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Path integral Monte Carlo simulation of the second layer of 4He adsorbed on graphite
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We have developed a path integral Monte Carlo method for simulating helium films and apply it
to the second layer of helium adsorbed on graphite. We use helium-helium and helium-graphite
interactions that are found from potentials which realistically describe the interatomic interactions.
The Monte Carlo sampling is over both particle positions and permutations of particle labels. From
the particle configurations and static structure factor calculations, we find that this layer possesses,
in order of increasing density, a superfluid liquid phase, a

√
7×

√
7 commensurate solid phase that

is registered with respect to the first layer, and an incommensurate solid phases. By applying the
Maxwell construction to the dependence of the low-temperature total energy on the coverage, we
are able to identify coexistence regions between the phases. From these, we deduce an effectively
zero-temperature phase diagram. Our phase boundaries are in agreement with heat capacity and
torsional oscillator measurements, and demonstrate that the experimentally observed disruption
of the superfluid phase is caused by the growth of the commensurate phase. We further observe
that the superfluid phase has a transition temperature consistent with the two-dimensional value.
Promotion to the third layer occurs for densities above 0.212 atom/Å2, in good agreement with
experiment. Finally, we calculate the specific heat for each phase and obtain peaks at temperatures
in general agreement with experiment.

PACS numbers 67.70.+n, 67.40 Kh

I. INTRODUCTION

Helium adsorbed on graphite provides an excellent re-
alization of a number of nearly two-dimensional (2D)
phenomena. The helium film grows in a succession of
distinct, atomically thin layers as the density of the
adsorbate increases, and as many as seven such layers
may be observed on a well-prepared substrate.1 Con-
sequently, it is possible to investigate the evolution of
each layer’s phase diagram. A number of experimen-
tal methods have been used for this purpose, including
specific heat measurements,2–5,1 neutron scattering,6–9

torsional oscillator measurements,10,11 and third sound.1

The phase diagrams of the layers nearest the substrate
are rich. Evidence has been found for self-bound fluid
phases that are superfluid at low temperatures, a vari-
ety of registered solid structures, and incommensurate
solid phases. These phases and the coexistence regions
that separate them are governed by a delicate balance
of quantum effects, such as large zero-point motion and
particle permutations, with adatom and substrate inter-
actions.
Much of the early experimental work on the helium-

graphite system concentrated on the first adsorbed layer.
Several reviews of this work are available.2,3,12 On the
other hand, until recently, relatively little information
was available on the phases of the second and higher lay-
ers. This situation has changed dramatically over the last
several years. Extensive heat capacity measurements4,5

of the first six layers have been performed, and super-
fluidity in the higher layers has been detected by both
torsional oscillator10,11 and third sound measurements.1

Taken together, these experiments indicate that the sec-

ond layer has a unique phase diagram, with superfluid,
commensurate solid, and incommensurate solid phases.
No other layer exhibits all three phases.
Motivated by these experiments, we have undertaken

a path integral Monte Carlo (PIMC) simulation of
the second adsorbed layer. We identify a liquid (L)
phase with an equilibrium density of 0.1750 atom/Å2,

a
√
7×

√
7 commensurate triangular solid (C) at 0.1996

atom/Å2, and an incommensurate triangular solid (IC)
phase for densities above 0.2083 atom/Å2. All cov-
erage values are for the total adsorbed film. Using
the Maxwell construction, we determine coexistence re-
gions between these phases, namely the gas-liquid (G-
L), liquid-commensurate solid (L-C), and commensurate-
incommensurate solid (C-IC) phases, at effectively zero
temperature. Our calculated phase diagram confirms
the idea that the superfluid phase is interrupted by the
formation of the commensurate solid.10,11,5 We further
show that the liquid phase behaves like a typical two-
dimensional superfluid. We also calculate the specific
heat for each phase and find peaks in general agreement
with the experimental values. Finally, we observe promo-
tion to the third layer at a coverage in good agreement
with experiment. A preliminary report of some of our
findings has been published elsewhere.13 The present pa-
per expands and extends this work.
This paper is arranged in the following manner. Sec-

tion IA provides an overview of what is known about
the second layer from experiments. In Sec. IB, we re-
view previous simulations of helium films and the re-
lated simulation of two-dimensional helium. We point
out that none of these simulations, while interesting in
their own right, exhibit all the phenomena observed in
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the second-layer phase diagram. Section II presents the
details of our simulation method, which includes particle
permutations and realistic particle-particle and particle-
substrate interactions. The results of our calculations are
presented in Sec. III. We demonstrate the existence of
each phase, explain the construction of the second-layer
phase diagram, and present calculations of properties for
each phase.

A. Experimental Overview

Specific heat measurements have formed the basis for
constructing the first helium layer’s phase diagram, but
until recently, relatively little work was done on the sec-
ond layer, with a couple of exceptions. Bretz14 examined
this layer under compression of the third and obtained
evidence for the melting of the incommensurate second
layer solid. The low density range of this layer was ex-
plored by Polanco and Bretz.15 They determined that the
compression of the first layer by the growth of the sec-
ond must be taken into account in order to determine the
phases at low second-layer densities. They interpreted
their results to indicate that the second layer has gas-
liquid coexistence at low coverages.
The heat capacity measurements of Greywall and

Busch provide the most extensive investigation of the
second-layer phase diagram. They find evidence for four
phases: gas, liquid, commensurate solid, and incommen-
surate solid. These phases are identified in the following
manner. At low densities, a low, rounded peak occurs
in the heat capacity. This has previously been associ-
ated with the liquid phase.15 At low temperatures, the
heat capacity depends linearly on density roughly be-
tween 0.13 and 0.16 atom/Å2, which is a requirement
for coexisting phases,16 Thus this region can be identi-
fied as a gas-liquid coexistence region, with the gas phase
having negligible density at the lowest temperatures. Ev-
idence for liquid-commensurate solid coexistence can be
found between 0.187 and 0.197 atom/Å2. In this region,
in addition to the low peak associated with the liquid
phase, another, larger peak at a higher temperature can
be observed. The location of the larger peak is inde-
pendent of coverage, suggesting that it may be associ-
ated with the melting of a commensurate solid phase.
Greywall suggested5 that this phase corresponds to the√
7 ×

√
7 commensurate structure proposed earlier for

3He on graphite.17,18 A third coexistence region occurs
between 0.2030 and 0.2080 atom/Å2, where the commen-
surate melting peak is accompanied by another, lower
temperature peak. This second peak is associated with
the melting of an incommensurate solid phase. For cov-
erages from 0.2080 to the beginning of third layer promo-
tion at 0.212 atom/Å2, the incommensurate melting peak
is the sole feature in the specific heat measurements. Un-
like the peak associated with the commensurate phase,
the incommensurate melting peak is temperature depen-

dent, occurring at about 1 K at the lowest incommen-
surate densities, but increasing to about 1.5 K at the
density where third layer promotion begins.
The principal limitation on using the heat capacity

measurements to determine the phase diagram is that
they can only identify phases indirectly, so additional
confirmation is desirable. Direct evidence for the incom-
mensurate solid phase comes from neutron scattering,7–9

but no similar evidence exists for the commensurate
phase. Apparently, the incommensurate phase can be
resolved in these experiments only after some additional
compression by the third layer. Consequently, there is no
scattering evidence for the commensurate solid, which is
replaced by the incommensurate solid before promotion
to the third layer begins.
Further insight into the second-layer phase diagram

comes from the torsional oscillator measurements of
Crowell and Reppy.10,11 They detected superfluidity at
intermediate densities, which incidentally provided direct
evidence that the second layer has a liquid phase. Ques-
tions remain about the liquid phase, however, since the
apparent onset density is somewhat higher than would be
expected from either the heat capacity measurements or
the liquid equilibrium density of purely two-dimensional
helium.19 The range of superfluid coverage also provides
additional, although indirect, evidence that a solid phase
begins to form above 0.187 atom/Å2. Above this density,
the superfluid signal vanishes and does not reappear un-
til the third layer. This disappearance coincides almost
exactly with the growth of the supposed commensurate
solid phase. Apparently, the growing solid phase disrupts
the connectivity required to detect superfluidity.

B. Previous Simulations

The results of Monte Carlo calculations are often
used to help interpret the experimental results discussed
above. The simplest way to treat a helium layer is as
a purely two-dimensional system, for which there are
both zero temperature and finite temperature calcula-
tions. Whitlock et al.19 used Green’s function Monte
Carlo to calculate the equilibrium liquid coverage at zero
temperature, obtaining 0.04356 atom/Å2. They also de-
termined that 2D helium would solidify, and that the liq-
uid and solid phases coexisted between 0.0678 and 0.0721
atom/Å2. More recently, Gordillo and Ceperley20 have
investigated the 2D phase diagram at finite temperatures
with path integral Monte Carlo. Their low temperature
results are consistent with the zero temperature calcula-
tions. They also determined spinodal lines and found a
finite density gas phase at temperatures above 0.75 K.
The direct comparison of these results with the second
helium layer is limited, since the 2D calculations do not
include any substrate features and do not allow the film
to spread perpendicularly. As a result, no commensurate
solid phase or layer promotion can occur.
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Simulations of helium films using realistic models for
the graphite substrate have also been performed. Abra-
ham and Broughton21 used path integral Monte Carlo to
investigate the first layer of 3He on graphite. They were
able to identify fluid, commensurate solid, domain wall
liquid and solid, and incommensurate solid phases. No-
tably, they determined that particle permutations were
unimportant for the first layer for the coverages they in-
vestigated, so there was no possibility for superfluidity in
the simulation. Experimentally, the phase diagrams for
3He and 4He at the densities they simulated are nearly
identical, so it reasonable to conclude that their simula-
tion results also apply to 4He. This work was extended18

to a simulation of the second adsorbed layer of 3He at
the

√
7 ×

√
7 commensurate density. Particle permuta-

tions were again neglected. It was established that the
second-layer commensurate phase was stable for temper-
atures below 1 K. Very recently, Whitlock et al.22 inves-
tigated the ground state properties of the first helium
layer using a laterally averaged potential for the helium-
graphite interaction. They determined the equilibrium
liquid coverage and the onset coverage for solidification
in the first layer, and determined the coexistence region
between these two phases. They also estimated comple-
tion densities for the first and second layers, obtaining
agreement with the experimental results. They did not
take the corrugations of the graphite substrate into ac-
count and so did not observe the

√
3×

√
3 commensurate

solid phase that occurs in the first layer.
Complementary to the calculations discussed above is

the work by Clements et al.23–25 using the hypernetted-
chain Euler-Lagrange theory. For 2D helium, this
method reproduces the Monte Carlo results19 for the liq-
uid phase and provides a direct calculation of the chem-
ical potential, third sound, and spinodal points. When
applied to layered systems, the theory gives liquid cover-
age ranges and layering transitions but is not capable of
investigating solid phases. For this reason, these calcula-
tions are restricted to the third and higher helium layers,
and assume that the first two layers form an inert, fea-
tureless solid. Also complementary are the path integral
Monte Carlo calculations of Wagner and Ceperley26,27 for
4He and hydrogen films on crystalline hydrogen. In their
helium film simulation, superfluidity and layer-by-layer
growth occurred, but the film did not solidify.
As we discussed in Sec. I A, the second layer of 4He on

graphite is unusual in that it is known experimentally to
have both a superfluid liquid and two solid phases, one
commensurate and the other incommensurate with the
first layer. The simulations discussed above are interest-
ing in their own right, but none have exhibited the three
phases seen in the second layer. In order for a simulation
to produce these phases, it must possess three features.
First, the presence of superfluidity means that particle
permutations must be included in the simulation. This
is because superfluidity results from permutation cycles
of infinite length.28 It is also expected that the bound-
aries of the phases will be effected by permutations. Sec-

ond, the commensurate second-layer solid is found to be
registered with respect to the first layer, so the effect of
first-layer atoms must be taken into account. Third, the
attraction of the substrate and first layer on the second
must be implemented correctly so that the commensu-
rate phase is replaced by the incommensurate phase be-
fore promotion to the third layer begins. In the following
section we outline our simulation method, which contains
the necessary features to exhibit these three phases.

II. SIMULATION METHODS AND DETAILS

Path integral Monte Carlo is a powerful tool for simu-
lating quantum systems at finite temperatures. By incor-
porating sampling of particle configurations and particle
permutations, both normal and superfluid helium can be
simulated.36 If a substrate is added to the simulation, a
quantum film will result. The purpose of this section is to
describe the modifications that are necessary to add the
effects of the substrate into the simulation. The result
will be a simulation method that is capable of exhibit-
ing superfluid, commensurate solid, and incommensurate
solid phases, as well as layer promotion.
Central to our PIMC method is the approximation

used for the high temperature density matrix. It is es-
sential that the starting temperature be made as low as
possible so that permutations will be accepted. As we
will discuss in this section, the graphite substrate com-
plicates a straight-forward extension of the starting ap-
proximation used in bulk simulations. For this reason we
will not include sampling of the first-layer atom configu-
rations in the calculation and will concentrate instead on
the second layer.
It is essential to include the effect of the first layer

on the second, however. We approximate this effect
by placing first-layer atoms on the sites of a triangu-
lar lattice at a fixed height above the substrate. This
allows us to treat the helium-graphite correlations in
a much simpler manner, since the atoms on the sec-
ond layer are not effected by the corrugations of the
graphite substrate. By not sampling first-layer config-
urations, we are also able to increase the number of
second-layer atoms in the simulation. In turn, this allows
us to scan second-layer coverages in a sufficiently fine
grid to observe coexistence regions. Having a fine grid
is particularly important for high second-layer densities,
since the liquid-commensurate solid and commensurate-
incommensurate solid coexistence regions exist over rel-
atively narrow ranges.
The trade-off for using this approach is that we ignore

zero-point motion in the first layer. This will cause the
second layer to form closer to the first layer and have a
narrower density profile.31 Ignoring the response of the
first layer to the second is also known to lead to a lower-
ing of the energy of a layer of helium adsorbed onto solid
hydrogen.26 However, experimental results indicate that
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neglecting zero-point motion in the first layer of helium
on graphite atoms is a reasonable approximation. First,
the Debye temperature of the solid first layer is greater
than 50 K, and it may be treated as a 2D Debye solid
up to 3 K.32 In our simulation, the temperature is as low
as 200 mK, and never exceeds 2.2 K, so the first layer is
relatively stiff. Second, although the first layer is known
to be compressed by the growing second-layer, this is
most important at low second-layer densities, just after
second-layer promotion begins.15 The coverages studied
by Polanco and Bretz15 are below the range of our sim-
ulation. As we shall see, our approach is sufficient to
reproduce many of the observed features of the second
layer.

A. Path integral representation of the partition
function

We wish to study the problem of a quantum N-particle
system in the presence of a substrate. The Hamiltonian
for this system may be written as

H = − h̄2/2m

N
∑

i=1

∇2

i +

N
∑

i<j

v2B(|ri − rj |)

+

N
∑

i=1

vsub(ri), (1)

where v2B is the spherically symmetric two-body poten-
tial between particles, and vsub is the external field pro-
duced by the substrate. The two-body potential for he-
lium is accurately represented by the Aziz potential.29

Previous path integral simulations using this potential
have proven quite capable of reproducing numerous prop-
erties of liquid helium.33–36 The potential between he-
lium and graphite has been investigated by Carlos and
Cole.30 Using helium-scattering data, they evaluated sev-
eral forms for the helium-graphite potential. In order to
write this potential in a pair form, anisotropic terms that
effectively enhance corrugation must be included. Of the
potentials examined, an anisotropic 6-12 Lennard-Jones
potential was found to be preferable, although the form
was not uniquely determined. For helium atoms more
than 4 Å above the substrate, corrugations are negligible,
and the anisotropic potential can be replaced by a later-
ally averaged potential that depends only on the height
of the atom above the substrate.
The statistical mechanics of quantum systems are gov-

erned by the density matrix and the partition function.
For a system of N bosons at an inverse temperature β,
the density matrix is given by

ρ(R,R′;β) =
1

N !

∑

P

< R|e−βH|PR′ >, (2)

where R and R′ are two configurations of N bosons. The
sum over P is over all permutations of particle labels,

and PR′ is one such permutation. Permutations lead di-
rectly to the off-diagonal long-range order that produces
superfluidity. The partition function, Z, is found by in-
tegrating the diagonal elements of the density matrix,

Z =
1

N !

∑

P

∫

ρ(R, PR, β)d3R. (3)

Evaluating the partition function for interacting sys-
tems at very low temperatures is complicated by the fact
that the kinetic and potential terms in the exponent of
the density matrix cannot be separated, so the form of
the density matrix is not known in, for instance, the con-
figuration space representation. We can avoid this prob-
lem by inserting M − 1 intermediate configurations into
Eq. (3) to obtain the path integral formulation of the
partition function,

Z =
1

N !

∑

P

∫

...

∫

d3R1...d
3RM−1d

3R

×ρ(R,R1; τ)ρ(R1,R2; τ) . . . ρ(RM−1, PR; τ), (4)

where τ = β/M . The problem of evaluating the partition
function at a low temperature, β−1, has been replaced by
the problem of multiple integrations of density matrices
at a higher temperature, τ−1. The advantage of this is
that the high temperature density matrices may be ap-
proximated. In practice, the integrals appearing in Eq.
(4) cannot be directly evaluated for systems of strongly
interacting particles. Monte Carlo sampling may be used
instead to generate configurations and calculate observ-
ables.
Equation (4) lends itself to an interesting visualization.

The N quantum particles can be thought of as N inter-
acting classical ring polymers, each with M beads. Sam-
pling the partition function then corresponds to sampling
the possible configurations of these polymers. Further-
more, particle permutations may be introduced into the
Monte Carlo method by splicing together two or more
polymer chains. This is known as the polymer isomor-
phism.

B. Approximating the density matrix

In order to use Monte Carlo sampling on the partition
function, we must first provide a starting approximation
for the high temperature density matrices that appear in
the integrand of Eq. (4). The simplest starting approxi-
mation is to use a very large M , which allows us to sepa-
rate the density matrix into kinetic and potential energy
terms. This is the semiclassical approximation and is
exact in the limit M → ∞, according to the Trotter the-
orem. For superfluid helium systems it is necessary to go
beyond the semiclassical approximation so that the start-
ing temperature may be made as low as possible. This
makes sampling the permutations feasible and speeds the
equilibration of the ring polymers by avoiding excessively

4



long chains. The high-temperature density matrix we in-
troduce below can be used with starting temperatures
as low as 40 K. We thus only have to use, for instance,
M = 40 to simulate a system at 1 K.
We approximate the high temperature density matrix

as a product of the exact free particle solution, an effec-
tive two-body interaction found from the exact solution
for two interacting helium atoms, and an effective exter-
nal interaction found from the exact solution for a single
atom in a graphite potential:

ρ(R,R′; τ) ≈
N
∏

i=1

ρfree
1

(ri, r
′

i; τ)

×
N
∏

i=1

ρ̃Gr
1

(ri, r
′

i; τ)

×
N
∏

i<j

ρ̃He
2

(rij , r
′

i,j ; τ), (5)

where rij = ri − rj . The terms ρfree, ρ̃He
1 , and ρ̃Gr

2

will be discussed below. This approximation assumes
that three-body contributions are negligible and that the
helium-helium and helium-graphite interactions can be
decoupled. The former has been shown to be valid for
bulk helium systems with starting temperatures as low
as 40 K.
The term ρfree

1
is the density matrix for a free particle

of mass m, given by

ρfree(r, r′; τ) = λ−3

t exp[−π(r− r′)2/λ2

t ]. (6)

where λt =
√

2πτh̄2/m is the mean thermal wavelength

for the temperature 1/τ .
The helium-helium term, ρ̃He

2 , is the interacting part of
the solution to the density matrix for two helium atoms.
This can be found by separating the density matrix into
center-of-mass and relative components. The density ma-
trix for the relative coordinates is a solution to

∂ρHe

∂τ
(rij , r

′

ij ; τ) = [ (h̄2/m)∇2

− V He(rij)]ρ
He(rij , r

′

ij ; τ). (7)

This equation is equivalent to that satisfied by the time
evolution propagator in imaginary time. We solve this
equation using the methods discussed by Ceperley.36

Briefly, the density matrix can be expanded in a se-
ries of partial waves and the expansion coefficients are
found by using the matrix-squaring method. The re-
sulting solution is used to define the effective helium-
helium interaction, UHe(rij , r

′

ij ; τ) ≡ − ln(ρ̃He) where
ρ̃He = ρHe/ρfree. This is a six-dimensional function,
but the spherical symmetry of the density matrix allows
us to approximate it as a series of one-dimensional func-
tions. This greatly reduces the memory requirements and
increases the speed at which the density matrix can be
evaluated for a particular configuration.

The density matrix for a single helium atom above a
graphite substrate is a solution to

∂ρGr
1

∂τ
(r, r′; τ) = [(h̄2/2m)∇2 − V Gr(r)]ρGr

1
(r, r′; τ), (8)

where V Gr(r) is the full graphite potential. The helium-
graphite term, ρ̃Gr

1 , is the interacting part of the solution
to this equation. Near the substrate, the potential V Gr

is anisotropic. A straight forward solution to Eq. (8)
is to solve it at grid points within a graphite unit cell
using, for instance, a three-dimensional implicit method
with periodic boundary conditions at the edges of the
cell. The resulting six-dimensional function can be ap-
proximated as a series, expanding around the diagonal
elements, but this still gives a series of three-dimensional
functions. This greatly complicates Monte Carlo simu-
lations of the first-layer atoms using Eq. (5), since stor-
age requirements become large and evaluating the den-
sity matrix by interpolating from three-dimensional ta-
bles becomes excessively burdensome. Thus, simulating
the first adsorbed layer using a high-temperature density
matrix is a much more complicated problem than simu-
lating bulk helium. One could always avoid these prob-
lems by simply starting at a high enough temperature so
that the semiclassical approximation21 can be used for
atoms near the substrate, but then getting permutations
accepted becomes exceedingly unlikely.
The problem becomes much simpler further above the

substrate, where corrugations may be ignored. The
helium-graphite potential can be found by laterally av-
eraging over the surface, eliminating the x-y plane peri-
odicity that complicates the solution near the substrate.
The helium atom experiences only a z-dependent poten-
tial, so Eq. (8) can be solved by separating ρGr

1
(r, r′, τ)

into x, y and z components. The x and y components
are one-dimensional, free-particle density matrices. The
solution for ρ(x, x′; τ), for instance, is

ρfree(x, x′; τ) = λ−1

t exp[−π(x− x′)2/λ2

t ]. (9)

A similar solution exists for ρ(y, y′; τ). The z-dependence
is found by solving the parabolic partial differential equa-
tion

∂ρ

∂τ
(z, z′; τ) = [(h̄2/2m)∂2/∂z2 − V Gr(z)]ρ(z, z′; τ),

(10)

where V Gr(z) is the laterally averaged potential.30 This
can be solved by matrix squaring, or by an implicit
method.37 The initial condition is that the density ma-
trix is a delta function at τ = 0. We define the ef-
fective interaction for the helium-graphite density ma-
trix, UGr(z, z′; τ) ≡ − ln[ρ(z, z′; τ)/ρfree(z, z′; τ)]. This
is still a function of two variables. In order to make
evaluating the density matrix efficient during the Monte
Carlo runs, we expand UGr as a series of one dimensional
functions. We rewrite UGr(z, z′) = U(z̄,∆z), where
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z̄ = (z + z′)/2 and ∆z = |z − z′|. The matrix is dom-
inated by the diagonal elements, so we expand it as a
series about (∆z)2:

UGr(z, z′, τ) =
UGr(z, z, τ) + UGr(z′, z′, τ)

2

+
∑

m

Um(z̄)(∆z)2m. (11)

The average over the two diagonal parts of the solu-
tion in the first term is called the endpoint approxima-
tion. The functions Um(z̄) are found by χ2 fitting Eq.
(11) to the exact solution. One simply terminates the
series when the approximation is sufficiently close to the
exact solution. Results for the diagonal solution and the
first two expansion terms are shown in Fig. 1. The off-
diagonal terms become negligible for z > 4Å. The di-
agonal solution can be compared with the semiclassical
approximation. Figure 2 compares the exact solution for
off-diagonal elements to the expansion, Eq. (11), and the
endpoint approximation, 1/2[τV (z) + τV (z′)].

2.0 3.0 4.0 5.0 6.0
z(A)

−10.0

−5.0

0.0

5.0

10.0

U
G

r−
H

e (z
)

Udiag(z,z)
U1(z)
U2(z)
τ*V

FIG. 1. The diagonal and lowest-order off-diagonal terms
of the expansion of UGr , Eq. (11). The semiclassical approx-
imation is also shown. The laterally averaged potential was
used and τ = 0.025K−1 .

C. Sampling the density matrix

With the first layer frozen, the density matrix, Eq. (5),
for the active second layer atoms can be written in the
form ρ = exp(−S), where

S(R,R′; τ) = (3Nact/2) ln(λ
2

t ) +
π(R −R′)2

λ2
t

+
1

2

Nact
∑

i=1

Nact
∑

j=1

UHe(rij , r
′

ij ; τ)

2.0 2.5 3.0 3.5 4.0
z(A)

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

U
H

e−
G

r (z
,z

’)

Exact
Series
Endpoint

FIG. 2. The exact solution UGr(z, z′, τ ) for z′ = 2.82Å
compared with the expansion, Eq. (11), and the endpoint
approximation using τV .

+

Nact
∑

i=1

Nfr
∑

j=1

UHe(rij , r
′

ij ; τ)

+

Nact
∑

i=1

UGr(zi, z
′

j ; τ), (12)

where rij = |ri − rj |. The number of active and frozen
helium atoms is given by Nact and Nfr, respectively. In
the polymer isomorphism, S is the action for a system
of interacting polymers. In sampling the paths, we are
effectively choosing between two different polymer con-
figurations. The one with the lower action is the more
favorable configuration, and is more likely to be chosen
in a Metropolis-style acceptance test.
As in standard Monte Carlo simulations, the inter-

action UHe is cut off at some maximum distance rc ≤
min(Lx, Ly), where Lx and Ly are the dimensions of the
simulation cell. The long-range correction to the inter-
action felt by each particle is, in cylindrical coordinates
(ρ, z),

UHe
LR = 2π

∫

∞

0

n(z′)dz′
∫

∞

ρc

ρdρUHe(r, r; τ), (13)

where r =
√

ρ2 + (z − z′)2, ρ2c = r2c − (z− z′)2, and only
diagonal elements need to be considered. The integral
of n(z′) gives the density of the system. We make the
approximation that the layer thicknesses can be treated
as delta functions. This is exact for the frozen first layer.
Then n(z′) = nfrδ(z

′ − zfr) + nactδ(z
′ − zact) and

UHe
LR = 2π

∫

∞

ρc

ρdρ[nfrU
He(r, r; τ)

+ 1/2nactU
He(r, r; τ)], (14)
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where nfr and nact are the densities of the first (frozen)
and second (active) layers. The factor of one-half before
the contribution from the active layer is needed to avoid
double counting. A similar long-range correction is added
to ∂UHe/∂τ in the energy calculation.
As we have emphasized, particle permutations must

be included in simulations of superfluid helium. These
permutations correspond to splicing together two or more
of the polymer rings. This splicing can be accomplished
by proposing cyclic permutations involving one to four
particle labels on inverse-temperature slice i+ n relative
to slice i, where n = 2l and l is the overall level of the
move. The paths followed by the permuted particles on
the intermediate slices i+1 to i+n− 1 that produce the
permutation are then filled in by successively bisecting
the interval i to i+n. This is known as multilevel Monte
Carlo sampling, an extension of the standard Metropolis
method. The interested reader is referred to a recent
review article on the subject.36

In our Monte Carlo runs for helium films, we take l = 3,
since this gives the best balance between accepting sin-
gle particle and multiple particle moves. Increasing l in-
creases the number of permutations that can be accepted
but decreases the overall acceptance rate, while decreas-
ing l has the opposite effect. The overall acceptance rate
for the moves varies between 8% and 15%, depending
on the density. Tests using l = 2 at selected densities
showed that the l = 3 results had converged. The accep-
tance rate of multiparticle permutations is small, between
0.2% and 0.3% in the liquid phase. We have found that
similar small acceptance rates are sufficient to obtain the
superfluid density in bulk simulations.

D. Calculating observables

The expectation value of an observable, A, can be
found from the trace, < A >= Z−1TrAρ. We use PIMC
to calculate expectation values for the total energy, the
superfluid density, and the static structure factor. Be-
low we give formulas for each of these calculations for a
helium film on a substrate.
The total energy is given by the expectation value

E =
3Nact

2τ
+ < −π(∆R)2

λ2
t τ

+
dUHe

total

dτ
+

dUGr
total

dτ
> . (15)

∆R is the change in the particle positions between two
consecutive inverse-temperature slices. The terms UHe

total

and UGr
total are shorthand for the sums over the interaction

terms in Eq. (12). Notice that the zero of the total energy
occurs at zero second-layer coverage, where there are no
active atoms.
The superfluid density can be calculated using the

winding number, W, for simulations that have periodic
boundary conditions. Nonzero winding numbers occur
when particles, through a series of permutations, are per-
muted with periodic images of themselves. The winding

number is directly related to ρs, the superfluid density.36

For a system with periodic boundary conditions in the
x-y plane, the superfluid density is given by

ρs
ρ

=
m < (W · L)2 >

2βh̄2Nact

, (16)

where the elements Lx and Ly are the dimensions of the
simulation cell.
Finally, structural information can be obtained with

the static structure factor,

S(k) =
1

Nact

< (ρ(k)ρ(−k) > . (17)

We take ẑ to be perpendicular to the plane of the sub-

strate, so k = (kx, ky). ρ(k) =
∑Nact

i=1
exp(ik · ri) is the

Fourier transform of the density.

E. Testing the method

As can be seen from the previous discussion, simulat-
ing helium systems below the superfluid transition is an
extremely complicated task, and it is important to verify
all parts of the method. We have verified our calculations
for the solution to Eq. (7) by comparing our results to
published results for the Lennard-Jones38 potential and
to the Aziz potential. The solution to Eq. (10) for the
helium-graphite density matrix was checked by compar-
ing the results obtained from the matrix squaring and
implicit solution methods. We have verified that the full
Monte Carlo method outlined above works for bulk he-
lium systems by reproducing reported values for the en-
ergy, specific heat, and superfluid density.33,35 We believe
these tests sufficiently prove that our simulation method
works and can be extended to helium films.

F. Choosing simulation cells

We perform calculations with a variety of simulation
cells that are appropriate for examining different regions
of the second-layer phase diagram. The first consider-
ation is to choose a simulation cell that will match the
periodicity of the first-layer triangular solid. This can be
done by using a rectangular unit cell with a two-point
basis, with unit vectors a1 = ax̂ and a2 =

√
3aŷ, where

a = 3.015Å. Two first-layer helium atoms are located in
each unit cell at b1 = 0 and b2 = a1/2+a2/2. This gives
a coverage of 0.1270 atom/Å2, the fully compressed first-
layer density.5 In examining the second layer, our first
goal is to scan the layer at intermediate and higher den-
sities by varying the number of particles and to calculate
the total energy at each density. For these calculations
we use simulation cells with dimensions (5a1, 3a2) and
(8a1, 5a2), hereafter referred to as the 5× 3 cell and the
8× 5 cell, respectively. The number of active particles in
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calculations using the 5× 3 cell ranged from 8 to 21, cor-
responding to densities 0.1605 to 0.2159 atom/Å2. Cal-
culations with the 8×5 cell had 24 to 52 active particles,
corresponding to densities between 0.1651 and 0.2096
atom/Å2. These two simulation cells are nearly square,
which is useful for calculating winding numbers. As will
be discussed in Sec. III, the energy calculations for the
5× 3 cell are used to verify that finite-size effects are not
important in the 8 × 5 cell. Our conclusions about the
coverage ranges of various phases are drawn from results
using the 8× 5 cell.
At high second-layer densities, commensurate and in-

commensurate triangular solid phases occur. In order to
further investigate these phases, we use simulation cells
that can contain an integer number of unit cells of both
the first- and second-layer solids. That is, the simulation
cells have the periodicity of both the first- and second-
layer solids. It is also important to note that the solid
phases will tend to align with the x and y axes of the
simulation cell. For the incommensurate solid we use a
cell with dimensions (5a1, 5a2), hereafter referred to as
the 5 × 5 cell. This cell can accommodate 32 second
layer atoms in an equilateral triangular lattice. A dia-
gram of a second-layer incommensurate solid in the 5× 5
cell is shown in Fig. 3. The second-layer solid is in-
commensurate with respect to the first since no supercell
with dimensions less than the minimum dimension of the
simulation box can be drawn in which both first- and
second-layer atoms are periodically repeated.

a1

a2

b2

FIG. 3. Diagram of the 5× 5 simulation cell. The shaded
circles denote positions of the first layer atoms. The 32 open
circles denote possible positions of atoms in the second-layer
incommensurate triangular solid. The arrows indicate the
unit vectors for the solid described in the text. The lines
emphasize the triangular structure of the solid.

The simulation of the
√
7 ×

√
7 triangular commensu-

rate solid presents an additional problem since this struc-
ture is rotated with respect to the first layer. This tri-
angular solid can be regarded as having a rectangular
unit cell with a fourteen point basis. The unit vectors
for this solid are s1 = 2a1+b2 and s2 = −2a1+a2 +b2.
Note that |s2| =

√
3|s1| and |si| =

√
7|ai|, i = 1, 2.

We use simulation cells with dimensions (2s1, 2s2) and
(3s1, 2s2) to identify the solid configuration and calculate
the static structure factor. The commensurate density
0.1996 atom/Å2 corresponds to 32 and 48 active parti-
cles, respectively, for these two cells.

s1

s2

FIG. 4. Diagram of a simulation cell used for the
√
7×

√
7

solid. The dimensions are (3s1, 2s2). The shaded circles de-
note positions of the first layer triangular solid. The open
circles denote possible positions of the second layer regis-
tered solid. The arrows indicate the unit vectors for the solid
described in the text. The lines emphasize the triangular
structure of the solid. The heavily shaded lines indicate the√
7×

√
7 supercells.

A diagram of the (3s1, 2s2) simulation cell with the

second layer atoms in
√
7×

√
7 registry is shown in Fig.

4. The large, rotated rectangle gives the bounds of the
simulation cell. First layer atom positions outside this
rectangle are periodic images of interior atoms. Note that
the location of the origin is arbitrary. It is not necessary,
for instance, to place it at a high symmetry point of the
first-layer lattice, such as over a first-layer atom or at a
potential minimum. The essential requirements for the
existence of the partially registered solid are that once
the origin is chosen, all of the two-dimensional space can
be divided up into periodically repeated superlattice unit
cells (supercells), and that the relationships of the first-
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and second-layer atoms to each other and to the super-
cell are the same in every supercell. We have chosen the
origin so that the second-layer atoms can be used to di-
vide up the rectangle into supercells. These (primitive)
supercells are the equilateral parallelograms formed by
the heavily shaded lines in the interior of Fig. 4. They
can be seen to exactly fill the rectangle. Second layer
atoms are located at the four corners, on each of the four
sides at the midpoints between the corners, and at the
center of each supercell, so there is a four-point basis of
second-layer atoms in each cell. The positions of the first-
layer atoms can also be seen to be periodically repeated
in every supercell.

III. RESULTS

A. Identification of phases

Experimentally, there is evidence for liquid, commen-
surate solid and incommensurate solid phases in the sec-
ond layer. We now describe the identification of all three
phases in our simulation.
To find the liquid phase, we are guided first by the

torsional oscillator measurements, which detect a liquid
phase between 0.174 and 0.187 atom/Å2. We also find
evidence that densities in this range are liquid in our
simulation. Figure 5 shows a snapshot of a typical liquid
density. The second-layer atoms obviously do not possess
spatial ordering, and the configuration covers the entire
surface. More direct evidence that the system has a liquid
phase comes from that static structure factor. Figure 6
shows the result of a calculation, which is typical of a
self-bound liquid, at the coverage 0.1860 atom/Å2.
Commensurate and incommensurate solid phases can

be identified by a similar procedure. A particularly nice
feature of PIMC is that these solids form on their own,
without any modifications to the high-temperature den-
sity matrix, Eq. (5). In contrast, previous variational
calculations have used different trial wavefunctions for
the liquid and solid phases.19 This can be avoided by
using a shadow wavefunction, but such calculations have
not been performed for two-dimensional helium or helium
films.
As demonstrated previously,13 we have observed the√
7 ×

√
7 commensurate solid phase in our simulation

for temperatures below 1 K. The structure of this phase
was determined by examining snapshots of the configu-
rations generated by the simulation. Particle paths of
the second layer atoms were observed to localize around
the

√
7×

√
7 lattice sites shown in Fig. 4. We note fur-

ther that we do not bias the simulation of this solid by
beginning the configuration at the commensurate lattice
sites. The existence of the incommensurate solid, which
occurs at a higher density than the commensurate phase,
has also been demonstrated. A snapshot of this configu-
ration generated by our simulation can be found in our

FIG. 5. Snapshot of a liquid configuration at 0.1778
atom/Å2, found using the 5 × 3 simulation cell with twelve
active particles and T = 200 mK. Large circles indicate frozen
first-layer atom sites. The instantaneous configuration of the
second-layer atoms is indicated by the small circles.

0.0 1.0 2.0 3.0 4.0 5.0 6.0
k(A
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FIG. 6. The static structure function for the liquid phase
at the density 0.1860 atom/Å2 and T = 500 mK with 26
particles.
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previous publication.13 This phase matches the diagram
shown in Fig. 3. We identify this phase as incommensu-
rate because no supercell with dimensions less than the
minimum simulation box dimension can be drawn that
has both first- and second-layer atoms periodically re-
peated, in contrast to the commensurate phase.
The snapshots of the two solids are useful for visualiz-

ing their structure but are not actual tests for their exis-
tence. A direct measurement of correlation comes from
the static structure factor. Results for these calculations
in the (01) reciprocal lattice direction for the incommen-
surate and commensurate phases are shown Fig. 7(a) and
(b). The structure factor is normalized to Nact. The lo-
cations of these peaks give the correct lattice spacings for
the diagrams shown in the Figs. 3 and 4. The peak for
the commensurate solid occurs at 1.82 Å−1, which gives
the correct lattice constant, 3.99 Å, for the

√
7×

√
7 tri-

angular solid. Likewise, the peak for the incommensurate
solid occurs at 1.93 Å−1, corresponding to a lattice con-
stant of 3.76 Å, which is the correct lattice spacing for a
triangular solid at 0.2083 atom/Å2.

0.0 1.0 2.0 3.0 4.0 5.0 6.0
k(A

 −1
)

0.0

2.0

4.0

6.0

8.0

S
(k

)

0.0

2.0

4.0

6.0

8.0

S
(k

)

(a)

(b)

FIG. 7. The static structure factor calculated in the (01)
direction for (a) the incommensurate solid at 0.2083 atom/Å2

and 0.67 K with 32 particles, and (b) the commensurate solid
at 0.1996 atom/Å2 and 0.50 K with 32 particles. The errors
are the size of the symbols.

B. T=0 phase diagram

Having identified the liquid, commensurate solid, and
incommensurate solid phases of the second layer, we now
wish to find the boundaries for each of the phases. We
are able to identify the following density regions at low
temperature. At low second-layer coverages, 0.1270 to
0.1750 atom/Å2, the system is in a gas-liquid coexistence
region, which consists of a liquid droplet and a zero den-
sity gas. The equilibrium density for the liquid is 0.1750

atom/Å2, and the layer is uniformly covered by a liquid
phase from 0.1750 to 0.1905 atom/Å2. Above this den-

sity, the liquid coexists with the
√
7×

√
7 commensurate

solid phase discussed in the previous section. This L-C
coexistence occurs from 0.1905 to 0.1970 atom/Å2, and
is followed by the commensurate phase between 0.1970
and 0.2032 atom/Å2. The incommensurate solid phase
begins to form above 0.2032 atom/Å2 and there is C-IC
coexistence until 0.2096 atom/Å2. Above this density,
until layer promotion to the third layer at 0.212 atom/Å2,
the system is completely in the incommensurate phase.
These results are summarized in Fig. 8(a).
Before discussing how these ranges were determined,

we would first like to demonstrate that finite-size effects
play an unimportant role in the energy values used in the
Maxwell construction. Figure 8(b) shows the energy per
particle found using the 8×5 and 5×3 cells. Almost all of
the points calculated at similar densities in the two cells
are consistent. The primary “size effect” is the limitation
on the available densities which may be examined for a
given simulation cell.
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FIG. 8. (a) Summary of phase boundaries determined
from applying the Maxwell construction to the total energy
of the 8 × 5 cell. The phases are liquid-gas (L+G), liquid
(L), liquid-commensurate solid (L+C), commensurate solid
(C), commensurate solid-incommensurate solid (C+IC), and
commensurate solid (IC). (b) The energy per particle for the
5× 3 (circles) and 8× 5 (squares) cells.

Phase ranges are determined by using the Maxwell
double-tangent construction, which identifies unstable re-
gions associated with the coexistence of two phases. A
coexistence region at zero temperature in the thermody-
namic limit will have a total ground state energy that
is the weighted average of the two constituent phases’
energy values. In Monte Carlo simulations the energy
in the coexistence region will lie above the coexistence
line, either because the system remains in an unphysical
homogeneous state or because creating the phase bound-
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ary has a finite energy cost.39 We may thus identify a
coexistence region as the maximum range of densities in
which all the intermediate energy values lie on or above
a line connecting the values at the endpoints. We note
that this version of the Maxwell construction is somewhat
different from other applications,19,25,20 which apply the
Maxwell construction to the free energy dependence on
atomic area (inverse density). Our method is appropriate
for simulations with constant area and varying particle
number.
At finite temperatures, the Maxwell construction

should be applied to the total free energy. Unfortunately,
the free energy is not directly accessible from the PIMC
simulation. We instead make use of the fact that at very
low temperatures the free energy and the energy are ap-
proximately the same, and become identical at zero tem-
perature. We can thus apply the Maxwell construction
to low temperature energy values to determine an effec-
tively zero temperature phase diagram, provided that the
values have converged to their zero temperature limits.
To implement this procedure, we first calculated energy
values for a range of second-layer densities at 200 mK.
Selected energy values were recalculated at a higher tem-
perature, typically 400 mK, and were seen to be within
error bars of the 200 mK results. This indicates that
our 200 mK calculations are effectively zero temperature
results.
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FIG. 9. The total energy found using the 5× 3 simulation
cell with Nact = 8, 9, . . . , 21 and T = 200 mK. The dashed
line is gas-liquid coexistence line. The solid line indicates a
coexistence region terminating in an incommensurate solid
phase.

The application of the Maxwell construction to the to-
tal energy values calculated using the 8× 5 box has been
shown in our previous publication.13 Figure 8(a) summa-
rizes the results. The energy minimum was determined
to occur at 0.1746 atom/Å2 (30 particles). For compari-
son, Fig. 9 shows the energy calculations using the 5× 3

cell. These energy values have been shifted by Nactemin

for clarity, where emin = −32.754 ± 0.020 K. The en-
ergy minimum occurs at 0.1778 atom/Å2 (12 particles).
Note that for both simulation cells the minimum energy
per particle occurs at nearly the same coverage value, de-
spite the fact that the 8 × 5 cell is 2 2/3 times as large
as the 5× 3 cell. In general, we find all the energy values
calculated with the two cells to be in agreement. See Fig.
8(b).
The low density region of the second layer is known

experimentally to have coexistence between a gas phase
and a superfluid liquid phase. In order to determine the
gas-liquid coverage range in our simulation, we take the
gas phase to have zero density at zero temperature and
thus zero total energy. Two-dimensional calculations20

confirm that this assumption is correct for low temper-
atures. A coexistence line can then be drawn between
the beginning of the second layer, 0.1270 atom/Å2, and
the density with the minimum energy per particle, which
occurs between 0.174 and 0.178 atom/Å2 in the 8×5 cell.
The best χ2 parabolic fit to the energy data around the
minimum gives ρ0 = 0.1750(6) atom/Å2 for the density of
minimum energy. The number in parenthesis is the error
in the last digit. A similar coexistence line can be identi-
fied in the 5×3 cell, Fig. 9. We find that ρ0 = 0.1752(6),
so finite-size effects on the liquid density are small. At
sufficiently low temperatures, this liquid phase will be-
come superfluid, as will be discussed below. All measured
energy values for the densities between 0.1270 atom/Å2

and ρ0 lie above the coexistence line, so the system is in
gas-liquid coexistence for this density range.
The density of uniform liquid coverage, ρ0, can be com-

pared to experimental results. For T ≤ 0.2 K the second-
layer heat capacity measurements4 show a probable gas-
liquid region roughly between 0.13 and 0.16 atom/Å2.
Within the resolution available from the data, this phase
can terminate anywhere from 0.1600 atom/Å2 up to, but
not including, 0.1700 atom/Å2 total coverage. Since the
first-layer coverage in the experiment is between 0.120
and 0.127 for these densities, gas-liquid coexistence ter-
minates at second-layer coverages anywhere from 0.033 to
0.050 atom/Å2. For comparison, the gas-liquid phase ter-
minates at the second layer coverage 0.0480(6) atom/Å2

in our simulation. Superfluidity is first observed in
the torsional oscillator measurements at 0.174 atom/Å2.
Thus, the superfluid signal, as observed by this technique,
becomes significant at the coverage where our simulation
determines that the second layer is uniformly covered by
the liquid phase.
The density we determine for uniform liquid coverage

can also be compared to other simulations. In the two-
dimensional calculations of Whitlock et al., the equilib-
rium liquid coverage is 0.04356 atom/Å2 at zero temper-
ature. This result is supported by the low temperature
results of 2D PIMC calculations.20 This is slightly below
our onset coverage, perhaps because we allow for par-
ticle motion perpendicular to the substrate. Other cal-
culations for helium films also show a slight increase in
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the equilibrium density relative to the 2D result. In the
Monte Carlo calculation for the first layer of helium on
graphite,22 the equilibrium density is determined to be
0.0443 atom/Å2. The effects of wavefunction spreading
will be even greater in the second helium layer. Wagner
and Ceperley’s simulation of helium adsorbed on solid
hydrogen26 also demonstrated that the liquid equilibrium
density increases when motion perpendicular to the sub-
strate is allowed. They find a liquid coverage of 0.046(1)
atom/Å2, comparable to our result. Thus the calcula-
tions of films with perpendicular spreading show a trend
toward higher liquid densities, with the onset density ap-
proaching the 2D value as the helium-substrate potential
becomes stronger. From a 2D viewpoint, this can be un-
derstood as a reduction of the hardcore repulsion, which
allows for closer crowding.
At the highest second-layer densities, we can iden-

tify another unstable region in the total energy values
of the 8 × 5 cell between 0.2032 and 0.2096 atom/Å2,
corresponding to the C-IC mixed phase. As shown
previously,13 the coexistence line can be drawn between
the total energy values at these two densities. The in-
termediate energy values lie on or above this line, so the
region has coexisting phases. In particular, the energy
value at 0.2080 atom/Å2 was found to lie completely
above the coexistence line, providing an unambiguous
signal for coexistence. The range we find is in good
agreement with the coexistence region 0.2030 to 0.2080
atom/Å2 that can be determined from the heat capac-
ity peaks.5 This phase coexistence is not a product of
finite-size effects. The beginning of a similar region may
be identified between the densities 0.2032 and 0.2117
atom/Å2 in the 5 × 3 simulation cell, Fig. 9. Phase
coexistence in fact becomes clearer in the 8 × 5 cell be-
cause we are able to examine more density values in the
unstable region.
The presence of the C phase at 0.1996 atom/Å2 re-

quires an L-C coexistence region between it and the
liquid. The region can also be identified in the 8 × 5
cell. The endpoints of the L-C phase are 0.1905 and
0.1969 atom/Å2. The intermediate energy values lie on
the coexistence line within error bars. The L-C range
is in reasonable agreement with the coexistence range
0.1871 to 0.1970 atom/Å2 determined from heat capac-
ity measurements.5 Torsional oscillator measurements10

also indicate that the coexistence region begins at about
0.187 atom/Å2. The L-C phase cannot be determined in
the 5× 3 cell due to the coarseness of the coverage grid.

C. Other properties

Figure 10 depicts the density profiles for selected layer
densities. These plots are normalized such that in-
tegrating ρ(z) gives the number of particles. Promo-
tion to the third layer can be clearly observed at the
highest density shown, 0.2159 atom/Å2, so we conclude

that layer promotion occurs between 0.2117 and 0.2159
atom/Å2. This is in excellent agreement with the com-
pletion density of 0.212 atom/Å2 determined from the
heat capacity measurements.4,5 A somewhat lower value
of 0.204 atom/Å2 for third layer promotion is obtained
from the isothermal compressibility minima.1,11 Also of
note, Whitlock et al.22 estimate that promotion to the
third layer begins at the second-layer coverage of 0.08
atom/Å2, quite close to but somewhat lower than our
value of 0.085 atom/Å2.
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FIG. 10. Density profiles for the second layer found using
the 5 × 3 cell, with densities 0.1694, 0.1778, 0.1863, 0.1948,
0.2032, 0.2117, and 0.2159 atom/Å2.

The temperature dependence of the energy and su-
perfluid density at a sample liquid density of 0.1778
atom/Å2 have been determined. This coverage corre-
sponds to a second-layer coverage of 0.0508 atom/Å2.
Values were calculated using the 5 × 3 simulation cell
with twelve active particles, and are illustrated in a pre-
vious publication.13 The superfluid density is relative to
the second-layer density. Both the energy and the su-
perfluid density converge to the ground state for tem-
peratures below 0.8 K. The slow decay of the superfluid
density at higher temperatures is a typical 2D finite-
size effect.40 The superfluid density values have been χ2

fit to the solution to the Kosterlitz-Thouless (KT) re-
cursion relations.41 From the intersection of the fit and
the KT transition line, we estimate the transition tem-
perature to be Tc ≈ 0.88K. For comparison, the 2D
PIMC simulation20 obtains Tc = 0.86± 0.02K at 0.0508
atom/Å2.
The specific heat of the liquid, commensurate solid,

and incommensurate solid phases can be found by dif-
ferencing the energy per particle with respect to tem-
perature. This was shown in our previous publication.13

For the liquid phase, a broad, low peak with a maximum
value at 1.18 K was found. This is comparable to the ex-
perimental heat capacity results,5 which have a peak at 1
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K. For the commensurate solid phase, a specific heat peak
at about 1.5 K was found. This is comparable to the heat
capacity measurements5 at similar density values, which
also have a peak at 1.5 K. This close agreement provides
some additional evidence that the

√
7 ×

√
7 C phase oc-

curs in the experiment. Finally, for the IC solid, a peak
at 0.7 K was obtained, somewhat lower than the peak
in the heat capacity measurements at the same density,
which occurs at 1 K.

IV. SUMMARY

A number of recent experiments indicate that the sec-
ond layer of helium on graphite has an interesting phase
diagram. Torsional oscillator measurements detect su-
perfluidity over a narrow density range in this layer.10,11

Neutron scattering7–9 detects an incommensurate solid
phase at high densities. Heat capacity measurements4,5

have found evidence for liquid-gas coexistence and the
incommensurate solid phase. The heat capacity data
also show the existence of an intermediate phase between
the liquid and incommensurate solid, which is possibly a
commensurate solid. The existence of this commensu-
rate solid phase would explain the disappearance of su-
perfluidity at higher second layer coverages. Motivated
by these experiments, we have undertaken a simulation
of this layer.
In order to study the second layer with Monte Carlo

for a range of temperatures, it is necessary to develop
a method that incorporates both particle permutations
and the effects of the substrate and the solid first layer
on the second. Permutations are necessary to obtain the
superfluid phase. The effects on the solid first layer must
be included since the commensurate second layer solid is
partially registered with respect to the first layer. First
layer and substrate effects also play a role in the forma-
tion of the incommensurate solid phase, which replaces
the commensurate phase before layer promotion begins.
We have developed a path integral Monte Carlo

method that includes the above features. Particle permu-
tations were included in the simulation using a method
developed for bulk helium36. We have shown that the
helium-helium and helium-graphite interactions can be
incorporated into the simulation by using effective in-
teractions found from the exact solutions for the inter-
acting part of the appropriate density matrices. Real-
istic helium-helium and helium-graphite potentials are
used to find these effective interactions. For the helium-
graphite effective interactions, we have shown how this
solution may be approximated so that off-diagonal ma-
trix elements may be efficiently and accurately included
in Monte Carlo sampling. The interaction of the sec-
ond layer of helium atoms with the solid first layer were
approximated by placing first layer atoms at triangular
lattice sites with a lattice spacing that gives the com-
pleted first layer density. These atoms were located at a

fixed height above the substrate, given by the minimum
of the effective helium-graphite interaction. Configura-
tions of these atoms were not sampled, which allowed us
to scan second layer densities with a finer grid. There-
fore, we study the second layer atoms under the influ-
ence of their mutual interactions and a static potential
produced by the frozen graphite substrate and the frozen
first layer helium atoms. This approach ignores effects on
the second layer from the zero point motion of the first
layer solid and first layer compression effects. We feel
this is a reasonable approximation because the relatively
high Debye temperature of the completed first layer32

means that it will be relatively stiff for the temperatures
of our simulation. Compression effects on the first layer
by the second are most important for low second layer
densities15, below the range of our simulation.
Using the above simulation method, we were able to

identify, in order of increasing density, superfluid liquid,√
7×

√
7 commensurate triangular solid, and incommen-

surate triangular solid phases from particle configura-
tions and static structure factor calculations. We also
calculated the specific heat for each of these phases and
observed peaks in general agreement with experiment.
The density ranges at effectively zero temperature of

each of the second layer phases and their coexistence re-
gions were determined using the Maxwell construction.
We found that at low densities, the layer is phase sepa-
rated into a liquid droplet and a zero density gas. The
range of this phase is 0.1270 to 0.1750 atom/Å2. Gas-
liquid coexistence ends at the equilibrium density for the
liquid phase. This occurs at 0.1750 atom/Å2, which is
the density with the minimum energy per particle. This
density was found to be insensitive to finite-size effects,
and is in excellent agreement with the onset of superflu-
idity determined by torsional oscillator measurements. It
is also consistent with heat capacity measurements. We
demonstrated that the liquid phase in our simulation is
superfluid, and we determined that the transition tem-
perature was close to the value determined for a purely
2D superfluid at the same density.
The helium layer is uniformly covered in our simulation

by the liquid phase from 0.1750 to 0.1905 atom/Å2, at
which point liquid-commensurate solid phase coexistence
begins. The onset of this coexistence terminates super-
fluidity, since the growth of the solid phase disrupts the
connectivity required to detect the superfluid. Exper-
imentally, liquid-commensurate solid phase coexistence
has been determined to begin at 0.1870 atom/Å2 by both
torsional oscillator and heat capacity measurements. We
determined that the liquid phase is completely replaced
by the

√
7 ×

√
7 commensurate solid for densities above

0.1970 atom/Å2, in good agreement with heat capacity
measurements. Phase coexistence between the commen-
surate and incommensurate solid phases begins at 0.2032
atom/Å2. For coverages above 0.2080 atom/Å2, the in-
commensurate solid is the only phase occurring until
layer promotion. These ranges for the solid coexistence
and the incommensurate solid are in agreement with the
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heat capacity measurements. The density ranges for all
the second layer phases described above are summarized
in Fig. 8(a). Finally, we observed layer promotion for
coverages above 0.2117 atom/Å2, in excellent agreement
with experiment.
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