
ar
X

iv
:c

on
d-

m
at

/9
71

02
25

v1
  [

co
nd

-m
at

.m
tr

l-
sc

i]
  2

1 
O

ct
 1

99
7

Cu-Au, Ag-Au, Cu-Ag and Ni-Au intermetallics:

First-principles study of phase diagrams and structures
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National Renewable Energy Laboratory, Golden, CO 80401

(September 14, 1997)

The classic metallurgical systems – noble metal alloys – that have formed the benchmark for
various alloy theories, are revisited. First-principles fully relaxed general potential LAPW total
energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation
to study the phase stability, thermodynamic properties and bond lengths in Cu-Au, Ag-Au, Cu-
Ag and Ni-Au alloys. (i) Our theoretical calculations correctly reproduce the tendencies of Ag-Au
and Cu-Au to form compounds and Ni-Au and Cu-Ag to phase separate at T = 0 K. (ii) Of all
possible structures, Cu3Au (L12) and CuAu (L10) are found to be the most stable low-temperature
phases of Cu1−xAux with transition temperatures of 530 K and 660 K, respectively, compared to the
experimental values 663 K and ≈ 670 K. The significant improvement over previous first-principles
studies is attributed to the more accurate treatment of atomic relaxations in the present work. (iii)
LAPW formation enthalpies demonstrate that L12, the commonly assumed stable phase of CuAu3,
is not the ground state for Au-rich alloys, but rather that ordered 〈100〉 superlattices are stabilized.
(iv) We extract the non-configurational (e.g., vibrational) entropies of formation and obtain large
values for the size mismatched systems: 0.48 kB/atom in Ni0.5Au0.5 (T = 1100 K), 0.37 kB/atom in
Cu0.141Ag0.859 (T = 1052 K), and 0.16 kB/atom in Cu0.5Au0.5 (T = 800 K). (v) Using 8 atom/cell
special quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys
and obtain good qualitative agreement with recent EXAFS measurements.

PACS numbers: 61.66.Dk, 71.20.Gj, 81.30.Bx

I. INTRODUCTION: CHEMICAL TRENDS IN

NOBLE METAL ALLOYS

Noble metal alloys are, experimentally, among the
most studied intermetallic systems.1–24 In addition,
the Cu-Au system has been considered the clas-
sic paradigm system for applying different theoret-
ical techniques of phase diagram and phase stabil-
ity calculations.25–63 Most notably, this system has
been considered as the basic test case for the clas-
sic Ising-hamiltonian statistical-mechanics treatment of
alloys.25–32 More recently, noble metal binary alloys have
been treated theoretically via empirical fitting of the
constants in Ising hamiltonians,25–34 semiempirical in-
teratomic potentials,35–47 and via first-principles clus-
ter expansions.48–55 The essential difference in philoso-
phy between the classical application of Ising models to
CuAu25–30,33 and more modern approaches based on the
density functional formalism64 is that in the former ap-
proach the range and magnitudes of the interactions are
postulated at the outset (e.g., first or second neighbor
pair interactions), while the latter approaches make an
effort to determine the interactions from an electronic
structure theory. However, despite recent attempts,48–54

it is still not clear whether the noble metal alloys can
be essentially characterized as systems with short-range
pair interactions, or not.

Now that first-principles cluster expansion
approaches65,66 have advanced to the stage where both

T = 0 ground state structures and finite-temperature
thermodynamic quantities can be predicted without any
empirical information, it is interesting to take a global

look at the noble metal alloy family. Table I summarizes
some of the salient features1–4,14,15,18,67–69 of the four
binary systems Cu-Au, Ag-Au, Cu-Ag and Ni-Au. We
included the relative lattice constant mismatch ∆a/a =
2 |aA − aB| / |aA + aB| between the consituents,67 the
electronegativity difference ∆χ = χA−χB on the Pauling
scale,68 the mixing enthalpy of the equiatomic alloy,2,18

the sign of the calculated nearest neighbor pair interac-
tion J2 (present study), the structural identity of the low-
temperature phases1–4,67 and the order-disorder transi-
tion (or miscibility gap) temperatures2,69 Tc. Some in-
teresting observations and trends which we will attempt
to reproduce theoretically, are apparent from this general
survey:

(i) Despite a large (12%) size mismatch in Cu-Au, and
a small (≈ 0%) size mismatch in Ag-Au, both systems
form ordered compounds at low temperatures and have
negative mixing enthalpies, suggesting attractive (“anti-
ferromagnetic”) A–B interactions. Thus, when the differ-
ence in the electronegativity ∆χ of the constituent atoms
is sufficiently large, as it is in CuAu and AgAu, size mis-
match apparently does not determine ordering vs. phase
separation tendencies.

(ii) Despite a similar size mismatch (12%) in Cu-Au
and Cu-Ag, the former orders while the latter phase-
separates. Thus, the existence of large electronegativity
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TABLE I. Major physical properties of Ag-Au, Cu-Ag, Cu-Au and Ni-Au alloys. We give constituent size mismatches,
∆a/a = 2(aA−aB)/(aA+aB), electronegativity differences on the Pauling scale,68 ∆χ, mixing enthalpies of the disordered alloys
at the equiatomic composition, ∆Hmix(x = 1

2
), signs of the nearest-neighbor Ising interaction, J2, order-disorder transition

temperatures (or miscibility gap temperatures for Cu-Ag and Ni-Au), Tc(x = 1
2
), and excess entropies of solid solutions,

∆Sform
tot − ∆Sideal. All phases are fcc-based.

System ∆a/aa ∆χb ∆Hmix(x = 1/2) J2 Low-T phasesg Tc(x = 1
2
) ∆Sform

tot − ∆Sideal
g

(meV/atom) (K) (kB/atom)

Cu-Au 12% 0.64 −91c > 0 L12, L10, L12(?) 683g +0.36

Ag-Au 0% 0.61 −48d > 0 L12, L10, L12 115-168h −0.17
Cu-Ag 12% 0.03 +80e < 0 Phase sep. > Tm +0.04

Ni-Au 15% 0.63 +76f > 0 Phase sep. 1083d +0.35

aRef. 67.
bRef. 68.
cRefs. 15, 14, 2.
dRef. 2.
eTheoretically calculated value from this work.
fRefs. 2, 18.
gRefs. 2, 4.
hRef. 69.

difference in Cu-Au (as opposed to the small difference
in Cu-Ag), seems to induce ordering tendencies.

(iii) Cu-Ag and Ni-Au both phase-separate (and have
positive ∆Hmix) as they have large size mismatches.
Yet, Ni-Au having a large electronegativity difference,
shows an ordering-type nearest-neighbor pair interaction
(J2 > 0), just like the compound forming Cu-Au and Ag-
Au, while Cu-Ag has a clustering-type nearest-neighbor
interaction (J2 < 0). Thus, the sign of J2 does not reflect
the low temperature ordering vs. phase separation.

(iv) The amount ∆SXS = ∆Sexpt
tot − ∆Sideal

by which the measured entropy2 ∆Sexpt
tot deviates

from the ideal configurational entropy ∆Sideal =
kB [x log x + (1 − x) log(1 − x)], is unexpectedly large in
Cu-Ag and Ni-Au, indicating a large non-configurational
entropy of formation.

Other interesting facts about the noble metal binary
intermetallics include:

(v) Despite numerous studies,1–4,7,8,10–12 the struc-
ture of the ordered phases in Au-rich Cu-Au is not well
established yet. It is often assumed1–4 that the sta-
ble Au-rich low-temperature phase is CuAu3 in the L12

structure, but direct experiments7,8,10 below the order-
disorder transition temperature Tc(x = 3

4 ) ≈ 500 K
are difficult because the diffusion rates are very low and
even the best ordered samples contain significant disor-
der. Possible further thermodynamic transformations at
lower temperatures may be kinetically inhibited.

(vi) The trends in bond lengths vs. composition
are non-trivial. Traditionally, all coherent-potential-
approximation based theories70–72 of intermetallic alloys
have assumed that the nearest-neighbor bond lengths are
equal, RAA = RAB = RBB, and proportional to the av-
erage lattice constant. Recent theories73–75 suggested,
however, that bond lengths relax in the alloy to new val-
ues, and this has a significant effect on the electronic
structure.53,76,77 Recent EXAFS experiments on NiAu23

and CuAu24 show distinct RAA 6= RAB 6= RBB bond
lengths, which need to be explained.

In this work we will analyze the above mentioned
trends in terms of a first-principles mixed-space cluster
expansion,65,66 based on modern local density approxi-
mation (LDA) total energy calculations. We reproduce
the observed trends (i)-(vi) in ordering preferences, mix-
ing enthalpies ∆Hmix, transition temperatures Tc and
interatomic bond lengths. In addition, we predict new,
hitherto unsuspected ordered phases in Au-rich Cu-Au
alloys.

II. BASIC IDEOLOGY AND METHODOLOGY

There are many problems in solid state physics that
require knowledge of the total energy E(σ) of a lattice
with N sites as a function of the occupation pattern σ
of these sites by atoms of types A and B. This informa-
tion is needed, for example, in the ground state search
problem,72 where one seeks the configuration with the
lowest energy at T = 0 K. {E(σ)} is also needed for calcu-
lating the temperature- and composition-dependent ther-
modynamic functions and phase diagrams of an A1−xBx

alloy.
A direct, quantum-mechanical calculation of the to-

tal energy Edirect(σ) = 〈Ψ|Ĥ |Ψ〉/〈Ψ|Ψ〉 (where Ψ is the

electronic ground state wave function and Ĥ is the many-
electron Hamiltonian) is possible only for a limited set
of configurations σ. This is so because (i) the com-
putational effort to solve the Schrödinger equation for
a single configuration scales as the cube of the number
of atoms per unit cell, so that only small unit cells can
be considered, (ii) there are 2N configurations, and (iii)
for each configuration, one has to find the atomic relax-
ations δumin(σ) which minimize the total energy. Conse-
quently, one searches for a “cluster expansion” (CE) that
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accurately reproduces the results of a direct, quantum-
mechanical (e.g., LDA) calculation

ECE(σ) ∼= Edirect(σ), (1)

without the unfavorable scaling of the computational cost
with the size of the unit cell.

In designing a cluster expansion, there are few choices
of independent parameters. For example, one could
choose to obtain a cluster expansion for the volume-
(V ) dependent equation of state Edirect(σ, V ) [see, e.g.,
Refs. 52, 78, 79], or to find a cluster expansion for the en-
ergy at the volume Vmin(σ) that minimizes Edirect(σ, V ).
We choose the latter possibility. Furthermore, for each
configuration σ, we wish to reproduce the total energy
corresponding to the fully relaxed cell shape and atomic
positions {δumin(σ)}. In other words, we choose to rep-
resent

ECE(σ) ∼= Edirect[σ; δumin(σ); Vmin(σ)] ≡ Edirect(σ). (2)

Note that by focusing on the equilibrium energy of each
configuration, we give up the possibility of studying non-
equilibrium geometries (e.g., bond lengths) and equations
of state. Instead, for each occupation pattern σ, we can
find the total energy E(σ) of the atomically relaxed and
volume-optimized geometry.

The best-known cluster expansion is the generalized
Ising model in which the equilibrium total energy of an
arbitrary configuration σ is expanded in a series of basis
functions defined as pseudospin products on the crystal
sites:

E(σ) = J0 +
∑

i

JiSi +
1

2

∑

i6=j

JijSiSj

+
1

3!

∑

i6=j 6=k

JijkSiSjSk + . . . , (3)

where in binary A1−xBx alloys Si = +1 or −1, depending
on whether the site i is occupied by an atom of type A
or B. Equation (3) is valid whether the lattice is relaxed
ot not, as long as a one-to-one correspondence exists be-
tween the actual positions of atoms and the ideal fcc
sites. The practical usefulness of the cluster expansion
Eq. (3) rests on the assumption that the effective cluster
interactions (ECI’s), Jij , Jijk, . . . , are rapidly decreasing
functions of the number of sites and intersite separation,
so that only a finite number of terms has to be kept in
Eq. (3) for the desired accuracy. In this case, we can
write the formation enthalpy of structure σ,

∆Hdirect(σ) = E(σ) − xEA − (1 − x)EB , (4)

where EA and EB are total energies of the pure con-
stituents A and B, as the following cluster expansion
(CE):

∆HCE(σ) = J0 +

Nf∑

f

DfJfΠf (σ). (5)

Here Nf is the number of nonzero effective interactions

and Πf (σ) are lattice averages of the spin products in
configuration σ.

Sanchez, Ducastelle and Gratias80 have shown that
there is a set of composition-independent interactions
for Eq. (3) which can exactly reproduce the directly
calculated total energies of all configurations σ. This
statement is strictly true if all possible clusters are in-
cluded in Eq. (3), and should hold for the truncated se-
ries Eq. (3) if the cluster expansion is well converged.
Several methods81,82 yield concentration-dependent ef-
fective interactions, providing in principle equally valid
schemes for representing ∆Hdirect(σ) in terms of a cluster
expansion. In the present work, we select composition-
independent interactions, since these can be directly com-
pared to previous Ising model treatments25–34,48–55 of
the noble metal alloy phase diagrams.

A number of issues arise in trying to construct a cluster
expansion that satisfies Eq. (2):

(i) The number of interactions and their types (pair,
multibody) cannot be decided arbitrarily, but must be
constrained by a microscopic electronic-structure theory
according to Eqs. (1) and (2).

(ii) In most configurations σ, atoms move away from
the ideal lattice sites, which not only lowers the total en-
ergies Edirect(σ), but also slows down the convergence85

of the expansion Eq. (3). The solution is to have a clus-
ter expansion with many interaction terms NJ that can
represent such situations. We accomplish this by using
a reciprocal space formulation, formally equivalent to an
infinite number of real-space pair interactions.

(iii) Some cluster expansions78 require that the number
of interactions NJ must equal the number of configura-
tions Nσ whose total energies need to be evaluated via
the direct electronic-structure method. The number of
such calculations may be excessive in view of (ii). We
thus introduce a method in which Nσ ≪ NJ . Further-
more, interactions that are not needed to satisfy Eq. (2)
are automatically discarded.

(iv) One has to deal with the macroscopic elastic strain
leading to a k → 0 singularity in the Fourier transform
of the pair interactions,

Jpair(k) =
∑

j

DjJpair(Ri − Rj)e
−ikRj , (6)

where Dj is the number of {Ri,Rj} pairs per lattice site.
As shown by Laks et al.65 (see also the discussion below),
in size mismatched systems the correct Jpair(k) depends

on direction k̂ in the long-wavelength limit k → 0. To
solve this, we express Jpair(k) as a sum of two parts,

Jpair(k) = JSR(k) + JCS(k̂), (7)

where JSR(k) is an analytic function of k and can be
obtained from short-ranged real space pair interactions,

while JCS(k̂) contains the nonanalytic behavior around
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k = 0 and depends only on the direction k̂. To ex-
plain this singularity, we consider the energy of a co-
herent AnBn superlattice, formed by a periodic stacking

of n layers of A and n layers of B in direction Ĝ. By
introducing the structure factor,

S(k, σ) =
∑

j

Sje
−ikRj , (8)

the total pair interaction energy in Eq. (3) can be ex-
pressed as a reciprocal space sum:

Epair(σ) =
∑

k

Jpair(k) |S(k, σ)|2 . (9)

AnBn superlattice has nonzero structure factor at

k = 1
2n Ĝ, and therefore its energy is determined by

Jpair(
1
2n Ĝ). As n → ∞ its formation energy is given

by a sum of the epitaxial deformation energies of pure
constituents needed to bring them to a common lattice

constant in the plane perpendicular to Ĝ. Since the epi-
taxial deformation energy of pure constituents is direc-
tion dependent (e.g., it is easier to stretch Cu in [100]
planes than in [111] planes, see Sec. III B), the formation
energy ∆H(A∞B∞) is also direction dependent. There-
fore, limk→0 Jpair(k) must depend on the direction of
approach to the origin, proving that Jpair(k) is singu-
lar. Physically, the nonanaliticity of Jpair(k) is caused
by long-range interactions via macroscopic elastic strain
and cannot be reproduced using finite-ranged real-space
pair interactions, but must be accounted for explicitly in
reciprocal space. If the singularity is neglected, then as
explained in Ref. 65, the cluster expansion fails not only
for long-period (n → ∞) superlattices AnBn, but also
for those short-period (n > 2) superlattices which have
not been explicitly included in the constraint Eq. (2). We
emphasize that although the contribution of Jsing(k) to
the formation energy is nonzero only in size-mismatched
systems, it is not related to the atomic relaxation energy
for a particular structure σ in any simple way (except if
σ itself is a long-period superlattice).

The singularity in Jpair(k) is similar to the singularity
in the dynamical matrix Dαβ(κκ′|k) of polar crystals in
the long-wavelength limit,83 caused by long-range elec-
trostatic interactions via macroscopic electric field. In
lattice dynamics, Dαβ(κκ′|k) is expressed as a sum of

regular and singular parts, Dαβ(κκ′|k) = Dsing
αβ (κκ′|k) +

Dreg
αβ (κκ′|k), where Dreg

αβ (κκ′|k) (analytic as k → 0) is
due to short-range force constants. The singular part
Dsing

αβ (κκ′|k) gives rise to LO/TO splitting of the zone-
center optical frequencies ωΓ in polar crystals, and also

leads to a directional dependence of ωΓ(k̂) in uniaxial
crystals (e.g., CuPt-type GaInP2). These phenomena
cannot be reproduced by any set of finite-ranged micro-
scopic force constants, but have to be calculated explic-
itly using the macroscopic Maxwell equations.84

In summary, we seek to find a function ECE(σ)
which accurately reproduces the LDA total energies

ELDA[σ, δumin(σ); Vmin(σ)] ≡ ELDA(σ) at the atomi-
cally relaxed geometry and equilibrium volume of con-
figuration σ. The function ECE(σ) we consider includes
composition- and volume-independent interactions, so as
to maintain maximum similarity with the classical Ising
model. The number and type of interactions are not de-
cided arbitrarily, but are constrained by the electronic
structure theory used (here, the LDA). Relaxation is
treated accurately by including long-range pair interac-
tions in the reciprocal space representation. The k → 0
singularity, affecting both short and long-period super-
lattices, is dealt with explicitly.

The above requirements are satisfied by the mixed
space cluster expansion (MSCE):

∆HCE(σ) =
∑

k

Jpair(k) |S(k, σ)|2

+

MB∑

f

DfJfΠf (σ) + ∆ECS(σ). (10)

We have separated out the so-called equilibrium con-
stituent strain energy term, ∆ECS(σ), which accounts
for the k → 0 singularity.65 In Eq. (10) we do not need
to calculate ∆ECS(σ) for each configuration σ, but only

for the directions k̂ of the wave vectors with nonzero
S(k, σ). In fact, it is constructed to coincide with the
elastic strain energy of coherent superlattices in the long-
period limit:65

∆ECS(σ) =
∑

k

JCS(x, k̂) |S(k, σ)|2 , (11)

JCS(x, k̂) =
∆Eeq

CS(x, k̂)

4x(1 − x)
, (12)

where S(k, σ) is the structure factor from Eq. (8). The

quantity ∆Eeq
CS(x, k̂) depends only on the direction k̂,

and will be given in Sec. III B. Equation (11) is ex-
act for long-period superlattices, but represents a choice

for short-period superlattices and non-superlattice (e.g.,
L12) structures. It has been found65 that the choice
Eq. (11) improves the cluster expansion predictions also
for short-period superlattices.

Equation (10) is a generalized Ising model description
of the formation energy of any relaxed configuration σ,
even if a direct LDA calculation for this σ is impractical.
The cluster interaction energies {Jpair(k)} and {Jf} are
obtained by fitting Eq. (10) to the LDA formation ener-
gies. An additional smoothness requirement is imposed
on Jpair(k), which ensures that the pair interactions are
optimally short-ranged in real space. Namely, we mini-
mize the sum

∆2
rms =

1

Nσ

∑

σ

wσ [∆HCE(σ) − ∆HLDA(σ)]
2

+
t

α

∑

k

Jpair(k)
[
−∇2

k

]λ/2
Jpair(k), (13)
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TABLE II. Definition of the small-unit-cell ordered structures used in the LDA total energy calculations.

Simple superlattices
Compo- Orientation
sition (001) (011) (111) (311) (201)

AB L10 (CuAu) L10 (CuAu) L11 (CuPt) L11 (CuPt) L10 (CuAu)
A2B “β1” (MoSi2) “γ1” (MoPt2) “α1” (CdI2) “γ1” (MoPt2) “γ1”(MoPt2)
AB2 “β2” (MoSi2) “γ2” (MoPt2) “α2” (CdI2) “γ2” (MoPt2) “γ2”(MoPt2)
A3B “Z1” “Y1” “V1” “W1” D022 (TiAl3)
AB3 “Z3” “Y3” “V3” “W3” D022 (TiAl3)
A2B2 “Z2” “Y2” “V2” “W2” “40”(CuFeS2)

Other structures
Compo- Name Prototype Superlattice Period Reference
sition direction

A3B1 L12 Cu3Au none 52
A1B3 L12 Cu3Au none 52
A7B D7a none 52
A4B4 D4 none 52
AB7 D7b none 52
A8B Ni8Nb none 95
AB8 Ni8Nb none 95
A6B2 D023 Al3Zr (401) (5,1,1,1) 95
A6B2 LPS-3 (601) (5,1,1,1) 87
A4B4 SQS8a (311) (2,3,2,1) 76
A4B4 SQS8b (311) (3,2,1,2) 76
A6B2 SQS14a (201) (6,2) 73
A2B6 SQS14b (201) (2,6) 73

where λ and t are free parameters and α is a normaliza-
tion constant.65 Typically we choose λ = 4 and t = 1,
but the fit is not sensitive to this choice.

This approach solves the four problems indicated above
in the sense that (i) the fitting process itself automati-
cally selects the pair interactions that are essential to
obtain a good fit (process still does not select multibody
figures), (ii) the pair interactions can be of arbitrary long
range, facilitating treatment of systems with large elastic
relaxations, (iii) the number of pairs can be much larger
than the number of ordered structures in the fit, and (iv)
the directly calculated constituent strain energy ∆ECS

contains the k → 0 singularity. Unlike all CPA-based
methods,70,71 the present approach includes full account
of atomic relaxation and local environment effects. Un-
like the classical Ising descriptions,25,27–33 the interac-
tion energies are determined by the electronic structure
rather than being guessed. Finally, unlike the compu-
tational alchemy linear response approach,85 multibody
terms are included here.

Having written the expression for the total energy of
arbitrary configuration, Eq. (10), we can evaluate its con-
stants from a limited number of LDA calculations on
small unit cell (Natoms < 10) ordered structures with
fully relaxed atomic positions. Equation (10) can then
be employed in simulated annealing and Monte Carlo
calculations86,87 yielding T = 0 ground states and T > 0
statistical and thermodynamic properties. Further de-
tails of the method are given in Sec. III.

III. DETAILS OF THE METHOD

A. T = 0 energetics

The calculations of T = 0 total energies employ the
full-potential linearized augmented plane wave method88

(FLAPW). The basis set consists of plane waves in the
interstitial region, augmented in a continuous and differ-
entiable way with the solutions of the radial Schrödinger
equation inside the non-overlapping muffin-tin spheres.
Non-spherical potential and electronic charge density
terms are calculated in all space and included in the
Hamiltonian matrix. Core states are treated fully rela-
tivistically and recalculated in each self-consistency iter-
ation. The wave equation for the valence states includes
all relativistic effects except the spin-orbit interaction,
i.e., they are treated scalar relativistically. FLAPW is
the most accurate all-electron method, superior to the
methods employing overlapping atomic spheres (atomic-
spheres approximation – ASA) and/or shape approxima-
tions to the potential.

We use the Wigner exchange-correlation functional.89

As a check, we have performed several calculations using
the Perdew-Zunger90 parametrization of the Ceperley-
Alder91 functional and the generalized gradient approxi-
mation of Perdew and Wang.92 We find (see Sec. IVA1)
that the various exchange-correlation functionals change
the enthalpies of formation of ordered Cu-Au compounds
by a negligible amount (less than 2 meV/atom).
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TABLE III. LDA calculated formation [Eq. (4)] enthalpies for fcc superstructures (defined in Table II) of Ag-Au, Cu-Ag,
Cu-Au and Ni-Au. The numbers in parentheses represent errors of the cluster expansion fit. All energies in meV/atom.

Structure Ag-Au Cu-Ag Cu-Au Ni-Au

Superlattice Name ∆HLDA
unrel

∆HLDA
unrel

∆HLDA
rel

∆HLDA
unrel

∆HLDA
rel

∆HLDA
unrel

∆HLDA
rel

A fcc 0.0 (−0.4) 0.0 0.0 (−0.1) 0.0 0.0 (+0.2) 0.0 0.0 (+0.4)
B fcc 0.0 (−0.5) 0.0 0.0 (+0.3) 0.0 0.0 (−0.4) 0.0 0.0 (−0.2)

(001) Struct:

A1B1 L10 −59.7 (−0.8) +107.6 +100.5 (+0.4) −36.1 −48.2 (+0.1) +98.1 +76.1 (+1.4)
A2B1 “β1” −40.8 (−0.1) +130.2 +90.8 (−0.7) +51.0 −3.8 (−2.6) +207.8 +105.7 (−0.1)
A1B2 “β2” −40.0 (+0.1) +112.0 +75.0 (+1.0) +40.1 −40.8 (+0.6) +151.7 +38.3 (+0.1)
A3B1 “Z1” −29.2 (−0.1) +126.4 +79.8 (+1.8) +76.5 +10.6 (+0.3) +221.7 +89.9 (−4.2)
A1B3 “Z3” −27.9 (+0.7) +96.8 +56.9 (−0.2) +50.0 −28.2 (+1.8) +142.0 +32.4 (+4.0)
A2B2 “Z2” −28.8 (−0.3) +164.7 +77.8 (+0.4) +136.4 −6.7 (−1.0) +286.7 +70.2 (+0.1)
A2B3 “Z5” +273.3 +57.1 (−0.8)
A3B3 “Z6” +355.5 +63.2 (+0.7)

A∞B∞ 0.0 (0.0) +20.4 (0.0) +20.3 (−0.1) +576.2 +30.8 (0.0)

(111) Struct:

A1B1 L11 −43.0 (−0.4) +134.8 +129.8 (−1.1) +60.3 +32.5 (−0.1) +192.3 +166.8 (+1.4)
A2B1 “α1” −30.2 (0.0) +152.4 +120.4 (−2.9) +123.0 +61.4 (−7.7) +288.5 +202.2 (−6.4)
A1B2 “α2” −30.8 (0.0) +124.9 +95.0 (+2.9) +86.4 +2.1 (+7.7) +200.9 +100.9 (+6.4)
A3B1 “V1” −21.3 (+0.3) +145.9 +108.4 (+0.4) +136.1 +78.6 (+4.1) +290.8 +193.7 (+4.1)
A1B3 “V3” −21.4 (+0.6) +106.8 +73.6 (+1.5) +79.5 +5.1 (+0.8) +172.8 +83.0 (+4.0)
A2B2 “V2” −22.9 (−0.4) +177.1 +109.1 (−1.0) +170.6 +52.2 (−2.5) +335.8 +162.4 (−4.1)

A∞B∞ 0.0 (0.0) +86.3 (−1.0) +95.8 (+0.3) +576.2 +173.8 (+1.3)

(011) Struct:

A2B1 γ1 −49.7 (−0.4) +106.4 +100.3 (−0.6) −14.2 −18.4 (+3.3) +123.3 +98.9 (−3.8)
A1B2 γ2 −46.9 (+0.4) +97.2 +92.5 (+0.8) +1.7 −6.7 (−5.2) +126.3 +102.6 (+3.8)
A3B1 “Y1” −37.0 (0.0) +105.1 +85.4 (+3.5) +21.8 −1.3 (+3.8) +148.5 +99.2 (+7.8)
A1B3 “Y3” −35.4 (+0.6) +85.5 +75.2 (−1.3) +19.4 −1.0 (+0.1) +104.1 +78.7 (+1.1)
A2B2 “Y2” −44.1 (−0.3) +136.0 +105.7 (−1.1) +59.5 −4.2 (−2.0) +192.3 +96.6 (−4.5)

A∞B∞ 0.0 (0.0) +75.3 (−1.2) +66.1 (+0.3) +576.2 +117.7 (+1.6)

(113) Struct:

A3B1 “W1” −35.9 (+0.5) +104.7 +94.2 (−0.2) +22.0 +7.0 (+1.5) +125.7 +120.8 (+5.2)
A1B3 “W3” −34.4 (−0.2) +98.6 +91.4 (+9.0) +21.1 +7.8 (+0.6) +88.4 (+5.3)
A2B2 “W2” −50.6 (−0.1) +121.9 +104.7 (−4.4) +15.7 −20.9 (−1.0) +144.2 +93.6 (−5.3)

A∞B∞ 0.0 (0.0) +65.9 (−1.4) +69.5 (+0.4) +576.2 +119.8 (+1.9)

(201) Struct:

A3B1 D022 −42.3 (−0.2) +85.2 +85.1 (+1.3) −32.7 −32.8 (+0.3) +75.0 +75.0 (+5.6)
A1B3 D022 −41.0 (−0.3) +76.8 +76.4 (−0.5) −10.6 −11.8 (−1.8) +68.7 +68.6 (+1.5)
A2B2 CH, or “40” −55.3 (+0.3) +109.6 +107.5 (−0.4) −19.0 −23.0 (−0.6) +93.5 +84.8 (−3.6)

A∞B∞ 0.0 (0.0) +67.3 (+1.6) +53.4 (−0.4) +576.2 +84.8 (−2.0)

(401) Struct:

A5B1A1B1 D023 −33.3 −33.6 (0.0)

(601) Struct:

A5B1A1B1 LPS−3 −34.1

Other Struct:
A3B1 L12 −43.4 (+0.4) +84.8 +84.8 (−1.4) −37.3 −37.3 (−0.1) +77.5 +77.5 (−2.7)
A1B3 L12 −44.0 (+0.3) +76.0 +76.0 (+1.8) −17.3 −17.3 (−0.8) +78.9 +78.9 (−0.2)
A7B1 D7 −20.8 (+0.6) +61.9 +61.9 (−3.1) +6.8 +6.8 (−8.3) +82.9 +82.9 (−15.8)
A4B4 D4 −42.9 (+1.1)
A1B7 D7b −20.0 (−0.1) +47.1 +47.1 (−3.3) +12.9 +12.9 (+1.9) +56.8 +56.8 (−0.7)
A8B1 Ni8Nb-type +63.7 +47.7 (+0.4) +9.3 −9.1 (−4.5)
A1B8 Ni8Nb-type +42.7 +36.4 (−1.7) +30.9 +18.2 (+13.3)

Random:
A4B4 SQS8a −42.5 (+0.2) +12.9 (+5.7) +122.6 (+1.2)
A4B4 SQS8b −43.6 (−0.2) −15.2 (−5.7) +97.5 (−9.7)
A3B1 SQS14a +116.2 +77.3 (+7.0) +56.5 +5.5 (+7.7) +183.2 +96.8 (+15.3)
A1B3 SQS14b +92.2 +69.7 (−7.0) +37.8 −5.2 (−7.7) +118.2 +59.8 (−15.3)
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The total energies of the ordered structures and end-
point constituents are obtained keeping all computa-
tional parameters exactly equal. Specifically, we always
use the same basis sets (RKmax = 9), charge density
cutoffs (RKmax = 19), muffin-tin radii RAu = 2.4a0,
RAg = RCu = RNi = 2.2a0, maximum difference in the
angular momenta in the nonspherical Hamiltonian terms
(lmax = 4), maximum angular momenta in the nonspher-
ical charge densities and potentials inside the muffin-tin
spheres (lmax = 8), and equivalent k point sets93 in the
evaluation of Brillouin zone integrals. When the unit cell
vectors of the ordered compound permit, we choose a k

mesh equivalent to the 60 special points 8 × 8 × 8 fcc
mesh. Several structures (e.g., those of A2B or AB2 sto-
ichiometry) have reciprocal unit cell vectors which are
incommensurate with the 8 × 8 × 8 mesh. In these cases
we calculate the total energies of the compounds and fcc
constituents with a finer k point grid. This procedure
ensures that, due to systematic cancellation of errors,
the formation enthalpies ∆H(σ), Eq. (4), converge much
faster than the total energies. Indeed, the tests for Cu-
Au described in Sec. IV A1 show that with our choice of
parameters ∆H(σ) are converged to within 2 meV/atom.

The atomic positions are relaxed using quantum
mechanical forces94 obtained at the end of the self-
consistency iterations. Minimization of the total energy
with respect to the cell-external degrees of freedom is
done by distorting the shape of the unit cell and tracing
the decrease in the total energy. We estimate that the for-
mation enthalpies are converged to at least 5 meV/atom
with respect to all relaxational degrees of freedom.

Table II and its caption defines our small-unit-cell or-
dered structures. Many are actually superlattices along
(100), (110), (111), (201) and (311) directions. Table III
gives the calculated LDA formation energies [Eq. (4)] for
these Au-Ag, Cu-Au, Cu-Ag and Ni-Au compounds.

B. The constituent strain energy

It is well known66 that real-space cluster expansions
with finite-ranged interactions incorrectly predict zero
formation enthalpies per atom for coherent long-period
ApBq superlattices, while the correct answers are non-

zero and depend on the superlattice direction Ĝ. The
constituent strain energy term ∆ECS(σ) in Eq. (10) is
specifically designed to reproduce these superlattice en-
ergies, which are calculated directly from the LDA as
follows.

In the long-period limit pq → ∞ the interfacial en-
ergy becomes negligibly small (O(1/p)) in comparison
with the elastic strain energy needed to deform the con-
stituents to a common in-plane lattice constant as.

55,96

Therefore, the formation energy per atom of A∞B∞ su-

perlattice along Ĝ with composition x is given by the con-

stituent strain energy ∆ECS(x, Ĝ), defined as the equilib-
rium (eq) value of the composition-weighted sum of the
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∆Ebulk(as)

∆Eepi(as)aeq

FIG. 1. A schematic illustration of the concept of the epi-
taxial softening function q(Ĝ), given by the ratio of the bulk
(upper curve) and epitaxial (lower curve) deformation ener-

gies. In the harmonic approximation q(Ĝ) is the ratio of the
curvatures of these curves at the equilibrium point.

energies required to deform bulk A and B to the epitaxial
geometry with a planar lattice constant as:

∆Eeq
CS(x, Ĝ) = min

as

[
x∆Eepi

A (as, Ĝ)

+ (1 − x)∆Eepi
B (as, Ĝ)

]
. (14)

Here ∆Eepi(as, Ĝ) is the strain energy of the material
epitaxially stretched to the lattice constant as in the di-

rection orthogonal to Ĝ, and then allowed to relax along

Ĝ. ∆Eepi(as, Ĝ) is related to the bulk equation of state

∆Ebulk(as) via the epitaxial softening function q(as, Ĝ):

q(as, Ĝ) ≡ ∆Eepi(as, Ĝ)

∆Ebulk(as)
, (15)

where ∆Ebulk
A (as) is the energy required to hydrostati-

cally deform a bulk solid to the lattice constant as. Fig-
ure 1 illustrates the concept of epitaxial softening:97 when
the bulk solid is deformed hydrostatically from aeq to
as 6= aeq, its energy rises. Energy can then be lowered if
we keep ax = ay = as but relax the third lattice vector

to its equilibrium value. q(as, Ĝ) measures the relative
energy lowering.

Figure 2 shows the calculated LDA q’s for Cu, obtained
by minimizing the total energy with respect to the lat-

tice constant c parallel to Ĝ for each value of the sub-
strate lattice parameter as. As explained in Ref. 96, this
treatment neglects the so-called shear strain terms, but is
exact for the high symmetry directions (100), (111) and

(110). The calculated qCu(as, Ĝ) is seen to be a nontrivial
function of the substrate lattice parameter as and direc-

tion Ĝ. In contrast, the harmonic elasticity theory,97–100
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FIG. 2. q(Ĝ) of fcc Cu for principle directions as functions
of the substrate lattice parameter as. Directly calculated
LDA values are represented by open symbols, lines show the
fit using the expansion of γ(Ĝ) in Kubic harmonics.

routinely used for semiconductor systems,97,100,101 gives
q’s which do not depend on as:

qharm(Ĝ) = 1 − B

C11 + ∆ γharm(Ĝ)
, (16)

where γharm(Ĝ) is a geometric function of the spherical

angles formed by Ĝ:

γharm(φ, θ) = sin2(2θ) + sin4(θ) sin2

=
4

5

√
4π[K0(φ, θ) − 2√

21
K4(φ, θ)], (17)

and Kl are the Kubic harmonics of angular momentum
l. Figure 2 shows that the harmonic approximation man-
ifestly breaks down for large epitaxial strains in met-
als since there are several important qualitative differ-
ences between the behavior in Fig. 2 and that predicted

by the harmonic elasticity. First, q(as, Ĝ) strongly de-
pends on the substrate lattice constant, while the har-

monic qharm(Ĝ) does not. Second, the harmonic expres-

sion gives a definite order of q(Ĝ) as a function of the
direction, i.e., either (100) is the softest and then (111)
must be the hardest, or vice versa. This order does not
hold for large deformations. For instance, (201) becomes
the softest direction for as ≪ a0 and (110) is the hardest
for as ≫ a0 in Cu. Finally, q(100) exhibits a particularly
dramatic softening for as ≫ a0, which has important con-
sequences for the constituent strain energy and stability
of superlattices along this direction.96

The above mentioned properties of qCu can be de-
scribed by generalizing Eq. (17) for γ to higher Kubic
harmonics and strain-dependent expansion coefficients:

γ(as, Ĝ) =

lmax∑

l=0

bl(as)Kl(Ĝ), (18)

which has the property that in the harmonic limit
(as → a0) all expansion coefficients with angular mo-
menta higher than 4 tend to zero, reproducing γharm from
Eq. (17). Due to the cubic symmetry, only terms with
l = 0, 4, 6, 8, 10, 12, . . . enter in this expansion. Detailed
discussion of the nonlinear epitaxial strain properties of
elemental metals will be given in a separate publication.96

The constituent strain energy ∆Eeq
CS(x, Ĝ) is calcu-

lated numerically from Eq. (14) using the direct LDA

values of ∆Eepi(as, Ĝ) for six principle directions. The
obtained ∆Eeq

CS for these directions are shown in Fig. 3,
illustrating several properties of the constituent strain
which cannot be reproduced by the harmonic theory.65

First, the curves in Fig. 3 are skewed to different sides,
while the harmonic ∆Eeq

CS must be all skewed to the same
side. Second, the calculated ∆Eeq

CS cross for different di-
rections, a property not allowed by the harmonic func-
tional form. These crossings lead to (201) as the softest
direction below x ≈ 0.2, and (110) as the hardest for
Au-rich superlattices, while the harmonic theory gives
∆Eeq

CS(111) as the highest and ∆Eeq
CS(100) as the lowest

constituent strain for all compositions of the studied no-
ble metal alloys. The behavior of ∆Eeq

CS for (100) is par-
ticularly interesting, since the curves in Fig. 3 abruptly
change slope around x ≈ 0.15 and have very low values
for x > 1

4 . As we show in Ref. 96, this is a manifestation
of the low energy cost of deforming fcc Cu into the body-
centered tetragonal structure along the epitaxial Baines
path. Small constituent strain of (100) superlattices has
profound influence on the predicted ground states of Cu-
Au (see Sec. IVA1).

The constituent strain energy for arbitrary direction

Ĝ is then obtained by interpolating between the prin-
ciple directions using the following expansion in Kubic
harmonics:

∆ECS(x, Ĝ) =

lmax∑

l=0

cl(x)Kl(Ĝ). (19)

We have taken lmax = 10, which gives five composition-
dependent fitting coefficients determined from a fit to
the directly calculated values [Eq. (14)] for six princi-
ple directions. The characteristic errors of this fit at
the equiatomic composition are 1 − 2 meV/atom. Equa-
tion (19) is then used in Eqs. (11)–(12).

C. Constructing the Cluster Expansion

Once we have a closed-form expresion for the equi-
librium constituent strain energy ∆ECS(σ) and a set
{∆HLDA(σ)} of T = 0 formation enthalpies, we deter-
mine the unknown cluster interactions of Eq. (10) in the
following two-step process:
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FIG. 3. Equilibrium constituent strain energies for Cu-Au,
Ni-Au and Cu-Ag. The constituent strain energy of Ag-Au is
negligibly small and therefore not shown.

First, the total energies of all structures from Table III
are used in the fit to investigate the behavior of the root-
mean-square (rms) error ∆rms of the fit, Eq. (13), as a
function of the number of real-space pair and multibody
interactions. Reciprocal space CE allows to add pair in-
teractions systematically in the order of increasing in-
tersite separation, up to any number of near-neighbor
shells. The k-space smoothness criterion in Eq. (13)
automatically selects optimally short-ranged interactions
and chooses physically important pair interactions which
are essential to produce a good fit to the directly calcu-
lated LDA energies. The dependence of the rms error on
the number of pair and multibody interactions is shown
in Fig. 4. Figure 4(a) is obtained by fixing the number of
multibody interactions, and varying the number of pair
interactions. It shows that in all systems the cluster ex-
pansion is well converged using 10 to 20 pair interactions.
The convergence rate is fastest for Ag-Au and slowest for
Ni-Au, which we attribute to increasing size mismatch
going from Ag-Au to Ni-Au, with Cu-Ag and Cu-Au ex-
hibiting intermediate convergence rates.

Selection of important multibody interactions is more
delicate. The number of pair interactions is fixed to a
converged value (20 or more), and a large set of 3- to 4-
body figures is tested as to whether it improves the rms
error of the overall fit. It is retained in the CE only if
∆rms decreases considerably. During the fitting process,
we also monitor the overall stability of the CE, as mea-
sured by a change in other multibody interactions upon
the addition of a particular figure. Unstable behavior
usually signals of linear dependencies in the chosen set
of clusters and an ill-conditioned inverse problem, neces-
sitating a different choice of {Jf}. Figure 4(b) shows
the convergence of the CE with respect to the number
of multibody interactions, keeping Npairs equal to their
converged values. An important thing to notice is that
the multibody interactions produce a decrease in the rms
error which is of the same magnitude as that due to the
pair interactions. Furthermore, the effect of multibody
interactions is largest in Ni-Au, and decreases in order of
decreasing size mismatch, becoming negligible in Ag-Au.

In the second step we test the stability of the fit and its
predictive power. Using the trial set of figures obtained
in the previous step, we exclude several structures which
are fit rather well (e.g., Z2, β2, and L12 in Ni-Au), and
repeat the fit, obtaining new values of the effective cluster
interactions. These values are used to predict the total
energies of the structures excluded from the fit. If the
change in ∆HCE(σ) is not acceptable (more than few
meV/atom), we return to the first step to search for a
better set of interactions. The most severe test is to
exclude structures with the poorest fit to their formation
enthalpies, e.g., SQS14a and SQS14b in Ni-Au. If the
predicted formation energy does not change significantly,
the chosen set of figures is considered to be stable and
predictive. The final cluster expansion is produced by
using this set of figures and all structures from Table III.

Figure 5 shows the calculated pair interactions as func-
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FIG. 4. Root-mean-square errors ∆rms of the cluster expansions for Ag-Au, Cu-Ag, Cu-Au and Ni-Au as functions of the
number of pair and multibody interactions.

tion of the near-neighbor fcc shell. There are several
noteworthy trends in the four alloy systems:

(i) Only in Ag-Au and Cu-Au are the nearest-neighbor
pair interactions dominant: in Cu-Ag the 1-st and 3-rd
neighbor pair interactions are of similar magnitude, while
the 3-rd neighbor interaction dominates in Ni-Au.

(ii) The dominant interactions have signs consistent
with the observed phase diagrams: Ag-Au and Cu-
Au have positive (“antiferromagnetic”) nearest-neighbor
pair interactions J2, corresponding to the tendency to-
wards complete miscibility and ordering at low tempera-
tures. The behavior of Ni-Au, in spite of positive 1-st and
2-nd neighbor pair interactions, is dominated by the “fer-
romagnetic” 3-rd neighbor interaction L2 (which causes
phase separation at low temperatures). Both dominant
1-st and 3-rd neighbor pair interactions in Cu-Ag are neg-
ative, implying a miscibility gap. The constituent strain
energy ∆Eeq

CS is always positive and therefore increases
the propensity for incoherent phase separation.

(iii) Although the nearest-neighbor pair interaction is
clearly dominant in Cu-Au, other pair interactions show a
long-ranged oscillatory behavior extending over approx-
imately 15 shells. As found in other systems,65,85 this
is a direct consequence of the atomic relaxation caused
by the constituent size mismatch between Cu and Au.
The pair interactions are slowly decaying in Cu-Ag and
Ni-Au, too.

The calculated multibody interaction energies are
shown in Figure 6. J1 is the point interaction, J3, K3, N3,
..., are triplets and J4, K4, and L4 are four-point clus-
ters in increasing order of interatomic separation (see Lu
et al.54 for a full description of the clusters). Figure 6
illustrates the importance of the multibody terms in our
Hamiltonian.

D. Finding the T = 0 ground states and T > 0
properties

Having parametrized the configurational energies in
terms of the mixed-space cluster expansion Eq. (10),
we can use it with established statistical methods to
predict various structural properties: T = 0 ground
states, order-disorder transition temperatures, configu-
rational entropies, free energies, phase stabilities and
atomic short-range order parameters. Due to the pres-
ence of both reciprocal and real space terms in the Hamil-
tonian (10), traditional techniques, e.g., the Cluster Vari-
ation Method, are not readily applicable. Monte Carlo
simulations must be used instead to calculate statistical
properties at finite temperatures. The basic computa-
tional algorithm is as follows. We adopt the Metropolis
algorithm in the canonical ensemble (fixed composition).
For each attempted spin flip, the change in the multiplet
interaction energy is evaluated in the real space. To ob-
tain the reciprocal space energy (constituent strain and
pair interaction energies), the Fourier transform of the
spin function S(Ri, σ) is needed. It can be calculated ei-
ther with the help of the Fast Fourier Transform (FFT) or
evaluated directly taking advantage of the special method
described in Ref. 87, which is much more economical: if
the total number of sites in the simulation box is N , a full
FFT has to be done only once after approximately every√

N accepted spin flips, which makes the whole compu-
tational effort for this special method scale as N1.5.

A simulation box of N = 4096 atoms (16× 16× 16) is
used to calculate all thermodynamic properties presented
in this paper. The transition temperatures are computed
by cooling the system from high temperatures and moni-
toring the discontinuities in the average energy and peaks
in heat capacity. To eliminate possible hysteresis effects,
the resulting low-temperature configurations are gradu-
ally heated up past the transition point. The former
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process provides the lower bound on the transition tem-
perature, T1, while the latter gives the upper bound, T2.
The heating and cooling rates are such that T1 and T2

differ by no more than 20K, an insignificant uncertainty
compared to the inaccuracies of the LDA calculations and
the fit errors of the cluster expansion. 1000 flips/site and
a temperature decrease of 2% for each Monte Carlo step
are usually sufficient, although in a few cases the results
are checked using 2000 flips/site and 0.5% temperature
change.

Zero temperature ground states are found by cooling
the system to T = 0 and checking whether the energy
of the final configuration lies on the convex hull. This
process is repeated for several random number seeds
and starting temperatures, always yielding configura-
tions with similar (usually identical) energies. We ex-
plore many equally spaced compositions with an interval
∆x = 0.05. The number of possible configurations for
each x is Nconf = N !

(xN)!(N(1−x))! .

Configurational entropy of the disordered alloys at fi-
nite T is computed from the energy vs. temperature
curves obtained by cooling the system from very high
(“T = ∞”) temperatures. The following thermodynamic
formula gives the configurational entropy at temperature
T :

∆Sconf(T ) = ∆Sideal + E(T )/T − kB

∫ β

0

E(β′) dβ′,

(20)

where β = 1/kBT and ∆Sideal = kB [x log x + (1 −
x) log(1 − x)] is the configurational entropy of an ideal
solid solution.

IV. RESULTS

A. T = 0 Ground States

1. Ground states of Cu-Au

Figure 7 shows the calculated T = 0 ground state lines
of Cu-Au and Ag-Au which were obtained from simulated
annealing quenches of a 16 × 16 × 16 system. In Cu-Au,
we find the L12 (Cu3Au) and L10 (CuAu) structures as
the stable ground states of Cu-rich alloys, in agreement
with the existing phase diagram data.1–4 These data also
list L12 as the stable low-temperature phase of CuAu3.
However, we find new, previously unsuspected ground
states of Au-rich compounds, all belonging to the fam-
ily of (001) superlattices. At x = 2

3 we find a stable β2
(CuAu2) phase (prototype MoSi2), which is a Cu1Au2 su-
perlattice along (001). At x = 3

4 , our cluster expansion
predicts that a complex Cu1Au4Cu1Au4Cu1Au2Cu1Au2

(001) superlattice falls on the convex hull, although its
energy is less than 2 meV below the tieline connecting
β2 (CuAu2) and Au. Furthermore, even the directly
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FIG. 7. T = 0 K ground state lines for Cu-Au and Ag-Au
obtained from simulated annealing calculations. L12 CuAu3

is not only above the ground state line, but also has a higher
formation enthalpy than other structures at the same com-
position, e.g. LDA calculations place the formation enthalpy
of Z3 below that of L12. Plots for Cu-Ag and Ni-Au are not
shown since these systems phase separate at T = 0 K.

calculated LDA enthalpy of formation of Z3 (which is
a Cu1Au3 (001) superlattice) is considerably lower than
that of L12 CuAu3.

We carefully checked whether the predicted new LDA
ground states for Au-rich Cu-Au alloys artifacts of some
approximation in our LDA calculations or the fit error of
the cluster expansion. The latter possibility was quickly
dismissed, since the directly calculated LDA enthalpies
of formation for L10, β2, L12 and Z3 agreed with the
values derived from the cluster expansion to better than
2 meV/atom (see Table III), while the new (100) SL
ground state is 14 meV/atom below L12. To address
the former possibility, we performed careful convergence
tests for L10, β2, L12 and Z3 with respect to the plane
wave cutoff and number of k points in the first Bril-
louin zone. The cutoff was increased from RKmax = 9
to RKmax = 11 and the density of the Brillouin zone
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mesh was doubled from 8 × 8 × 8 to 16 × 16 × 16, an
eightfold increase in the total number of k points. These
tests showed that the formation enthalpies of L10, β2
and L12 were converged to within 1 meV/atom with re-
spect to the size of the basis set and the number of k

points. Further, we checked how the choice of muffin-
tin radii affected ∆H . Varying RMT (Au) between 2.3a0

and 2.5a0 changed the formation enthalpies by at most
2 meV/atom and did not shift the relative stabilities of
phases. Finally, we repeated these calculations using
the Perdew-Zunger90 parametrization of the Ceperley-
Alder91 LDA functional, as well as the generalized gra-
dient approximation (GGA) of Perdew and Wang,92 and
found insignificant (about 2 meV/atom) changes in the
formation enthalpies. Inclusion of the spin-orbit inter-
action in the second variation procedure104 changed the
formation enthalpy of L10 (CuAu) by only 3.7 meV/atom
(from −48.2 to −51.9), indicating that it is not im-
portant for the energetics of Cu-Au. This conclusion
is in line with the findings of Ref. 105 that the spin-
orbit interaction influences the band structure but has
little effect on equilibrium lattice properties. Therefore,
we conclude that state-of-the-art first-principles density

functional calculations do not predict L12 to be a stable
T = 0 ground state of CuAu3. It is possible that van
der Waals interactions, omitted by the LDA and impor-
tant for large, polarizable atoms such as Au, can affect
the formation energies and hence the ground states of
Cu-Au.

We next analyze the possibility that the correct T =
0 ground state around x = 3

4 is not L12 as has
been assumed in the literature before. Although most
compilations1–4 of binary alloy phase diagrams give L12

as the stable structure of CuAu3, the experimental
evidence7,8,10 seems inconclusive because of the difficul-
ties in obtaining equilibrated long-range ordered samples.
X-ray studies8 have found superlattice peaks consistent
with the cubic L12 structure, but only very broad low-
order reflections have been observed. These superlattice
lines could not be sharpened by any heat treatment.8 It
is not clear to us if the X-ray reflections can be rein-
dexed according to some other non-L12 phase. It is also
possible that at elevated (T ≈ 500 K) temperatures L12

is stabilized by the entropy (configurational and vibra-
tional), while another transformation to the low-energy
structure should occur but is kinetically inhibited below
500 K. The biggest experimental obstacles to verifying
our predictions seem to be low diffusion rates below the
ordering temperature of CuAu3, Tc ≈ 500 K.

Next we discuss the experimental signatures of the new
LDA ground state structures. MoSi2-type β2 CuAu2 has
a superlattice reflection at (2

300), but CuAu3 (100) su-

perlattice has reflections at (100) and (1
300). These re-

flections also manifest themselves in the predicted atomic
short-range order of the disordered alloys (for details see
Ref. 103).

2. Ground states of Ag-Au, Cu-Ag and Ni-Au

The ground state line of Ag-Au is shown in Figure 7(b),
exhibiting L12 (Ag3Au), L10 (AgAu) and L12 (AgAu3)
stable low-temperature phases. Experimentally, these al-
loys are known to be completely miscible,2–4 and there
are several indications69 that they would order below 200
K if not for the very low diffusion rates. Theoretical
transition temperatures and short-range order patterns,
as well as a complete discussion are given by Lu and
Zunger.54

The calculated ground states of Cu-Ag and Ni-Au are
found to be phase separation, in agreement with the ex-
perimental enthalpy data.2 Neither alloy has a single or-
dered or disordered structure with negative enthalpy of
formation and therefore there are no stable T = 0 ground
states except the phase-separated alloy.

B. Mixing enthalpies

It is interesting to compare the calculated mixing en-
thalpies of disordered Cu-Au alloys with the available
theoretical and experimental data. Table IV summarizes
the values of ∆Hmix(x, T ) for the completely random
(T = ∞), short-range ordered (T = 800 K) and com-
pletely ordered (T = 0 K) Cu-Au alloys at compositions
x = 1

4 , 1
2 and 3

4 . Several important points are apparent
from this table:

(i) Studies50,48,62 which have completely neglected
atomic relaxations predict a substantially positive en-
thalpy of formation for the completely random alloy. In
our calculations, relaxations in the random alloy reduce
∆Hmix(T = ∞) by a large amount, bringing it down to
essentially zero.

(ii) Comparison of the present results for the T = ∞
random alloys with those of Wei et al.51 shows the in-
fluence of the number of structures included in the clus-
ter expansion. Since Wei et al. used the same FLAPW
method88, but included a set of only five high-symmetry
ordered structures [A1 (Cu), L12 (Cu3Au), L10 (CuAu),
L12 (CuAu3) and A1 (Au)], the atomic relaxation effects
were included incompletely. Indeed, their treatment gives
much larger mixing enthalpies of the random Cu-Au al-
loys than the present work employing approximately 30
low-symmetry structures with large relaxations. There-
fore we conclude that the Connolly-Williams set of five
ordered structures cannot correctly capture the large de-
crease of the mixing enthalpy of random Cu-Au alloys
caused by the atomic relaxations.

(iii) The good agreement between the relaxed (this
study) and “unrelaxed” (Wei et al.51) values of ∆Hmix

at T = 800 K suggests that the short-range order in Cu-
Au tends to decrease the role of the atomic relaxations.
This effect can be qualitatively explained on the basis of
the ordering tendency towards high-symmetry structures
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TABLE IV. Calculated mixing enthalpies of disordered Cu1−xAux alloys compared with the values obtained by other studies
and experimental measurements (in meV/atom). FLAPW is the full-potential linearized augmented plane wave method, LMTO
– linearized muffin-tin-orbitals method, KKR – Korringa-Kohn-Rostoker multiple scattering method, ASA – atomic-sphere
approximation, CPA – coherent potential approximation, CWM - Connolly-Williams cluster expansion, MSCE – mixed-space
cluster expansion used in this study, “Rel.” – incorporating atomic relaxations, and “Unrel.” – neglecting atomic relaxations.

Composition Expt.f This Wei Amador Terakura Ruban Weinberger

study et al.
a

et al.
b

et al.
c

et al.
d

et al.
e

FLAPW FLAPW LMTO-ASA ASW LMTO-ASA KKR-ASA
MSCE CWM CWM CWM CPA CPA
(Rel.) (Rel.) (Unrel.) (Unrel.) (Unrel.) (Unrel.)

∆Hmix(T = ∞)

Cu0.75Au0.25 +2.6 +46.3 +59 +26.9 +54.6 −27
Cu0.50Au0.50 +1.6 +38.0 +61 +30.4 +44.3 −57
Cu0.25Au0.75 +5.4 +18.6 +39 +20.4 +19.8 −31

∆Hmix(T = 800 K)

Cu0.75Au0.25 −46g −17.3 −6
Cu0.50Au0.50 −53g −19.3 −16.9 −5
Cu0.25Au0.75 −31g −1.2 −2.6 +8

∆Hmix(T = 0 K)

L12 Cu3Au −74 −37.3 −36.0 −65.0 −60.7 −54
L10 CuAu −91 −48.2 −62.9 −69.7 −83.4 −76
L12 CuAu3 −59 −17.3 −26.4 −34.0 −56.1 −47

aRef. 51 using the Connolly-Williams structures (relaxation of L10 only).
bRef. 50.
cRef. 48.
dRef. 62.
eRef. 58.
fRef. 2.
gValues obtained at T = 720K.

which have little or no relaxation energy (L12 and L10

in Cu-rich alloys).
(iv) The mixing enthalpies of the random alloy calcu-

lated by Weinberger et al.58 using the coherent-potential
approximation (CPA) differ strongly not only from those
obtained using the cluster expansion methods,51,50,48 but
also from the numbers given in the CPA work of Ruban,
Abrikosov, and Skriver.62 Since the CPA of Weinberger et
al.58 neglects the (a) atomic relaxation, (b) charge trans-
fer and (c) short-range order, which all lower the forma-
tion energies, the negative values obtained by Weinberger
et al.58 are very puzzling.

(v) There are significant discrepancies between the best
calculated and experimentally measured15,14,2 values of
∆Hmix at both T = 0 K and T = 800 K. At present
these discrepancies are hard to explain since the available
general potential LDA calculations51,52,57 of ∆H(L12)
and ∆H(L10) agree with each other reasonably well. On
the other hand, formation energies in Cu-Au are numer-
ically very small and present a severe test for any first-
principles model of electronic exchange-correlation. It is
noteworthy that several less accurate first-principles cal-
culations, using the atomic-sphere approximation (ASA),
have achieved better agreement with the experimental
enthalpies of formation than the state of the art gen-
eral potential techniques. We consider this to be fortu-
itous. In all cases, LDA calculations correctly predict the
relative magnitudes of ∆H for L12 and L10, as well as
reproduce measured asymmetry in formation enthalpies
towards more negative values of ∆Hmix for Cu-rich al-

loys.

C. Order-disorder transition temperatures

Order-disorder transitions have been investigated at
compositions (x = 1

4 , 1
2 , 2

3 and 3
4 ) using the Monte Carlo

simulation technique described in Sec. III D. The result-
ing transition temperatures, Tc, are given in Table V.
All transitions are found to be first order, involving dis-
continuities in the energy and correlation functions. At
x = 1

4 we find a transition from the disordered state to
long-range ordered L12 Cu3Au at Tc = 530 K, which is
only 130 K lower than the experimentally observed tran-
sition temperature. For the equiatomic alloy at x = 1

2
the calculated and experimental transition temperatures
agree to a few degrees Kelvin. However, we do not find
the CuAu II phase which exists in a narrow tempera-
ture range between 658 K and 683 K. This phase is sta-
bilized by the free energy differences between L10 and
long-period superstructures of L10 which are as small as
1 meV/atom56 and therefore beyond the accuracy of self-
consistent LDA calculations.

For x = 3
4 we obtain a sequence of transformations,

the first one occuring at T = 750 K from the disordered
A1 phase to a coherent two-phase mixture of β2 and A1.
Then a subsequent transition at T = 635 K takes CuAu3

into the long-range ordered (100) superlattice which is
predicted to be the stable T = 0 ground state at that
composition (see Sec. IVA1). The calculated transition
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TABLE VI. The experimentally measured2 entropy of formation ∆Sform
tot , the calculated configurationl entropy ∆Scalc

conf and
the derived non-configurational entropy of formation, ∆Sform

non−conf . All values are given in units of kB/atom.

System x T (K) ∆Sform
tot ∆Sideal ∆Scalc

conf ∆Sform
non−conf =

∆Sform
tot − ∆Scalc

conf

Cu-Au 0.5 800 0.73 0.69 0.57 0.16
Ag-Au 0.5 800 0.52 0.69 0.62 −0.10
Cu-Ag 0.141 1052 0.77 0.41 0.40a 0.37
Ni-Au 0.5 1100 1.04 0.69 0.56 0.48

aThis value was obtained at T = 1136 K, since a coherent phase separation starts at lower temperatures.

TABLE V. Calculated order-disorder transition tempera-
tures (in K) for Cu-Au. A1 denotes the configurationally dis-
ordered fcc phase, and n/a means that the transition has not
been observed (either experimentally or in the Monte Carlo
simulation).

Compo- Tran- Expt. This
sition sition study

Cu0.75Au0.25 A1 → L12 663 530
Cu0.50Au0.50 A1 → L10 683/658a 660
Cu0.33Au0.66 A1 → β2 n/a 735
Cu0.25Au0.75 A1 → L12 ≈ 500 n/a

A1 → β2 + A1 n/a 750
β2 + A1 → (100)SL n/a 680

aCuAu undergoes a transition to CuAu-II at 683 K, subse-
quently transforming into L10 CuAu-I at 658 K.

at x = 2
3 goes straight into the β2 phase at T = 735 K.

Therefore, a two-phase β2+A1 field is predicted to exist
at temperatures somewhere between 635 K and 730 K
and around x = 3

4 . These predictions reflect the LDA.
As stated in Sec. IV A1, corrections to the LDA might
be significant.

D. Non-configurational entropy

The effect of the non-configurational entropy (elec-
tronic, vibrational, etc.) on the alloy phase stability
has recently attracted considerable interest.106–116 For
instance, it has been suggested108–115 that there are
large differences in the vibrational entropies of order-
ing Svib

ordered − Svib
disord, which should manifest themselves

in shifts of the order-disorder transition temperatures.
There is another important class of thermodynamic prop-
erties where the vibrational entropy may play a role, and
which has often been overlooked. Namely, it is the en-
tropy of formation with respect to the pure constituents,
defined in analogy with ∆H in Eq. (4):

∆Sform
tot (A1−xBx, T ) = S(A1−xBx, T )

− (1 − x)S(A, T ) − xS(B, T ), (21)

where S(A, T ) is the total entropy of the pure con-
stituent A at temperature T . It is often assumed that the
configurational entropy is the dominant contribution to

∆Sform
tot (A1−xBx, T ) because all other contributions can-

cel out in Eq. (21). The non-configurational entropy of
formation,

∆Sform
non−conf(A1−xBx, T ) = ∆Sform

tot (A1−xBx, T )

− ∆Sconf(A1−xBx, T ), (22)

contributes to such important quantities as mutual solu-
bility limits and miscibility gap temperatures.

Noble metal alloys are excellent cases to test the val-
ues of ∆Sform

non−conf since accurate experimental data on

the entropies of formation, ∆Sform
tot , are available, and

the configurational entropy ∆Sconf can be calculated
accurately using the thermodynamic integration tech-
nique described in Sec. III D. Table VI gives the mea-
sured entropies of formation for disordered solid solutions
A1−xBx, ∆Sform

tot (x, T ), the maximum attainable config-
urational entropy ∆Sideal, as well as the theoretically cal-
culated configurational entropy ∆Scalc

conf , and the derived
value for the non-configurational entropy of formation,
∆Sform

non−conf . It shows that the size-mismatched noble

metal systems have large amounts of ∆Sform
non−conf in the

disordered solid solution. Since it is unlikely that these
values of ∆Sform

non−conf are of electronic or magnetic origin,
we suggest that the excess entropy in the disordered solid
solutions of Ni-Au, Cu-Ag and Cu-Au is vibrational. It
is possible that the atomic relaxations lead to a softening
of lattice vibrations, although the physical mechanism of
this softening is unclear at present.

Sanchez et al.49 in their study of the Cu-Ag system
noted that even a very crude model of the vibrational
entropy markedly improved the agreement with the ex-
perimental solubility data. In the case of Ni-Au, which
exhibits the largest ∆Sform

non−conf , it is possible to reconcile
the experimentally measured and theoretically calculated
miscibility gap temperatures only by taking into account
the non-configurational entropy of formation.117

The fact that Cu-Au also has a positive ∆Sform
non−conf has

little qualitative effect on the phase diagram since Cu
and Au are completely miscible from total energy and
configurational entropy considerations alone. Ag-Au is
calculated to have a negative ∆Sform

non−conf , but its value is
close to the experimental uncertainty in the measurement
of ∆S.
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FIG. 8. SQS bondlengths for Cu-Au and Ni-Au.

E. Bond lengths in random alloys

Since recent experimental measurements of the
composition-dependence of interatomic bond lengths in
Cu-Au24 and Ni-Au23 have found several unusual fea-
tures, it is interesting to address these trends from first-
principles LDA calculations. In the present work we
model the atomic positions in the random alloys using
special quasirandom structures118 (SQS). These periodic
structures are designed to reproduced the pair and multi-
body correlation functions of the perfectly disordered
configuration as closely as possible. It has been shown118

that even small unit cell SQS’s can give rather accurate
representation of the properties of random alloys. We
have performed LDA calculations for 8 atom/cell SQS’s
at x = 1

4 (SQS14a), x = 1
2 (SQS8a, SQS8b) and x = 3

4
(SQS14b). The atomic positions and cell coordinates

have been fully relaxed to minimize the total energy. The
results for Cu-Au and Ni-Au interatomic bond lengths
are shown in Fig. 8. The main features are:

(i) In spite of the different phase diagram properties
(Ni-Au phase separates and Cu-Au orders at T = 0 K),
the calculated behavior of bond lengths is very similar,
which we attribute to the similar size mismatch in both
systems (12% in Cu-Au and 15% in Ni-Au).

(ii) Our calculations give three distinct bond
lengths at all compositions, which is also observed
experimentally.23,24 Probably the most interesting fea-
ture in Fig. 8 is the crossing of RBB(x) and RAB(x)
curves at x = 3

4 in both systems. The measurements

for Cu-Au24 and Ni-Au23 indicate that this may indeed
be correct, since the deduced values around this compo-
sition are very close and have large error bars.

(iii) Another important feature, observed experimen-
tally and reproduced by our SQS results, is that A − A
bonds change much more as x varies from 0 to 1 than
B − B bonds when x varies from 1 to 0, suggesting that
the compressed bonds become increasingly stiff and the
expanded bonds weaken. This behavior can be explained
by the asymmetry in the interatomic potential curves,
which are rapidly hardening upon compression and soft-
ening upon expansion. However, our results for RAA at
x = 3

4 and RBB at x = 1
4 are obtained from an aver-

age of only 4 minority bonds in the SQS14 structures,
and perhaps are not representative of a wider statistical
sample.

(iv) It is interesting to note that the predicted bond
lengths between unlike atoms RAB do not follow the lin-
ear relation RAB = RAA + x(RBB − RAA).

V. SUMMARY

We have showed that accurate first-principles stud-
ies of alloys with large size mismatches are now feasible
using the mixed-space cluster expansion method. This
method has been applied to noble metal alloys where
vast amounts of experimental data and many theoretical
studies are available.

(i) The mixed-space cluster expansion has been gen-
eralized to include the effects of nonlinear strain on the
formation energies of long-period superlattices. We find
that the elastic energy, required to lattice-match Cu and
Ni to (100) surfaces of Au and Ag, is anomalously low,
leading to a very low constituent strain energy of (100)
superlattices. This effect is partly responsible for the sta-
bilization of new LDA ground states of Au-rich Cu-Au
alloys.

(ii) In Au-rich Cu-Au, we predict new T = 0 K
ground states. Our LDA results place L12 (CuAu3),
previously thought of as the stable T = 0 state of
CuAu3, higher in energy than a family of superlat-
tices along (100) direction. In particular, MoPt2-type
CuAu2 [Cu1Au2 superlattice along (100)] and a compli-
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cated Cu1Au4Cu1Au4Cu1Au2Cu1Au2 (100) superlattice
are found to be the LDA ground states.

(iii) There are significant discrepancies (up to 50%) be-
tween the experimentally measured and calculated LDA
mixing enthalpies for Cu-Au alloys. This is surprising
since the experimental mixing enthalpies of Ni-Au and
Ag-Au are reproduced very well.54,117

(iv) The calculated order-disorder transition temper-
atures are in an excellent agreement with experiment.
For instance, T calc

c (x = 1
4 ) = 530 K and T calc

c (x =
1
2 ) = 660 K, compared with T expt

c (x = 1
4 ) = 663 K and

T expt
c (x = 1

2 ) = 683/658 K.
(v) From the experimentally measured entropies of

formation ∆Sform
tot and the calculated configurational

entropies ∆Scalc
conf , we obtain large non-configurational

(probably vibrational) entropies of formation in the size-
mismatched systems, ∆Sform

non−conf = ∆Sform
tot − ∆Scalc

conf .
These entropies allow one to reconcile the experimental
miscibility gap temperature and formation enthalpies of
Ni-Au with the theoretical LDA values.117

(vi) Bond length distributions in Ni-Au and Cu-
Au have been studied via supercell calculations em-
ploying the special quasirandom structure technique.
The important qualitative features of recent EXAFS
measurements23,24 are correctly reproduced: existence of
distinct A − A, B − B and A − B bond lengths at all
compositions, possible crossing of RAA(x) and RAB(x)
around x = 3

4 (where x is the composition of the larger
constituent), softening of the shorter bond as x → 1,
and deviations of the bond length RAB(x) between un-
like atoms from the linear Vergard’s law.

ACKNOWLEDGMENTS

This work has been supported by the Office of Energy
Research, Basic Energy Sciences, Materials Science Di-
vision, U.S. Department of Energy, under contract DE-
AC36-83CH10093.

1 Phase Diagrams of Binary Copper Alloys, eds. P. R. Sub-
ramanian, D. J. Chakrabarti, and D. E. Laughlin (ASM
International, Materials Park, OH, 1994).

2 R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and
K. Kelley, Selected Values of the Thermodynamic Proper-

ties of Binary Alloys (American Society for Metals, Metals
Park, OH, 1973).

3 M. Hansen, Constitution of Binary Alloys (Genium, Sch-
enectady, N.Y., 1985).

4 T. B. Massalski, Binary Alloy Phase Diagrams (ASM In-
ternational, Materials Park, OH, 1990).

5 Noble Metal Alloys, edited by T. B. Massalski (The Met-
allurgical Society, Warrendale, 1986).

6 J. M. Cowley, J. Appl. Phys. 21, 24 (1950);
7 S. Ogawa and D. Watanabe, J. Appl. Phys. 22, 1502
(1951).

8 B. W. Batterman, J. Appl. Phys. 28, 556 (1957).
9 G. C. Kuczynski, M. Doyama, and M. E. Fine, J. Appl.
Phys. 27, 651 (1956).

10 R. Kubiak and J. Janczak, Journal of Alloys and Com-
pounds 176, 133 (1991).

11 F. M. d’Heurle and P. Gordon, Acta Met. 9, 304 (1961).
12 R. L. Orr, J. Luciat-Labry, and R. Hultgren, Acta Met.

8, 431 (1960).
13 R. A. Oriani, Acta Met. 2, 608 (1954).
14 R. A. Oriani and W. K. Murphy, J. Phys. Chem 62, 327

(1958).
15 R. L. Orr, Acta Met. 8, 489 (1960).
16 M. Hirabayashi, S. Nagasaki, and H. Kōno, J. Appl. Phys.
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