec-
trons. Yet further approaches are the Hückel and re-
lated models,30,31 molecular dynamics based on empiri-
cal potentials,32 and recently, also the extended Thomas-
Fermi model combined with a local pseudopotential has
been used to study sodium clusters.33,34

From the above examples, two points become clear
that considerably facilitate systematical studies of clus-
ters with more than twenty atoms. First, the fact that
many calculations make use of phenomenological local
pseudopotentials shows the importance of such poten-
tials. This is especially true for sodium, where previous
investigations16,35,36 have shown that a local electron-ion
interaction can be a good approximation. But especially
in cluster physics, where one bridges the region between
the atom and the bulk, it is important that a pseudopo-
tential give reliable results for all sizes despite its locality.
Second, one needs models that make it computationally
manageable to calculate structures and optical properties
of clusters systematically for a wide range of considerable
sizes, but which on the other hand leave the underlying
physics intact and are detailed enough so that relevant
information can be drawn from them. Besides extending
the computational range, such models will serve the even
more important purpose to distill the dominant physical
effects from the wealth of details that fully ab initio cal-
culations supply. The results of the model calculations
of course must be verified in calculations of higher accu-
racy and by comparison with experiment. These tasks
are addressed in the present article.

In Section II we develop a new phenomenological pseu-
dopotential which meets the just mentioned require-
ments. Detailed comparisons with ab initio calculations
for the smallest clusters in section III verify the validity
of the pseudopotential and an axially averaged density
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functional model37 for structure calculations. In section
IV, a systematic survey over structures and photoabsorp-
tion spectra of Na clusters up to Na+59 is given. The re-
sults of the survey are summarized and discussed in the
concluding section V.

II. A LOCAL PSEUDOPOTENTIAL FOR

STRUCTURE CALCULATIONS

Rigorous pseudopotentials in the sense of Phillips and
Kleinman38 and modern ab initio pseudopotentials39,40

are always nonlocal. However, it has been noted early
in the development of pseudopotential theory that by
relaxing the Phillips-Kleinman condition, one can open
up a new class of pseudopotentials.41 These are also
termed “model potentials” because they are constructed
by choosing some analytical functions as models for the
partial-wave potentials and adjusting their parameters
such that some experimentally known quantities, e.g.,
atomic energy levels, are matched. If several partial-
wave potentials can be chosen to be the same, one can
construct a local model potential. In fact, such local phe-
nomenological potentials have been and are being used
successfully in many branches of physics, see, e.g., Refs.
29,34,35,42,43. However, the local approach can only be
expected to be good for the so-called “nearly free elec-
tron” metals whose atomic structure consists of only s or
p electrons outside of an ionic core with a noble gas con-
figuration. (Lithium, with its lack of p electrons in the
core, is the prominent exception.) In these metals, the
two contributions making up the pseudopotential have a
tendency to cancel each other, and the effective poten-
tial a valence electron experiences is further diminished
by screening effects. Therefore, model potentials have
been proposed in the past which tried to exploit this
simple electronic structure either by fitting properties of
the bulk solid,35,37,42,44 or of the single atom,41 or by ad

hoc fulfilling desired numerical properties.33,45 However,
some of these potentials can lead to wrong predictions
when they are used in physical surroundings different
from the one in which they were set up,46 or when prop-
erties other than the adjusted ones are looked at. With
an emphasis on solid state properties, the last point has
been discussed in detail previously, see, e.g., Ref. 35 for
an overview. Our aim here is to develop a local model
potential that gives a maximum degree of transferability
in the sense that potentials constructed according to our
scheme should reproduce the important physical proper-
ties of a system, irrespectively of its number of atoms or
the way in which these are arranged.

A. The Ansatz

The construction of a model potential consists of two
steps. The first is to choose the model function. It should

allow for a physical interpretation of the final potential,
and at the same time should have analytical and numer-
ical properties that allow for an easy application. The
parameterization

Vps (r) = −Ze
2

r

{

c1erf

(

r√
2σ1

)

+ c2erf

(

r√
2σ2

)}

,

(2.1)

where

erf(x) =
2√
π

∫ x

0

dy exp (−y2), (2.2)

certainly meets the second requirement, since the error
function can very efficiently be handled numerically47

and yields a smooth representation on a grid. That this
parameterization also has a transparent physical inter-
pretation will be demonstrated at the end of this sec-
tion. The second step is the choice of the four parameters
σ1, σ2, c1, c2. One necessary condition is that the correct
Coulomb limit,

lim
r→∞

Vps (r) =
−Ze2
r

, (2.3)

be obtained, which requires

c1 + c2 = 1. (2.4)

Thus we are left with three free parameters. Since our
aim is to construct a pseudopotential that gives reliable
properties for all clusters, i.e., spanning the region from
the atom to the bulk, the most important properties of
both atom and bulk solid must be reproduced. There-
fore, we have chosen to fit the Wigner-Seitz radius rs and
the compressibility B of the crystalline metal, together
with the energy of the atomic 3s level ea. These quanti-
ties characterize sodium and influence both structure and
electronic excitations, thus being of great importance for
reliable results. A test for whether we really have cap-
tured the relevant physics will be to check if non-fitted
quantities (bond-lengths, atomic spectra, bulk binding,
dipole resonances) are also reproduced correctly.

B. Determination of basic properties

We calculate the bulk properties in second-order per-
turbation theory.35 The unperturbed system is the nonin-
teracting homogeneous gas of valence electrons, the per-
turbation is given by the potentials arising from the crys-
tal lattice and from the interaction of the electrons with
each other. Each crystal ion is described by a pseudopo-
tential Vps centered on a lattice site. Up to second order,
the binding energy per valence electron eb is given by

eb(rs) = ekin(rs) + exc(rs) + eps1(rs) + eh(rs) + eii

+ebs(rs). (2.5)
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Here rs = [3/(4πn)]
1

3 is defined in terms of the average
valence electron density n,

ekin(rs) =
3~2

10m

(

9π

4

)
2

3 1

r2s
(2.6)

is the noninteracting kinetic energy, and exc(rs) is the
exchange and correlation energy for which we have em-
ployed the LDA functional of Perdew and Wang.48 The
quantity

eps1(rs) =
3

Z4πrs3

∫

Vps(r)d
3r (2.7)

is the first-order contribution of the pseudopotential to
the binding energy, eh(rs) is the Hartree energy of the
valence electron density, and eii is the electrostatic energy
of point ions. Finally, ebs(rs) is the band structure energy
discussed below. Integrations are taken over the (infinite)
volume of the crystal. These contributions are rewritten
as

eps1(rs) + eh(rs) + eii(rs) =

3

Z4πr3s

∫
(

Vps +
Ze2

r

)

d3r +

3

Z4πr3s

∫
(

Vh
2

− Ze2

r

)

d3r + eii (2.8)

to obtain the volume-averaged repulsive part of the pseu-
dopotential that defines its strength

Sps =

∫
(

Vps +
Ze2

r

)

d3r, (2.9)

and the total electrostatic energy of point ions in a
compensating uniform negative background, called the
Madelung energy em. Separating the Coulomb force
into long and short-range components,49 one can cal-
culate em, and for the bcc lattice one obtains em =
−0.895929Z

2

3 e2/rs. Thus the only characteristic50 of the
pseudopotential that enters the binding energy in first-
order perturbation theory is its strength Sps. For fixing
the radial dependence of the potential it is therefore es-
sential to take into account the second-order band struc-
ture energy

ebs(rs) =
1

2

3

Z24πr3s

∑

q 6=0

∣

∣

∣
Ṽps (q)S (q)

∣

∣

∣

2 χ (q)

ǫ (q)
. (2.10)

In (2.10),

S (q) =
1

N

N
∑

j=1

exp
(

−iqRj

)

(2.11)

is the structure factor with the sum running over all ionic
positions. For a lattice without basis one obtains S (q) =
δq,K, where K denotes reciprocal lattice vectors, i.e., the

sum in (2.10) is running over reciprocal lattice vectors
only. Furthermore,

χ (q) = − mkF
2π2~2

(

1 +
1− η2

2η
ln

∣

∣

∣

∣

1 + η

1− η

∣

∣

∣

∣

)

, η =
q

2kF

(2.12)

is the Lindhard function with kF = (3π2n)
1

3 , and

ǫ (q) = 1− 4πe2

q2
(1− G (q))χ (q) (2.13)

is the dielectric function including the local field correc-
tion

G = − q2

4πe2
d2

dn2
(nexc [n]) . (2.14)

in the LDA. The pseudopotential enters via its Fourier
transform, which for our potential is given by

Ṽps (q) = −4πe2Z

q2

2
∑

i=1

ci exp

(

−q
2σ2

i

2

)

. (2.15)

From Eqs. (2.5) to (2.13) we calculate eb; the minimum
of eb determines rs, and the bulk modulus is obtained
from

B = −V ∂P
∂V

=
1

12πrs

(

∂2eb
∂2rs

− 2

rs

∂eb
∂rs

)

. (2.16)

The reciprocal lattice vectors are generated numerically
from the reciprocal basis, and we carefully checked that
in all calculations the sum over reciprocal lattice vectors
was numerically converged.
The atomic 3s level is the lowest eigenvalue ea of the

Schrödinger equation

(

− ∂2

∂r2
+
l (l+ 1)

r2
+

2m

~2
Vps (r)−

2m

~2
ea

)

u (r) = 0

(2.17)

for l = 0, where the pseudo wavefunction has, as
usual, been factorized into radial and angular compo-
nents, ψ(r) = [u (r)/r] Ylm(ϑ, ϕ). At this point, a sub-
tlety should be considered. The atomic energy calcu-
lated within density functional theory using the LDA
will slightly differ from ea due to the well known fact
that in the LDA, the self interactions in the Hartree and
exchange energy do not cancel each other exactly and
leave a spurious self interaction energy.51 One therefore
might be tempted to “compensate” this self-interaction
energy by adjusting the pseudopotential parameters such
that the experimental value is matched when the self-
interaction energy is included. This, however, would be
dangerous for several reasons. First, it must be recalled
that for an accurate description of bonding properties,
the pseudopotential must lead to an accurate description
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of the electronic density. If one adjusts the pseudopoten-
tial parameters such that a spurious energy is compen-
sated, then the valence electron density resulting from
this pseudopotential might correspondingly show spuri-
ous, unphysical deformations, leading to wrong bond-
ing properties, as discussed previously.52 Secondly, the
self-interaction energy becomes smaller with increasing
delocalization of the electrons. For an electron delocal-
ized over a volume Ω, the self-interaction correction is of
order53 Ω− 1

3 . Since the valence electrons in metal clus-
ters are delocalized to a high degree, and since the cluster
volume changes noticeably in the size range from N=8
to N=58 that we are interested in, a compensation of
the atomic self interaction energy via the pseudopoten-
tial would lead to problems for increasing cluster sizes.
And third, building the self-interaction energy into the
pseudopotential would be inconsistent with the proce-
dure of fitting to the bulk, because the bulk calculation
is less affected by the self-interaction error due to the de-
localization of the bulk electrons. Therefore, it is better
to exactly solve Eq. (2.17). This can straightforwardly be
done numerically by combining the Runge-Kutta method
with adaptive stepsize control with a globally convergent
Newton scheme. As a welcomed side effect, our pseu-
dopotential might also be usable in self-interaction free,
i.e., beyond-LDA density functional calculations.

C. Results and comparison

The three free parameters of our model potential
(2.1) were now chosen such that the experimental low-
temperature value54 rs = 3.93a0 be reproduced exactly,
while at the same time ea and B be as close as possi-
ble to the experimental values41 ea = −0.378Ry and55

B = 0.073Mbar. These conditions lead to the parame-
ters

σ1 = 0.681 a0, c1 = −2.292,

σ2 = 1.163 a0, c2 = 3.292. (2.18)

In Table I we have listed the resulting rs, B and ea
for our smooth-core pseudopotential and for other local
pseudopotentials that have widely been used in cluster
physics. The empty-core potential with both of the most
frequently used choices for its cut-off radius rc, and the
pseudopotential of Ref. 37 that was constructed in the
same spirit and adjusted in first-order perturbation the-
ory only, lead to considerable deviations from the ex-
perimental values for all quantities. The local Heine-
Abarenkov potential29,42,43 gives a reasonable rs and an
ea very close to the experimental one, but 10% error in
B. Our pseudopotential by construction gives no or only
very small differences from the experimental values for rs,
B and ea, showing that it is possible to obtain reason-
able results for all these quantities with a local potential.
However, a severe test will be whether also non-fitted
quantities are reproduced correctly. To this end, we have

Pseudopotential rs/a0 B/Mbar ea/eV

Empty core, rc= 1.66a 3.49 0.119 -5.52

Empty core, rc= 1.76b 3.61 0.109 -5.32

Ref. 37 3.84 0.079 -5.31

Heine-Abarenkovc 3.90 0.080 -5.12

Present work 3.93 0.074 -5.18

Experiment 3.93 0.073 -5.14

TABLE I. Equilibrium density rs, bulk modulus B, and
atomic 3s level ea, calculated for standard local pseudopoten-
tials: (a) Ref. 44, (b) Ref. 27, and (c) Ref. 42,43,29. Bottom
line: Experimental results. See text for details and references
for experimental values.

calculated the bulk binding energy eb, the dimer bind-
ing length ddimer, the zero of the pseudopotential form
factor, given by q0 =

√

2[ln(c2)− ln(−c1)]/(σ2
2 − σ2

1) in
our case, and the first seven excited atomic energy levels.
Table II shows that also these ten non-fitted quantities
come out very close to the measured values, revealing
that the model potential defined by (2.1), (2.18) indeed
incorporates the relevant physical effects.

Present work Experiment

eb/eV -6.19 -6.25

q0/(2kF ) 0.92 0.87a/0.98b

ddimer/a0 5.78 5.82

3s - 3p /eV 2.19 2.10

3s - 4s /eV 3.18 3.19

3s - 3d /eV 3.68 3.52

3s - 4p /eV 3.80 3.75

3s - 5s /eV 4.13 4.12

3s - 4d /eV 4.33 4.29

3s - 5p /eV 4.39 4.35

TABLE II. Left column: Bulk binding energy eb from per-
turbation theory; normalized zero of the form factor q0/(2kF );
dimer binding length ddimer calculated with our smooth-core
pseudopotential and CAPS; valence electron excitation ener-
gies for our pseudopotential. Right column: Measured bulk
binding energy;56 semi-empirical values for q0/(2kF ) from op-
tical properties (a) and from elastic constants (b), see Ref. 57
for a discussion; dimer binding length;58 and energy level dif-
ferences as obtained from spectroscopic lines.59

Fig. 1 shows our pseudopotential in real and in Fourier
space, leading us back to the question of the motivation
for the ansatz (2.1). From Eq. (2.4), one can interpret the
coefficients c1 and c2 as the charges associated with the
attractive and repulsive terms, respectively, in the pseu-
dopotential. This interpretation becomes more transpar-
ent when one looks at the corresponding pseudocharge
density. The pseudocharge nps is related to the pseu-
dopotential via Poisson’s equation

△Vps (r) = 4πe2nps (r) , (2.19)

and for our pseudopotential is given by
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FIG. 1. The smooth-core pseudopotential in real and
Fourier space.

nps(r) = n1 exp

(

− r2

2σ12

)

+ n2 exp

(

− r2

2σ22

)

, (2.20)

where

ni = ci
(

2πσi
2
)− 3

2 for i = 1, 2. (2.21)

Thus, our parameterization describes the ionic core by
two overlapping Gaussian charge densities. The different
heights and widths of the Gaussians result in a pseudo-
density that is negative for small distances, correspond-
ing to a repulsive core, and has a positive tail that com-
pensates the core for larger distances. Equation (2.20)
thus is a generalization of the parameterization that was
used in our previous studies,46 where the pseudodensity
has a two step-profile. Besides its transparent physical in-
terpretation, the pseudopotential (2.1) has excellent nu-
merical properties: in real space the potential is smooth
with no extreme peaks and can very efficiently be han-
dled numerically via the pseudodensity, allowing to solve
the Coulomb problem for electrons and ions together. At
the same time, its rapidly converging Fourier transform
makes the potential equally well suited for calculations
in reciprocal space.

III. COMPARISON WITH AB INITIO RESULTS

In the present work we have employed the “Cylindri-
cally Averaged Pseudopotential Scheme” (CAPS), which

has been introduced earlier37,46 and which has been mod-
ified and improved for the present purposes. Since CAPS
treats the electronic degrees of freedom in the Kohn-
Sham formalism without limiting them to spherical sym-
metry, explicitly includes the ionic structure, and fur-
thermore is numerically efficient, it is a very good tool
for systematical studies of the interplay between ions and
electrons. But before CAPS and the smooth-core pseu-
dopotential are applied on a large scale, we further test
their usefulness for cluster structure calculations.
That the smooth core pseudopotential reproduces the

experimentally known dimer bond length has already
been shown in Table II. For the next larger clusters, no
direct experimental information on structures or bond
lengths is available, and we therefore resort to compar-
isons with other theoretical work. Fig. 2 shows the four
smallest Na clusters with even electron numbers as they
are obtained in CAPS with the smooth core pseudopo-
tential. For these clusters, also three-dimensional geom-
etry optimizations have been performed using ab initio

pseudopotentials and Hartree-Fock with configuration in-
teraction (CI)17,23, or DFT with the LDA20,21 for the
valence electrons, respectively. Also all-electron Hartree-
Fock calculations have been reported.17,60 CAPS finds
exactly the same structures as the three-dimensional
methods, and this in spite of the fact that the ionic
configurations of Na4 and Na+5 might let the cylindri-

FIG. 2. Ground state structures for Na+3 , Na+5 , Na4
and Na6 as obtained in CAPS with the smooth core
pseudopotential. The numbers report the bond lengths
in a0, where the uppermost values in each column are
from the present work, the ones in square brackets from
Hartree-Fock/CI calculations,23,17 the ones in parentheses
from DFT with LDA,20,21 and the ones in braces from
all-electron Hartree-Fock calculations.17,60
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cal averaging seem a rather far-fetched approximation.
But not only the overall geometry, also the bond lengths
are in good agreement with the ones from the three-
dimensional calculations. Whereas all-electron Hartree-
Fock overestimates bond lengths due to missing correla-
tion effects, the three-dimensional LDA calculations lead
to the well-known underestimation. By construction, the
phenomenological pseudopotential compensates this un-
derestimation, and it is thus reassuring to see that the
resulting bond lengths are close to the ones found in the
quantum chemistry calculations. Three-dimensional cal-
culations have been performed for a few other neutral
clusters,22 and CAPS is in agreement with the three-
dimensional geometries in these cases, too. A detailed
analysis of structures of neutral clusters and their static
electric polarizability can be found in Ref. 61.
A further test for structure calculations is obtained by

comparing the photoabsorption spectra corresponding to
the theoretically determined structures to the measured
ones. To this end, we have calculated the valence elec-
tron excitations for our cluster structures in a collective
approach. The basic idea of this method has been pre-
sented earlier,62,63 and a detailed discussion of its exten-
sions and the relation to density functional theory is the
subject of a forthcoming publication.64 Here, we demon-
strate the validity of our collective model for the test
cases Na2 and Na8, where experimental data and recent
ab initio TDLDA calculations are available for compar-
ison. The first row of plots in Fig. 3 shows the exci-
tation spectra obtained with the axial collective model
for the CAPS structures shown in the insets, the sec-

Na 8

0 1 2 3 4
eV

Na 2

0 1 2 3

Experiment

σ

FIG. 3. Photoabsorption cross section σ in arbitrary units
against energy in eV for Na2 and Na8. From top to bottom:
present results for the CAPS structure shown in the inset,
TDLDA calculations for the corresponding three-dimensional
structures,70 experimental spectra.65,66 The TDLDA and col-
lective model results have been broadened by 0.06 eV to sim-
ulate the finite line width of the experiment.

ond row shows the TDLDA spectra for the correspond-
ing three-dimensional geometries, and the bottom row
shows the experiment.65,66 The lower two rows were di-
rectly adapted from Ref. 70, and the collective model re-
sults were then plotted on the same scale. Besides small
differences in the two small peaks seen at high energies
for Na2, the agreement between the three sets of data is
very good. This demonstrates that our collective model
is capable of correctly describing excitations even in small
systems. It further is to be noticed that the excitation
energies obtained with the smooth-core pseudopotential
are ≈ 0.15 eV lower than the TDLDA energies and closer
to the experimental ones, which can be attributed to the
larger bond lengths that result with the present pseu-
dopotential.

IV. STRUCTURES AND PHOTOABSORPTION

SPECTRA OF SINGLY-CHARGED CATIONIC

SODIUM CLUSTERS

Since the comparisons in the previous section have
shown that the phenomenological pseudopotential, the
collective model and CAPS are well suited for the de-
scription of sodium clusters, a systematic study of clus-
ters with even electron numbers between 8 and 58 is pre-
sented. For each cluster a great number of simulated an-
nealing runs was started from different random configura-
tions. The search was continued until new runs no longer
returned new low-energy structures. Although it must
always be kept in mind that no practical algorithm guar-
antees that all low-energy structures are found, this ex-
tensive and unbiased procedure at least gives good hope
to do so. The aim of this survey is to investigate how elec-
tronic and ionic shell effects play together in determining
the cluster structure, and thus gain a better understand-
ing of how matter grows. The geometry optimization was
done with CAPS, but the energies of the resulting struc-
tures have also been obtained in three-dimensional Kohn-
Sham calculations to check the ordering of isomers with-
out axial restriction. Photoabsorption spectra are cal-
culated with the collective model, and comparison with
the experimental spectra gives further information on the
relevant structures.
The “magic” cluster Na+9 is spherical according to

the jellium model, and the ground state found with
CAPS is the C4v structure (a) in Fig. 4. Separated
by 0.10 eV, CAPS finds the D4d isomer (b), and both
these geometries were also found in three-dimensional
CI and LDA calculations.18,45 In addition, CAPS finds
the third isomer (c) which is higher by 0.23 eV. All
these clusters have nearly spherical valence electron den-
sities, and therefore support the shell model picture. But
the ionic configurations are, of course, non-spherical,
and this is reflected in the photoabsorption cross sec-
tions. The first thing to be noted is the overall po-
sition of the resonance, about which there has been a
long-standing debate.2,14,15,24,29,68,69 In previous work46
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FIG. 4. Low-energy configurations for Na+9 , and corre-
sponding photoabsorption spectra from the collective model.
A phenomenological Lorentzian line broadening of width 0.08
eV has been applied. Dotted curve: experimental cross sec-
tion for T=105 K.71,76

we have shown that when ionic structure is taken into
account via a pseudopotential, the detailed form of the
potential greatly influences the resonance position. But
whereas our previous calculations were mainly compared
to high-temperature data, and, due to limited collec-
tive model basis sets, fixed the resonance positions only
within a few percent (as pointed out in Ref. 46), we have
now fully converged the basis. The resulting overall res-
onance positions are very close to the experimental low-
temperature positions, showing that consistent inclusion
of ionic structure gets the plasmon position in the cor-
rect energy interval. The optical response of Na+9 has
also been theoretically investigated previously,18,23,29,45

and each of these calculations explains the experimental
spectrum on the basis of a different isomer. In our calcu-
lations, the spectra of isomers (b) and (c) both reproduce
the splitting of the main peak seen in the experiment.
Isomer (a) does not show this feature, but it leads to the
small sub-peak around 3.5 eV that is also seen experi-
mentally. The situation becomes transparent when the
results from our three-dimensional calculations, see Ta-
ble III, are taken into account. They show that isomer
(c) is degenerate with isomer (a), and the experimental
spectrum can thus be explained even at low tempera-
tures as resulting from a mixture of isomers (a) and (c).
(The importance of isomerism on dipole spectra in small
sodium clusters has also been pointed out in Ref. 73.)

The lowest energy structure that we find for Na+11 (D4d,
labeled (a) in Fig. 5) can be understood as resulting from
placing one atom in the center of Na10, or capping iso-
mer (b) of Na+9 on the quadratic faces. Separated by
0.11 eV and 0.19 eV, respectively, CAPS finds the D3h

isomer (b), and its deformed counterpart (c), which is
only a shallow local minimum in CAPS and easily trans-
forms into the more stable structure (b). In the three-
dimensional calculations, the ordering of isomers is re-
versed: (b) becomes the ground state, and our results

FIG. 5. Low-energy configurations for Na+11. See text for a
discussion of photoabsorption spectra.

are thus consistent with the findings of Ref. 23. We have
calculated the photoabsorption spectra with the collec-
tive model and obtain two resonances with heights ap-
proximately 1:2 for all three geometries. These are cen-
tered at 2.41/2.94 eV for structure (a), at 2.39/2.94 eV
for structure (b), and at 2.27/2.98 eV for structure (c).
The experimental photoabsorption spectrum72 of Na+11
at 380 K shows two broad peaks with heights 1:2 around
2.2 eV and 2.85 eV, and a pattern of six peaks when mea-
sured at 35 K: three low intensity ones at 1.9 eV, 2.2 eV
and 2.4 eV, and three high intensity ones at 2.5 eV, 2.8
eV and 3.0 eV. Obviously, the calculated resonances are
blue shifted by a few percent with respect to the hot ex-
periment. This is understandable since the calculations
have been done for T=0 K, and thermal expansion of
the cluster shifts the plasmon to slightly lower energies.
(This effect has recently been put into evidence quantita-
tively for the static response.74) When compared to the
cold data, the calculated resonances are in the correct
energy range, but the fine structure that the experiment
shows is not reproduced. A CI calculation23 based on iso-
mer (b) reproduced some of the experimentally observed
patterns, but also could not explain all the peaks, and re-
cent three-dimensional TDLDA calculations75 have lead
to similar results as the collective model. An explana-
tion of all details in the experimental spectrum therefore
might require to consider a mixture of low-energy struc-
tures, and this will be discussed in detail in a separate
publication.75

For Na+15 CAPS finds four low-energy structures. The
two lowest ones, (a) and (b) in Fig. 6, are very close in
energy in both CAPS and the three-dimensional calcula-
tions. (a) corresponds to a distorted Na+11 (a) with four
atoms added along the z-axis, and (b) can be understood
as a pentagonal bipyramid sharing one ion with Na+9 (a).
Structure (c) results from structure (a) by moving one of
the inner single atoms to the bottom face, and the oblate
(d) corresponds to a configuration found31,61 for Na14,
but with one atom added along the symmetry axis. In
agreement with the experimental photoabsorption spec-
trum, our results point to prolate clusters as the relevant
structures and thus again verify the prediction of the de-
formed, structure averaged jellium model (SAJM).77,7
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FIG. 6. Low-energy configurations and photoabsorption
spectra for Na+15. A phenomenological Lorentzian line broad-
ening of width 0.2 eV has been applied. Dotted curve: exper-
imental cross section.76

The ground state structure found for Na+17, (a) in Fig.
7, is close to the one found in the extended Hückel model
for the neutral cluster.31 It consists of an icosahedral core
with a crown of four atoms, and the only difference to the
result of Ref. 31 is that the cylindrical averaging forces
the crown atoms into a square. This shows that for such
sizes the differences between charged and neutral clus-
ters can already be small. Structure (b), which is slightly
higher in energy than (a) in the three-dimensional calcu-
lations, has an even more prolate valence electron den-
sity, and the collective resonances for these clusters lie at
2.59 eV and 2.86 eV [structure (a)] and at 2.34 eV and
2.95 eV [structure (b)]. They are thus in contrast to the
experimental spectrum that points to an oblate cluster.
CAPS finds one more isomer, structure (c), that indeed
leads to an oblate valence electron density. In CAPS, it

FIG. 7. Low-energy configurations for Na+17, and pho-
toabsorption spectrum for isomer (c). A phenomenological
Lorentzian line broadening of width 0.22 eV has been applied.
Dotted curve: experimental cross section.76

is 0.16 eV higher than (a), with a half occupied orbital.
The collective spectrum for this isomer is very close to
the experimental one, as shown in Fig. 7. However, also
the three-dimensional calculation gives a non-negligible
energy difference between (c) and the prolate isomers, cf.
Table III. Therefore, in this case a three-dimensional re-
laxation of the ions would be necessary to check whether
Jahn-Teller distortions lower the energy of isomer (c) so
much that it can account for the experimental spectrum.

For Na+19 CAPS finds the four stable geometries shown
in Fig. 8. The double-icosahedron (a) is the ground state,
and it is separated from structure (b) by 0.23 eV, from
(c) by 0.30 eV, and from (d) by 0.35 eV. However, in
the calculations without axial restriction, the energetic
differences are considerably reduced: isomer (d) becomes
equivalent to isomer (b), and both are separated from the
ground state by only 0.12 eV. The experimental photoab-
sorption spectrum sheds further light on the situation. It
shows a high peak at about 2.7 eV, followed by a lower
one at about 2.9 eV, and is thus very similar to the col-
lective spectrum of isomer (d). The spectra of the other
isomers all give the peaks in reversed order and thus do
not resemble the experiment. (The collective spectrum
of (c), which is not shown in order not to overload Fig.
8, shows a small peak at 2.84 eV and a higher one at
2.93 eV.) Since an internal cluster temperature of about
60 K is sufficient to go from isomer (a) to (d), and since
the temperature in the experiment is about 105 K, it is

FIG. 8. Low-energy configurations and photoabsorption
spectra for Na+19. A phenomenological Lorentzian line broad-
ening of width 0.15 eV has been applied. Dotted curve: ex-
perimental cross section.76
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plausible that isomer (d) will contribute to the spectrum.
The experimental spectrum however looks as if it is domi-
nated by isomer (d). One explanation for this can be that
structure (d) has a larger “catchment area” than (a) and
is entropically favored. The second possibility, which is
suggested by the relatively large difference between the
energy found in CAPS and the three-dimensional calcu-
lation, is that a three-dimensional relaxation of the ions
would turn structure (d) into the ground state.

FIG. 9. Low-energy configurations and photoabsorption
spectra for Na+21. A phenomenological Lorentzian line broad-
ening of width 0.15 eV has been applied. Dotted curve: ex-
perimental cross section.71

Two degenerate structures are found for Na+21 in
CAPS, and also the three-dimensional calculation leads
to nearly equal energies. Structure (a) results from the
double icosahedron of Na+19 (a) by adding one ion to each
of the lower tow pentagons, and (b) results from (a) by
moving the lowest ion to the uppermost pentagon. Both
geometries lead to collective spectra with two main tran-
sitions and some strength above the main resonances.
This is in agreement with the experimental data71,76 that
also show this high-energy tail. Concerning the main
transitions, the two isomers are somewhat different: in
structure (a) the main peaks are separated by about 0.1
eV, whereas they nearly fall together for structure (b).
Since the structures are extremely close in total energy
and since the main peaks of (b) energetically fall exactly
between the main peaks of (a), the experimental spec-
trum can consistently be explained as resulting from a
mixture of both isomers.
The simulations performed for Na+25 led to strongly

prolate shapes. This is partially understandable on the
basis of the SAJM:7 the valence electrons force the clus-
ter into the prolate regime. But the inclusion of ionic
structure even enhances the prolate tendency, because
the lowest configuration, shown in Fig. 10, is a triple
icosahedron, and in order to build this configuration, a
quadrupole moment larger than the jellium prediction is
necessary. From this observation it also becomes clear

FIG. 10. CAPS ground-state configuration and photoab-
sorption spectrum for Na+25. A phenomenological Lorentzian
line broadening of width 0.25 eV has been applied. Dotted
curve: experimental cross section.76

that the pentagonal bipyramid which has been observed
as a building block of the smaller clusters18,22,31 is also
important for the larger sizes. For the triple icosahe-
dron, collective resonances are observed at 2.44 eV and
2.96 eV, and also the experiments6,76 indicate peaks at
these energies. But the latter shows an additional peak
around 2.75 eV which is not found in the calculations.
Comparing this to the situation encountered46 for Na+27
shows that the geometries of the two clusters are closely
related: Na+27 is the triple icosahedron with two atoms
added to the central pentagons. This shows the con-
sistency of the structure calculations, and for Na+27 the
collective spectrum nicely matches with the experimen-
tal data. The triple icosahedron is energetically strongly
favored over the other structures that CAPS finds. All
of them are variations of the ground state geometry with
local distortions, and a three-dimensional calculation was
performed for the structure that in CAPS is the second
lowest. Here, the difference in total energy is a little
smaller than in CAPS, but still large, cf. Table III. Since
furthermore all low-energy structures give rise to collec-
tive spectra that are similar to the one shown in Fig. 10,
the explanation for the middle peak observed for Na+25
remains an open question.

Comparing the structures of Na+25 and Na+27 to the
ones found for Na+31, Na+41 and Na+43 (Fig. 11, Fig. 12,
and Refs. 25,46) allows to identify a growth pattern: the
triple icosahedron serves as a building block for the larger
clusters. Additional atoms are added on outside faces, as
seen in the ground states of Na+27 and Na+43, or can be
packed between the pentagonal subunits, as observed for
the isomers of Na+27, where the two additional ions are
placed at different positions “inside” the Na+25 structure.
The collective spectra of the low-energy structures (a) –
(c) of Na+31 reflect the prolate electron densities of these
clusters and show one peak around 2.6 eV, carrying about
30% oscillator strength, another one around 2.95 eV car-
rying about 50% strength, and the rest of the strength
scattered at higher energies. Structure (d) is not stable
against Jahn Teller distortions in three dimensions. In
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FIG. 11. Low-energy configurations for Na+31.

view of the cluster size, the CAPS differences in total en-
ergy for Na+31 are rather small, and they are even smaller
in the three-dimensional approach. Since the temper-
ature in the measurement of the photoabsorption cross
section was again at least 105 K, it can be concluded from
the calculations that a variety of isomers will contribute
to the experimental spectrum. It is thus not astonishing
that the available experimental data6,76 do not resolve
separated peaks but show a rather broad bump.

FIG. 12. CAPS ground state configuration and photoab-
sorption spectrum for Na+43. A phenomenological Lorentzian
line broadening of width 0.15 eV has been applied. Dotted
curve: experimental cross section.76

The pronounced deformation seen for Na+43 in Fig. 12
results from an interplay between ions and valence elec-
trons. The electrons “push” the cluster into the octupole,
i.e. pear-shaped form, and the ions arrange under this
“constraint”. But the ions favor the icosahedral core, and
this increases the deformation. The octupole moment
therefore is larger by a factor 1.15 than in the SAJM.77

The photoabsorption spectrum calculated for Na+43 shows
a strong peak at 2.7 eV, followed by a high-energy tail. It
is in close agreement with the experimental data, which
thus support our structure calculations.
Based on the shell and deformed jellium model a con-

figuration would be expected for Na+55 that gives rise to a
prolate valence electron density. The CAPS calculations,
however, consistently led to nearly spherical or slightly
oblate clusters as low-energy configurations. The low-
est energy was found for structure (a) in Fig. 13. It

FIG. 13. Low-energy configurations and corresponding
photoabsorption spectra for Na+55. A phenomenological
Lorentzian line broadening of width 0.17 eV has been ap-
plied. Dotted curve: experimental cross section.76 See text
for a discussion of further experiments.78

has a fivefold symmetry axis and again shows the close-
to-icosahedral core discussed previously. Within 0.4 eV
structures (b) and (c) are found with valence electron
densities that are more oblate. These structures show
half-occupied highest orbitals, indicating that they would
Jahn-Teller relax if the axial restriction on the electrons
were lifted. The lowest prolate isomer that was found,
structure (d), has a quadrupole moment that is close to
the one predicted by the SAJM7 but in CAPS this con-
figuration is 0.73 eV higher than the ground state. The
annealing was also started from an icosahedron with the
nearest-neighbor distance of bulk sodium. In this cal-
culation, the strictly geometrical icosahedron transforms
into structure (a), which can be regarded as a slightly
distorted icosahedron. The experimental photoabsorp-
tion spectrum of Na+55 as measured by the Freiburg group
is shown in the lowest panel of Fig. 13, and the spec-
trum has also been measured by Meibom et al.

78 Both
spectra have in common that one broad peak is seen, fol-
lowed by a second, smaller peak or a high-energy shoul-
der. This is in contrast to the prediction of the jellium
model, because the prolate structures found there give
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the peaks in reversed order, similar to the spectrum of
isomer (d). The CAPS low-energy structures, however,
lead to collective spectra with a high peak followed by
a lower one, and are thus in better agreement with the
experiment. The total oscillator strength measured in
the experiment78 was 70% - 80%. This also agrees with
the collective model calculations that find 79% strength
within the plotted range for structure (a), 76% for (b)
and 80% for (c). As a test for the collective model, a
TDLDA calculation with excitation in z-direction was
performed for structure (a). In the TDLDA, the high-
energy shoulder is more pronounced than in the collective
model. To further clear up the situation, the structures
(a), (b) and (d) were relaxed in Born-Oppenheimer ab

initio molecular dynamics,79 i.e., fully three-dimensional
with the Troullier-Martins pseudopotential.80 The bond
lengths of all three structures shrinked by a few percent
due to the different pseudopotential, and isomers (b) and
(d) distorted slightly, but otherwise the geometries stayed
unaltered. As seen in Table III, the differences in total
energy are somewhat smaller in the ab initio calculations,
but the ordering of isomers is the same as in CAPS. Fi-
nally, as reported in Ref. 26, the CAPS structure (a) was
annealed for 10 ps at about 220 K. In this annealing, the
cluster became even more similar to an icosahedron and
its overall shape oscillated around the nearly spherical
shape of the icosahedron. Thus, the ab initio calcula-
tions confirm the finding that in contrast to the deformed
jellium model prediction, Na+55 at low to moderate tem-
peratures has a close to spherical valence electron density.
The CAPS results for Na+57, see Fig. 14, are consistent

with the results for Na+55: again the low-energy structures
are not prolate, but spherical or slightly oblate. The col-
lective spectra somewhat underestimate the high-energy
shoulder, and this can be attributed to selective particle-
hole effects just as in the case of Na+55. But the over-
all agreement with experiment78,76 is considerably better
than in the deformed-jellium calculation. Structure (a)
has the lowest energy, followed by isomers (b) and (c)
that are higher by 0.22 eV. For structure (c) we observe
a half-occupied orbital. With respect to the ionic geom-
etry, structure (a) is similar to the third isomer of Na+55,
and (c) corresponds to the ground state of Na+55 with the
two additional ions added on top and bottom faces. An-
other isomer, not shown in Fig. 14 for the sake of clarity,
is found, and there the two additional ions are added in
the equatorial plane of Na+55 (a).
In the case of Na+59 the search for low-energy structures

has not been as exhaustive as for the other clusters. But
several annealing runs were started from random config-
urations, and the low-energy geometries that were found
again showed the ions arranged rather regularly and sim-
ilar to the structures just discussed. Therefore, further
simulations were started from the geometries found for
Na+55 and Na+57, plus four or two atoms, respectively, that
were added at randomly chosen sites. One of these runs
led to a geometry that corresponds to Na+57 (a), capped
by two atoms on top and bottom. This structure has the

FIG. 14. Low-energy configurations and corresponding
photoabsorption spectra for Na+57. A phenomenological
Lorentzian line broadening of width 0.17 eV has been ap-
plied. Dotted curve: experimental cross section.76 See text
for a discussion of further experiments.78

lowest energy of all that were found, and it does not show
signs of Jahn-Teller instability. The comparison between
the experimental76 and theoretical photoabsorption spec-
tra fits into the previous discussion. The strongest collec-
tive resonance is seen at 2.8 eV, followed by a smaller one
at 2.9 eV and a little strength scattered around 3.25 eV,
i.e., the collective model leads to qualitative agreement
with the experimental data.

V. DISCUSSION AND CONCLUSION

The systematic survey showed that for most of the
smaller Na clusters, the overall deformation is determined
by electronic shell effects even when the ionic structure
is explicitly included. This explains the great success of
the deformed jellium model. However, the survey at the
same time clearly exhibits the limitations of the jellium
picture. Besides the fact that some spectroscopic pat-
terns, e.g., as seen for Na+9 , are directly related to details
in the ionic configuration, the fundamental improvement
brought about by taking into account the ionic struc-
ture is that growth systematics can be identified. In
the smallest clusters, the pentagonal bipyramid is a fre-
quently appearing structure and is seen, e.g., in Na+7 ,
Na+15, Na

+
17. In Na+19, three of these smallest units are

combined to build up the double icosahedron, and from
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then on, the electronic shell effects and the preference of
the ionic structure for icosahedral geometries work hand
in hand in determining the cluster structure. This is seen
most impressively for Na+43. At Na

+
55, however, the situa-

tion changes. Due to the ionic shell closing, the influence
of the ions wins over the electronic shell effects, resulting
in nearly spherical structures. This finding is supported
by the experimental photoabsorption data and has been
verified in ab initio calculations.

In summary, we have presented a local pseudopoten-
tial for sodium that accurately models the core-valence
interaction and correctly describes the atom, the bulk,
and finite clusters. We have demonstrated the influence
of pseudopotentials on structural properties and the di-
rect influence of the bond lengths on the resonance po-
sitions. This shows that even for the most simple metal,
a pseudopotential must be constructed carefully. Cluster
structures were calculated in axially averaged and three-
dimensional Kohn-Sham calculations. A detailed com-
parison with ab initio work demonstrated the validity
of the CAPS as a tool for the approximate determina-
tion of cluster configurations. The systematical survey
for clusters with up to 59 ions revealed an icosahedral
growth pattern. Collective resonances were calculated
for the theoretically determined structures, and compar-
ison with the experimental photoabsorption spectra con-
firmed the results of our structure calculations. Thus, a
distinct step in the growing process of matter has been
put into evidence, namely the transition from electroni-
cally to ionically determined configurations.
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34 A. Aguado, J. M. López, J. A. Alonso, and M. J. Stott, J.
Chem. Phys. 111, 6026 (1999).

35 C. Fiolhais, J. P. Perdew, S. Q. Armster, J. M. MacLaren,
and M. Brajczewska, Phys. Rev. B 51, 14001 (1995); Phys.
Rev. B 53, 13193 (1996).

36 S. A. Blundell and C. Guet, Z. Phys. D 33, 153 (1995).
37 B. Montag and P.-G. Reinhard, Z. Phys. D 33, 265 (1995).

12



38 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
39 G. B. Bachelet, D. R. Haman, and M. Schlüter, Phys. Rev.
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Koutecký, J. Chem. Phys. 89, 4861 (1988).
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Cluster ∆ECAPS/eV ∆E3D/eV

Na+9 a G G

Na+9 b 0.10 0.12

Na+9 c 0.23 G’

Na+11 a G 0.16

Na+11 b 0.11 G

Na+11 c 0.19 0.10

Na+15 a G 0.04

Na+15 b 0.03 G

Na+15 c 0.15 0.16

Na+15 d 0.23 0.15

Na+17 a G G

Na+17 b G’ 0.08

Na+17 c 0.16 0.20

Na+19 a G G

Na+19 b 0.23 0.12

Na+19 c 0.30 0.20

Na+19 d 0.35 0.12

Na+21 a G G

Na+21 b G’ 0.03

Na+25 a G G

Na+25 b 0.41 0.29

Na+31 a G G

Na+31 b 0.14 0.08

Na+31 c 0.19 0.10

Na+55 a G G

Na+55 b 0.41 0.30

Na+55 d 0.73 0.31

TABLE III. Differences in total energy for Na+N clusters.
Small letters behind the cluster symbol label structures and
refer to Fig. 4 – Fig. 13 and the main text. G (and G’) de-
note the structure with lowest energy for a given cluster size.
The left column for each size gives the difference in total en-
ergy between the corresponding structure and G as found in
CAPS. The right column gives the energetic differences found
for the same structures in the three-dimensional Kohn-Sham
calculation. The 3D values for Na+55 were obtained by re-
laxing the CAPS structures in ab initio Born-Oppenheimer
molecular dynamics,80 see text for discussion.
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